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Abstract

We show that the Bishop—Phelps—Bollobas theorem holds for all bounded operators from Lj(u) into
L0, 1], where w is a o -finite measure.
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1. Introduction

In 1961, Bishop and Phelps [5] proved the celebrated Bishop—Phelps theorem, which shows
that for every Banach space X, every element in its dual space X™* can be approximated by ones
that attain their norms. Since then, this theorem has been extended to linear operators between
Banach spaces [7,11,13,14,16], and also to nonlinear mappings [1,4,2,8,12]. On the other hand,
Bollobés [6] sharpened it to apply a problem about the numerical range of an operator, now
known as Bishop—Phelps—Bollobds theorem. We denote the unit sphere of a Banach space X
by Sx, the closed unit ball by By, as usual.

Theorem 1.1 (Bishop—Phelps—Bollobds theorem). Suppose x € Sx, f € Sx» and | f(x) — 1| <
/2 (0<e< %). Then there exist y € Sy and g € Sx+ such that g(y) =1, || f — gll <€ and

lx — yll <€+ €2

Recently, Acosta, Aron, Garcia and Maestre [3] defined the Bishop—Phelps—Bollobds property
for a pair of Banach spaces. A pair of Banach spaces (X, Y) is said to have the Bishop—Phelps—
Bollobés property for operators (BPBP) if for every € > 0 there are n(e) > 0 and B(¢) > 0 with
lim¢ .o B(€) =0 such that for all T € Sz (x,y) and xo € Sx satisfying || T (xo)|| > 1 — n(e€), there
exist a point ug € Sy and an operator S € S x,y) that satisfy the following conditions:

[ Suoll =1, lluop — xoll < B(e), and |S—T| <e.

This property is a uniform one in nature.

Let (£2, A, 1) be a o-finite measure space and (/, X, m) be the Lebesgue measure space,
where I = [0, 1]. Finet and Paya [10] showed that the set of all norm attaining operators is dense
in the space L(L(u), Loo(m)). Further, we will show in this paper that the pair (L1 (@), Loo(m))
has the BPBP.

2. The result

It is well known that the space L(L(u), Loo(m)) is isometrically isomorphic to the space
Loo(u ® m), where u ® m denotes the product measure on §2 x /. More precisely, the operator
h corresponding to an essentially bounded function 4 is given by

(i) = [ hw.n @ duw)
Q
for m-almost every ¢ € I and for all f € L1(u) (see [9]).

We recall the Lebesgue density theorem: given a measurable set E C R, we have
m(EAS(E)) =0, where §(E) is the set of points y € R of density of E, that is,

sEy=lyer: im ™ENY —hy+hD) _
=1 .h—>0 o ’

2h

and EAS(E) is the symmetric difference of the sets E and §(E). In addition, the closed unit
ball of L{(m) is the closed absolutely convex hull of the set {m)illg?): Be X, 0<m(B) < oo},
equivalently,
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1
lglloo =supy ——| | gdm|: Be X, 0 <m(B) <
m(B)
B

for every g € Loo(m). For a measurable subset M of 2 x I, let My ={y € I: (x,y) € M} for
eachxe 2 and MY ={x € 2: (x,y)e M} foreachyeI.

Lemma 2.1. Let M be a measurable subset of §2 x I with positive measure, 0 < € < 1, and
fo= Z;'.’:l aj% € Sp (), where each A is a measurable subset of §2 with finite positive
measure, Ay N A; =0, k #1, and o is a positive real number for every j =1,...,m with
Z?’:l oj=LIfIXm(fo)llo > 1 — €, then there exists a simple function go € St () such that

. 4
|GRm +@)go)||, =1 and ||f0_go||1<i,

for any simple function ¢ in Lso(u @ m) such that ||¢|leco < 1 and ¢ vanishes on M.

Proof. Since || xa (fo)lloo > 1 — €, there is a measurable subset B of I such that 0 < m(B) and

~ XB
‘<XM(fO)7 wﬂ >1—e

Foreach j=1,...,m weput M; =M N (A; x B) and let

Hi={(x,y): x€Aj, yes((M)j))}.

As in the proof of Proposition 5 in [15], H;’s are disjoint measurable subsets of 2 x I and
(u®@m)(H) > 0, where H = Ul';’zl H;. Then there is y € I such that u(H”) > 0. We also note
that foreach j =1,...,m wehave H; CA; x §(B) and (u ® m)(M;AH;)=0. Let

J ={j: w(H})>0, 1<j<m}.
For y € §(B) with J(y) # @ we define gy € S, () by

XH?)
gy = Z IB] (I‘ij)’
jesy MY

where B =a; /(3 ke j(y) )

We first claim that X + ¢ attains its norm at g, for every y with (H”) > 0.

Fix such y and let B, = [y — yu,y + vul, Where (y,) is a sequence of positive numbers
converging to 0. Note that for every x € H jy we have (x, y) € H;, which implies that

m((Mj)x NV By)
n—00 m(By) -

1.

The Lebesgue dominated convergence and Fubini theorems show that for each j € J(y)
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1 m((M ), N By) _ (m®m)(M; N (Hj x By))
5 / du(x) = lim 5
) m(By) n—00 [L(H3 )m(By)

On the other hand, since the simple function ¢ is assumed to vanish on M and also ||¢||co < 1,
we have

R
Nuy ) me |~ laahmes,y ] 0

H/V x By,

(L ®m)((H x By)\ M)

1(H; )m(By)
o (wem)(M; N (H} x By)
1(H; )m(By) ’
asn — oQ.
Therefore,

Xy XB
1> | G+ > tim (o + ¢ N, s
|G + @) (8| o ni)rgo‘<(XM+<p)<j§y)ﬂ,M(ij)> m(Bn)>‘

(u®m)(M N (Hj x By))

> lim Z J y
n—>ooj€J(y) M(Hj Yym(By)
1
— lim P — du@m
A 2 Bl / pa )‘
Je I g HYxB
_/ n
(w@m)(M; N (H, x By))
SR I A Rk
—
n OojeJ(y) H(Hj)m(Bn)
(w®m)(Mj N (H] x By))
— lim Zﬁj[l— 7 ]:1,
nmoe Lo W(H m(B,)

which shows that X + ¢ attains its norm at gy.
Next we claim that there exists y € §(B) such that u(H”) > 0 and

4e
IIgy — folhh < :
Foreach j =1,...,m we set IS’j+ ={y € 8(B): ,u(Hj:V) > 0}, B? ={y € 8(B): M(H}') =0} and

B = ﬂ’j’;l B(/.). By applying Fubini’s theorem the sets B/.+ and B;) are Lebesgue measurable
subsets of [0, 1]. '
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We note that foreach j =1,...,m

(n@m)(Mj)=(u@m)((A;j x 8(B)) N Hj)
=(ne@m)((A; x8(B)) N{(x,y) € Hj: u(Hj) > 0}).

Since

we have

o (wem)(M))
e <2a] (w®@m)(Aj x B)’

which implies that

2 (n®@m)((A; x S(B)\{(x,y) € Hj: u(H}) > 0})
Z“J <e, (1)
= (u®@m)(Aj x B)

and

Zm: (n@m)((Aj x BY))
o
= (nem)(Aj x B)

n Ai x8(B H;: H? 0
<Zaj(“®m)(( X OBD\ () € Hyt w(H]) = 0) o
= (L®@m)(A; x B)

which implies that

Zal < em(B). 3)

It follows from this inequality that m(B°) < em(B). For y € §(B) \ B°,

. LA\ HD)
||g) Sollh = Z aj + Z |:<M(H} MZZ]))I'L(H})—FOU Mj(Aj)J :|

JEJ () JjeJ ()

(H’) 1(A;\ HY)
_Z“’+1+Z[ i wan YT @y }

JEJ () JEJ(Y)

—ZZa]+Z

j¢J(y) jeJ(y)

L HY)
(A
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Assume that there is no y € §(B) \ B” such that

4de
||8y — folhh < Te

1
Then

4de 0
T— m(8(B)\ BY) < llgy — follidm(y)

8(B)\B°

H(A;j \H)
( Z aj+ Z oj———————— i(A) )dm(y).
5(3)\30 JEJ () JeJ ()

It follows from the inequalities (1)—(3) that
> wdnm= | 3 @) dm ()
5(3)\30 JEJ(y) 5(3)\3() J=1

Za,m <em(B)

Jj=1

and
n(Aj\ H
Z %#d )
§(B)\BO JeJ ()
m M(Aj \H]))
s(B)\BO 7
m (p@m)(Aj x BH\{(x,y) e H): ye B}
_ Zaj e < e m(B).
= n(Aj)
Therefore,

4em(B) < 14%6171(8(3) \ BY)

< / lgy — foll1 dm(y) < 4em(B),
3(B)\BO

which is a contradiction. O
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Lemma 2.2. (See [3, Lemma 3.3].) Let {c,,} be a sequence of complex numbers with |c,| < 1 for
every n, and let n > 0 be such that for a convex series Y oo oy, ReY 02 apcy > 1 — 1. Then
forevery 0 <r <1, the set A ={i € N: Rec; > r} satisfies the estimate

Zai}l_lir'

icA

We recall that the set of simple functions is a dense subspace of L (1 ® m).
Theorem 2.3. For the complex Banach spaces L1(i) and Loo(m), let T : L1 (1) = Loo(m) be a

bounded operator such that |T|| = 1. Given 0 < € < 1/5 and fo € Sr, ) satisfying |T (fo)lloo >
1 — €8, there exist S € L(L1(11), Loo(m)), ||S|| =1 and go € S, (w) such that

4e
ISgo| =1 IT—Sl<e and ||fo—golll<264+:-

Proof. Since the set of all simple functions is dense in L;(xt), we may assume

m
XA,
fo=) aj—— €514,
A

where each A is a measurable subset of §2 with finite positive measure, Ay N A; =, k # 1, and
every o is anonzero complex number with 27:1 loj| = 1. We may also assume that 0 < o; < 1
forevery j =1,...,m. Indeed, define ¥ : L (w) = Li(u) by

m
W)=Y e xa - X@Un, Ay
j=1

where 6; = arg(a;) for every j =1,...,m. The operator ¥ is an isometric isomorphism of
Li(u) onto Li(u),

1T = (T ow™)(w(f)],,>1—€

and

=z XA;
"4 = i )
(fo) ;:1 lotj (A}

hence we may replace T and fo by T o & ~! and ¥ (fp), respectively. .
Let h be the element in Lo (£2 X I, u ® m), ||h|lcoc = 1 corresponding to T, that is, T = h.
We can find a simple function

ho€ Loo(2 x I, n@m), |lholloo =1
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such that ||& — holloo < IT (f0)lloo — (1 — €®), hence ||}A10(f0)||Oo > 1 — €3. We can write hg =

Zf: | €1 XD, » where each Dy is a measurable subset of £2 x [ with positive measure, Dy N Dy = @,

k # 1, the complex number |¢;| < 1 forevery [ =1, ..., p,and |c;,| =1 for some 1 <y < p.
Let B be a Lebesgue measurable subset of / with 0 < m(B) < 0o such that

>1—¢€8,

fuo 2}

Choose 6 € R so that

1—ed <

<ﬁ°(f o) m)ig>>‘

_ el XB
=e <h0(f0)’m(B)>

Serli() )
—"/ 1A ) mB) [

j=1

Let

J= {j: 1< Sm,Re[ei‘9<lAzo< X4, ), X5 >:| >1 —64}.
w(Aj;) /) m(B)

By Lemma 2.2 we have

8
€ 4
(XJ:Z(X./>1—7421—€.
= 1—(1—€%
We define
o XA;
O
A w(Aj)
Then we can see || fi|l1 =1,
XA 1 XA
I|fo—f1||1<H oj— +<——1>’ o —
j% "n@apnl " \ey /X; Tncap

=Zaj+(1—aj)=2(1—a,)<2e4
¢l

and
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'< oL (B>>’ Re[ 10< (B>>]
- _Z“f Re[ 19<h°<u(Al ))’ %H
>—Za] (1—€)=1-¢€

jG]

On the other hand, for each j € J

e rerlin( 22), ]
L n(Aj)) m(B)

el 4 icz (L®m)(DIN (A x B))
I WA m(B)

=R

(¢

- |
3 eyt |
=1 Vi

where
" (w®@m)(DyN(Aj x B))
vi=y, G om(B :
= M(Aj m(B)
and
Vi = (n®@m)(D;N(Aj x B))
. 11 (Aj)m(B) '
We define
, 62
L= {l: 1<I<p, Re(e’0c1) >1— Z}’
and
L= {l: 1<I<p, Re(e’eclyj) >1- Z}

For each j € J we cansee y; > 1 — €*, and by Lemma 2.2 again

ZV}I _6752:1_462'
leL; 1_(1_7)

Hence



626 R.M. Aron et al. / Advances in Mathematics 228 (2011) 617-628
2 4
Zyﬂ > (1 —4e )(1 —€ )
IELJ'
For every j € J we note that L; C L and

(u®@m)(D;N(Aj x B))
u(A;)m(B)

2
Z Vil > 1—462)(1 —64).

S @OMWDINA; X B)

& uA)m®)

Therefore

i\ n@®m(D;N(A; x B))
<X"(f‘ (B>> Z( )Z 1W(Am(B)

>§(j—j)<1 —4e)(1 - ) = (1 - 4e)(1 - )

>1-5>1—e.
By Lemma 2.1 there is go € Sz, (x) such that [|[(Xp + @)(g0)lleo =1 and || f1 — goll < ﬁ,

where ¢ is any simple function in Lo (4 ® m) such that ||¢||oo < 1 and ¢ vanishes on D. There-
fore, we have

de
I fo—gollt < llfo— filli + I1.fi — golly < 2¢* +i
Define

hi=e""xp+ Y c1 XD, € Loo(u®@m).
1¢L

Let S be the operator in £L(L (i), Loo(m)) corresponding to /1. Then
[5G0 = I1(50) | =

and

l€| _

||h0—h1||oo=rlnax}cl—e max|e c —1].
el

Howeyver, Re(eiecl) >1— % for every / € L, hence
(Im(e®c;)) < 1 — (Re(e®cr))?
2

62 62 64
<1-(1-=) == —-=—.
4 2 16
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Since

e — 1] = /(1 - Re(e%c))” + (im(eicr))’

V2

€4/16 + (€2/2 — €*/16) =
we conclude

€
lho —hilleo < —=,

o) \/E
hence

€
||T_S||oo<||h_h0||oo+||h0_hl||oo<€8+E<€- O

Let us observe that for the real Banach spaces Li(u) and L (m) better estimates could be
obtained by inspecting the above proof.

Theorem 2.4. For the real Banach spaces L1(i) and Loo(m), let T be a bounded operator
Sfrom Li(w) into Loo(m) such that |T|| =1. Given 0 < € < 1/5 and fo € S, satisfying
IT(fo)lloo >1— €*, there exist S € LL1(p), Loo(m)), S| =1 and go € S, () such that

[SGolo=1 1T =Sl<e and |fo—sgolh <26+ 7.
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