OPERATORS WITH COMMON HYPERCYCLIC
SUBSPACES

R. ARON, J. BES, F. LEON AND A. PERIS

ABSTRACT. We provide a reasonable sufficient condition for a fam-
ily of operators to have a common hypercyclic subspace. We also
extend a result of the third author and A. Montes [22], thereby
obtaining a common hypercyclic subspace for certain countable
families of compact perturbations of operators of norm no larger

than one.

1. INTRODUCTION

It is known that for any separable infinite dimensional Banach space
X, there is a continuous linear operator T : X — X which is hyper-
cyclic; that is, there is a vector x such that the set {z, Tx,... , T "z, ...}
is norm dense in X ([2], [5]). Moreover, a simple Baire category argu-
ment shows that the set HC(T) of such so-called hypercyclic vectors
x is a dense G in X [21], and its linear structure is well understood:
While HC(T) must always contain a dense subspace ([9], [20]), it not
always contains a closed infinite dimensional one; see [16] for a complete
characterization of when this occurs. (Throughout, when we say that
HC(T) contains a vector space V' we mean of course that every z € V

except x = 0 is hypercyclic for T.) Thus, for example it was shown
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that for the simplest example of a hypercyclic operator on a Banach

space, namely the Rolewicz operator
By : by — by, By(w1, 29, ) = 2(x2, 3, -+ ),

HC(B3) contains an infinite dimensional vector space but that this
vector space cannot be closed [25, Theorem 3.4].

In recent years, an increasing amount of attention has been paid to
the set Nper HC(T) of common hypercyclic vectors of a given family
F of hypercyclic operators acting on the same Banach space X. A
trivial extension of the Baire argument alluded to above tells us that
NrerHC(T) is a dense subset of X whenever F is countable. More-
over, L. Bernal and C. Moreno [7] showed this set contains a dense
vector space if we ask in addition that the members be hereditarily
hypercyclic. Finally S. Grivaux proved that this additional hypothesis
can be suppressed [17, Proposition 4.3].

Other important recent work is by E. Abakumov and J. Gordon [1],

who showed that the uncountable intersection

Npeo | w11 HC(By) # 0,

where B, is the Rolewicz operator with 2 replaced by A. In fact it is
simple to derive from this that the intersection contains a dense sub-
space of £5. On the other hand, in [4] F. Bayart shows that under the
assumption of a strong form of the hypercyclicity condition, uncount-
able collections of hypercyclic operators can indeed contain an infinite
dimensional closed subspace of common hypercyclic vectors. Similar
results were obtained by G. Costakis and M. Sambarino [13], who also
provided a criterion for the existence of common hypercyclic vectors.

Our interest here will be in the following problem:
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Problem 1. Let F be a countable family of operators acting on a
Banach space X. When does Npex HC(T') contain a closed infinite di-

mensional subspace?

After giving a natural example that indicates that the Abakumov-
Gordon, Bayart and Costakis-Sambarino situations fail to hold in gen-
eral for common subspaces, we prove the main result of this note, which
extends a result by A. Montes [25, Theorem 2.1] by providing a reason-
able sufficient condition on a countable family of hypercyclic operators
acting on a Banach space to have a common infinite dimensional hyper-
cyclic subspace (Corollary 3.5). We then apply this to extend a result
of the third author and A. Montes [22], thereby obtaining a common
hypercyclic subspace for certain countable families of operators of the

form T'=U + K where ||U|| <1 and K is compact.

2. EXAMPLE

Example 2.1. Let X = H be a separable, infinite-dimensional Hilbert
space, and let Sy be the unit sphere of H. Let (w,) be a sequence of

positive scalars satisfying

1
lim inf (H wk+j> <1 and lim supH w; = 00.

j=1 j=1

For each h in Sy, let {e(h), : n > 1} be a basis of H with e(h), = h,
and let Ty, : H — H be the corresponding unilateral weighted backward
shift defined by
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So Ty, has a hypercyclic subspace [23, Corollary 2.3]. Also, notice
that F = {By : h € Sy } satisfies that for all0 #y in H,

y=0.

y
llyll

That is, F is a family of operators, each one having a hypercyclic sub-
space, but such that there is no hypercyclic vector common to all mem-

bers of F.

Let us also observe that in [1] the authors mention that there is
no common hypercyclic vector for the family of hypercyclic operators
{AB@déB : |A,|6] > 1}. It is easy to see that no operator in this

family admits a hypercyclic subspace.

3. A SUFFICIENT CONDITION FOR A COMMON HYPERCYCLIC

SUBSPACE

We prove the main result in the more general setting of universal-
ity. Given a sequence F = {T}};en of bounded operators acting on
a Banach space X, we say that a vector x € X is universal for F
if {Tx : T € F }isdensein X; the set of such universal vectors
is denoted HC(F). The sequence F is said to be universal (respec-
tively, densely universal ) provided HC(F) is non-empty (respectively,
dense in X). F is called hereditarily universal (respectively, hereditarily
densely universal) provided {7, }ren is universal (respectively, densely
universal) for each increasing sequence (ny) of positive integers. For
more on the notion of universality, see [15] and [19]. A result similar
to the following theorem is proved in [10] for a (unique) sequence of

universal operators in the context of Fréchet spaces.
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Theorem 3.1. Let T, ; (n,j € N) be bounded operators on a Banach
space X, and let Y be a closed subspace of X of infinite dimension.

Suppose that for each n € N

i) {T,.,}jen is hereditarily densely universal, and

i) lim; .o || T, x| =0 for each z inY.
Then there exists a closed, infinite dimensional subspace X, of X so
that {T,, jx}jen is dense in X for each non-zero x € Xy andn € N. In

particular, Xy is a universal subspace of {T,, ;};en for each n € N.

Lemma 3.2. Let T,,; (n,j € N) be bounded operators on a Banach
space X so that for each fized integer n the family {1, ;};>1 is densely
unwersal. Then the set N2 HC({T,.;};j>1) of common universal vec-

tors to every sequence {1, ;}jen is dense in X.

Proof. N2 HC({T,,;};>1) is a countable intersection of dense G5 sub-
sets of the Baire space X [18, Satz 1.2.2]. O

Proof of Theorem 3.1. Reducing the subspace Y if necessary, we may
assume it has a normalized Schauder basis (e;);. Let (e) be its as-
sociated sequence in Y* of coordinate functionals, that is, so that
ei(e;) = 055 for i,j € N. Let A(Y,X) denote the norm closure of

the subspace

{Z%e;(-): neN, z,...,2, € X }
j=1

For each T in B(X), define Ly : A(Y,X) — A(Y,X) by LV :=
TV. We make use of the following lemma, whose proof follows that
of Theorem 3.1. Analogous versions of this lemma are proved in [10]
for several operator ideals (nuclear, compact, approximable), in a more

general context, by using tensor product techniques developed in [24].
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Lemma 3.3. Suppose {1} en is a sequence of bounded operators on X
that is hereditarily densely universal. Then {LTTj }i>1 4s a hereditarily
densely universal sequence of operators on A(Y, X), for some increasing

sequence (r;) of positive integers.

Now, notice that by (i) and Lemma 3.3, for each fixed n € N there
exists a sequence of positive integers (r, ;); so that the sequence of oper-
ators {LTMW }jen is hereditarily densely universal on the Banach space
A(Y, X). By Lemma 3.2, there exists V in A(Y, X) that is universal for
every sequence {Lr, }jen, and hence universal for every {Lr, ,}jen,
too (n € N). Multiplying V' by a non-zero scalar if necessary, we may
assume that ||V < 5. Consider now X; := (i + V)(Y), where i : ¥ —
X is the inclusion. For each z € Y, ||(i 4+ V)z|| > ||z|| — [|[Vz| > 5| =]
So ¢+ V is bounded below and X; is closed and of infinite dimension.
Notice that {7}, ;Vx};en is dense in X for every 0 # = € Y and every
n € N. Indeed, given ¢ > 0, let z € X be arbitrary, and let S be a
finite rank operator in A(Y, X) such that Sz = 2. By Lemma 3.3, for
cach n there is some T, ; such that |[T;,;V — S|| < ;5. In particular,
|15, Ve — Sx|| = ||T,,;Vx — z|| < e. The theorem now follows from

condition (ii). O

Proof of Lemma 3.3. Since {1} };en is hereditarily densely universal on
X, it follows from [6, Theorem 2.2] that there exists a dense subspace
Xo of X, an increasing sequence of positive integers (r;) and (possibly

discontinuous) linear mappings S; : Xog — X (j € N) so that

(2) Trj7Sj7 and (Terj —I) — 0

J—00

pointwise on X,y. Now, consider

Ay ={V e AY,.X):V(Y) C Xy and dim(V(Y)) < oo}.



OPERATORS WITH COMMON HYPERCYCLIC SUBSPACES 7

Then Ay is dense in A(Y, X), and it follows from (2) that
Ly, ,Ls;, and [Lg, Lg, —I] — 0
J J j—o00
pointwise on Ap. So {LTrj }j>1 is hereditarily densely universal on

A(Y, X), by [6, Theorem 2.2]. O

Remark 3.4. An alternative constructive proof of Theorem 3.1 may
be done with the arguments from [25, Theorem 2.2]. The proof here is

much simpler, and follows arguments from [10] and [11].

Corollary 3.5. Let T; (1 € N) be operators acting on a Banach space
X. Suppose there exists a closed, infinite dimensional subspace Y of

X, increasing sequences (ny4), of positive integers, and scalars ¢; 4 so

that for l € N

i) {cy, Tln(l’q)}qu is hereditarily universal, and

i) lmg, o ||crg TIn(l’Q)xH =0 for each x inY .
Then there exists a closed, infinite dimensional subspace X1 of X so
that {c;, Tln(l’q)ac}qu is dense in X for each non-zero x € X, and each
[l € N. That is, Xy is a supercyclic subspace for T} for every |l € N.
Moreover Xy is a hypercyclic subspace for T; for every | € N if the

constants ¢4 are of modulus one.

4. AN APPLICATION TO COUNTABLE FAMILIES OF OPERATORS

We now apply Theorem 3.1 to show the following extension of [22,

Theorem 4.1] to countable families of operators.

Theorem 4.1. Let F = {1, = U+ K, : | € N} be a family of operators

acting on a common Banach space X . Suppose that for each | € N

a) U <1, K; is compact, and
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b) {T]""},>1 is hereditarily universal, for some increasing se-

quence (ng4)qa>1 of positive integers.

Then the operators in F have a common hypercyclic subspace.

To show Theorem 4.1, we make use of the following lemmas. The
first one follows from a slight modification of a proof by Mazur [14, p
38-39]. The second one is [16, Lemma 2.3] The last one is proved at

the end of this section.

Lemma 4.2. Let (X)) be a sequence of closed, finite-codimensional
subspaces of X, with X, 2 X, .1 (n > 1). Then there exists a normal-

ized basic sequence (e,) so that e, belongs to X,, for alln > 1.

Lemma 4.3. [16, Lemma 2.3] Let {T,"""}, be hereditarily hypercyclic
(Il € N). Then there ezists a dense subset Xo of X and, for eachl € N,

a subsequence (114), of (n14)q S0 that
lim [|7,"z| = 0 (z € Xo).
g—00

Lemma 4.4. Let X and Z be Banach spaces, and let K;,, : X — Z
be compact operators (I,n > 1). Given € > 0, there exist closed linear

subspaces X, of finite codimension in X (n > 1) so that

1) Xn 2 Xn+1

i) ||Kinz|| < ellz]] (reXn 1<1<n)

Proof of Theorem 4.1. Because {T,""},>1 is hereditarily densely uni-
versal for each | € N, by Theorem 3.1 it suffices to get a closed, infinite

dimensional subspace Y of X and subsequences (my,), of (n;4), so that

lim |7,z =0 (z €Y, l€N).
q—00
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For each pair of positive integers n and [, let K;, be the compact
operators defined by T = (U, + K;)" = U" + K, ,,. Apply Lemma 4.4
to get closed, finite codimensional subspaces X,, of X satisfying

(l) Xn 2 Xn+1
(3)

b) || Kinx| <zl (ze€X,,1<1<n).
By Lemma 4.2, we can pick a normalized basic sequence (e,) in X so
that e, € X,, (n € N). Let K > 0 be the basis constant of (e,,), and pick
a decreasing sequence of positive scalars, (e,), so that >~ €, < %

By Lemma 4.3, there exist subsequences (7;,), of (n;,), and a dense

subspace Xy of X so that

(4) lim || 7, = 0 (z € Xp).

—
Pick a sequence (z,,) in X so that

€n

(5) len =zl < T i <n

Notice that |le,, — z,|| < €, (n > 1) and, because (e,) is normalized,

lex ()] < 2K||z|| (n > 1) forall x in Yy = span{ey, e, ...}, where (&)

is the sequence of functional coefficients associated with the Schauder
basis (e,) of Yo. Hence Y 7 |lex| |len — znll < 2K > 07 €, < 1, and

so any subsequence (z,,) of (z,) is equivalent to the corresponding

basic sequence (e, ) [14, p 46]. We let Y := span{z,, : k > 1}, where
(2n,,) C (25) is defined as follows. Let ny := 1. For I € N, choose m;;
in (f,4) so that |7, z,,|| < %2. Also, let ny := my;. Next, for each
[ € N, since z,,,, 2z, € Xo, we may apply (4) to get my2 € (7,), which

satisfies the following conditions.

my o > H’laX{Z, ni, ml,l}

1Tz, <3 i=0,L

22
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Also, let ny := max;<j<a{my2}. Continuing this process we get, for

each [ € N, an integer m;; in (), so that

i) mys > max{s, ns_1,Mys—1}

(6)

i) || 2, || < 52 i=0,...,5—1,

where n, = max;<<,{my,} for each r € N. It suffices to show that

7™ — 0 pointwise on Y (I € N). Let 0 # 2 = 2511 Qjzp, Y,

§—00

[ € N be fixed, and s > [ be arbitrary. Then

s—1 0o 0o
mys mi s mi s mi s
T 2= 0T o) o Tz, —en ¥ () ajen,).
j=1 j=s j=s

Notice that |o;| < 2L||z|| (1 < j), where L is the basis constant of
(zn,,). By (6.ii),

— L||Z|
(8) I|Z% || < Zl%| < 21 2
Also, by (61) and (5)
(9) 1D @ T (zn, =€) < 211201 Y en,ye
Jj=s Jj=s

Finally, since X,,, C X,,,, . and ||U;]| <1, by (3b)

[ Z ajen || = (0™ + Kim,, Z ajen,) ||

j =S

<2 el (s20)
Jj=s

(10)

So by (7), (8), (9), and (10), lim,_.« ||7;""*z|| = 0. We finish the proof
of Theorem 4.1 by showing Lemma 4.4.

Proof of Lemma 4.4. Let n > 1 and ¢ > 0 be fixed. Because each

K, : Z* — X* is compact, there exist Znts s Zlng,, M X" so that

(11) K,n(BZ*)g i B(Zf,n,zaf)-
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For each positive integer s, let X, := N_; N ﬂfl:’{ Ker(z, ;). So

each Xy is closed and of finite codimension in X, and X, O X,
(s > 1). Now, let z € X,, and let 1 < [ < n be fixed. By the
Hahn-Banach theorem, there is a functional z* of norm one so that
| K nz|| = (K px,2*). By (11), we may choose 1 < j < kj,, so that
| K7 2" =2, ;|| < e Hence, because x is in X,, C Ker(z/, ;), [ Ki x| =

(x,Klfn:c* — ZZM) < ez O
The proof of Theorem 4.1 is now complete. U

We'd like to finish with the following two problems.

Problem 2. Let Ti, Ty be two operators acting on a Banach space
X. Suppose each of Ty, Ty has a hypercyclic subspace (i.e., a closed,
infinite dimensional subspace of hypercyclic vectors). Must they share

a common hypercyclic susbpace?

Problem 3. Let 11, T be two hereditarily hypercyclic operators acting
on a Banach space X, with a common hypercyclic subspace. Must there
exist sequences (i 4)q (I =1,2) and a closed infinite dimensional sub-

space Y of X so that {T,""*}, is hereditarily hypercyclic and T,"* — 0

q—o0

pointwise on Y (I =1,2)7
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