The Bishop-Phelps-Bollobás theorem for $\mathcal{L}\left(L_{1}(\mu), L_{\infty}[0,1]\right)$

Richard M. Aron ${ }^{\text {a, }, ~ Y u n ~ S u n g ~ C h o i ~}{ }^{\mathrm{b}, 2}$, Domingo García ${ }^{\mathrm{c}, *, 1}$, Manuel Maestre ${ }^{c, 3}$

${ }^{\text {a }}$ Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
${ }^{\mathrm{b}}$ Department of Mathematics, POSTECH, Pohang (790-784), Republic of Korea
${ }^{\text {c }}$ Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain

Received 13 November 2010; accepted 22 May 2011
Available online 1 June 2011
Communicated by N.G. Makarov

Abstract

We show that the Bishop-Phelps-Bollobás theorem holds for all bounded operators from $L_{1}(\mu)$ into $L_{\infty}[0,1]$, where μ is a σ-finite measure. © 2011 Elsevier Inc. All rights reserved.

MSC: 46B20; 46B22
Keywords: Operator; Norm attaining; Bishop-Phelps-Bollobás theorem; Measure space

[^0]
1. Introduction

In 1961, Bishop and Phelps [5] proved the celebrated Bishop-Phelps theorem, which shows that for every Banach space X, every element in its dual space X^{*} can be approximated by ones that attain their norms. Since then, this theorem has been extended to linear operators between Banach spaces [7,11,13,14,16] , and also to nonlinear mappings [1,4,2,8,12]. On the other hand, Bollobás [6] sharpened it to apply a problem about the numerical range of an operator, now known as Bishop-Phelps-Bollobás theorem. We denote the unit sphere of a Banach space X by S_{X}, the closed unit ball by B_{X}, as usual.

Theorem 1.1 (Bishop-Phelps-Bollobás theorem). Suppose $x \in S_{X}, f \in S_{X^{*}}$ and $|f(x)-1| \leqslant$ $\epsilon^{2} / 2\left(0<\epsilon<\frac{1}{2}\right)$. Then there exist $y \in S_{X}$ and $g \in S_{X^{*}}$ such that $g(y)=1,\|f-g\|<\epsilon$ and $\|x-y\|<\epsilon+\epsilon^{2}$.

Recently, Acosta, Aron, García and Maestre [3] defined the Bishop-Phelps-Bollobás property for a pair of Banach spaces. A pair of Banach spaces (X, Y) is said to have the Bishop-PhelpsBollobás property for operators $(B P B P)$ if for every $\epsilon>0$ there are $\eta(\epsilon)>0$ and $\beta(\epsilon)>0$ with $\lim _{\epsilon \rightarrow 0} \beta(\epsilon)=0$ such that for all $T \in S_{\mathcal{L}(X, Y)}$ and $x_{0} \in S_{X}$ satisfying $\left\|T\left(x_{0}\right)\right\|>1-\eta(\epsilon)$, there exist a point $u_{0} \in S_{X}$ and an operator $S \in S_{\mathcal{L}(X, Y)}$ that satisfy the following conditions:

$$
\left\|S u_{0}\right\|=1, \quad\left\|u_{0}-x_{0}\right\|<\beta(\epsilon), \quad \text { and } \quad\|S-T\|<\epsilon
$$

This property is a uniform one in nature.
Let $(\Omega, \mathcal{A}, \mu)$ be a σ-finite measure space and (I, Σ, m) be the Lebesgue measure space, where $I=[0,1]$. Finet and Payá [10] showed that the set of all norm attaining operators is dense in the space $\mathcal{L}\left(L_{1}(\mu), L_{\infty}(m)\right)$. Further, we will show in this paper that the pair $\left(L_{1}(\mu), L_{\infty}(m)\right)$ has the $B P B P$.

2. The result

It is well known that the space $\mathcal{L}\left(L_{1}(\mu), L_{\infty}(m)\right)$ is isometrically isomorphic to the space $L_{\infty}(\mu \otimes m)$, where $\mu \otimes m$ denotes the product measure on $\Omega \times I$. More precisely, the operator \hat{h} corresponding to an essentially bounded function h is given by

$$
[\hat{h}(f)](t)=\int_{\Omega} h(\omega, t) f(\omega) d \mu(\omega)
$$

for m-almost every $t \in I$ and for all $f \in L_{1}(\mu)$ (see [9]).
We recall the Lebesgue density theorem: given a measurable set $E \subset \mathbb{R}$, we have $m(E \Delta \delta(E))=0$, where $\delta(E)$ is the set of points $y \in \mathbb{R}$ of density of E, that is,

$$
\delta(E)=\left\{y \in \mathbb{R}: \lim _{h \rightarrow 0} \frac{m(E \cap[y-h, y+h])}{2 h}=1\right\},
$$

and $E \Delta \delta(E)$ is the symmetric difference of the sets E and $\delta(E)$. In addition, the closed unit ball of $L_{1}(m)$ is the closed absolutely convex hull of the set $\left\{\frac{\chi_{B}}{m(B)}: B \in \Sigma, 0<m(B)<\infty\right\}$, equivalently,

$$
\|g\|_{\infty}=\sup \left\{\frac{1}{m(B)}\left|\int_{B} g d m\right|: B \in \Sigma, 0<m(B)<\infty\right\}
$$

for every $g \in L_{\infty}(m)$. For a measurable subset M of $\Omega \times I$, let $M_{x}=\{y \in I:(x, y) \in M\}$ for each $x \in \Omega$ and $M^{y}=\{x \in \Omega:(x, y) \in M\}$ for each $y \in I$.

Lemma 2.1. Let M be a measurable subset of $\Omega \times I$ with positive measure, $0<\epsilon<1$, and $f_{0}=\sum_{j=1}^{m} \alpha_{j} \frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)} \in S_{L_{1}(\mu)}$, where each A_{j} is a measurable subset of Ω with finite positive measure, $A_{k} \cap A_{l}=\emptyset, k \neq l$, and α_{j} is a positive real number for every $j=1, \ldots, m$ with $\sum_{j=1}^{m} \alpha_{j}=1$. If $\left\|\hat{\chi}_{M}\left(f_{0}\right)\right\|_{\infty}>1-\epsilon$, then there exists a simple function $g_{0} \in S_{L_{1}(\mu)}$ such that

$$
\left\|\left(\hat{\chi}_{M}+\hat{\varphi}\right)\left(g_{0}\right)\right\|_{\infty}=1 \quad \text { and } \quad\left\|f_{0}-g_{0}\right\|_{1}<\frac{4 \epsilon}{1-\epsilon}
$$

for any simple function φ in $L_{\infty}(\mu \otimes m)$ such that $\|\varphi\|_{\infty} \leqslant 1$ and φ vanishes on M.

Proof. Since $\left\|\hat{\chi}_{M}\left(f_{0}\right)\right\|_{\infty}>1-\epsilon$, there is a measurable subset B of I such that $0<m(B)$ and

$$
\left|\left\langle\hat{\chi}_{M}\left(f_{0}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right|>1-\epsilon
$$

For each $j=1, \ldots, m$ we put $M_{j}=M \cap\left(A_{j} \times B\right)$ and let

$$
H_{j}=\left\{(x, y): x \in A_{j}, y \in \delta\left(\left(M_{j}\right)_{x}\right)\right\} .
$$

As in the proof of Proposition 5 in [15], H_{j} 's are disjoint measurable subsets of $\Omega \times I$ and $(\mu \otimes m)(H)>0$, where $H=\bigcup_{j=1}^{m} H_{j}$. Then there is $y \in I$ such that $\mu\left(H^{y}\right)>0$. We also note that for each $j=1, \ldots, m$ we have $H_{j} \subset A_{j} \times \delta(B)$ and $(\mu \otimes m)\left(M_{j} \Delta H_{j}\right)=0$. Let

$$
J(y)=\left\{j: \mu\left(H_{j}^{y}\right)>0,1 \leqslant j \leqslant m\right\} .
$$

For $y \in \delta(B)$ with $J(y) \neq \emptyset$ we define $g_{y} \in S_{L_{1}(\mu)}$ by

$$
g_{y}=\sum_{j \in J(y)} \beta_{j} \frac{\chi_{H_{j}^{y}}}{\mu\left(H_{j}^{y}\right)}
$$

where $\beta_{j}=\alpha_{j} /\left(\sum_{k \in J(y)} \alpha_{k}\right)$.
We first claim that $\hat{\chi}_{M}+\hat{\varphi}$ attains its norm at g_{y} for every y with $\mu\left(H^{y}\right)>0$.
Fix such y and let $B_{n}=\left[y-\gamma_{n}, y+\gamma_{n}\right]$, where $\left(\gamma_{n}\right)$ is a sequence of positive numbers converging to 0 . Note that for every $x \in H_{j}^{y}$ we have $(x, y) \in H_{j}$, which implies that

$$
\lim _{n \rightarrow \infty} \frac{m\left(\left(M_{j}\right)_{x} \cap B_{n}\right)}{m\left(B_{n}\right)}=1
$$

The Lebesgue dominated convergence and Fubini theorems show that for each $j \in J(y)$

$$
1=\lim _{n \rightarrow \infty} \frac{1}{\mu\left(H_{j}^{y}\right)} \int_{H_{j}^{y}} \frac{m\left(\left(M_{j}\right)_{x} \cap B_{n}\right)}{m\left(B_{n}\right)} d \mu(x)=\lim _{n \rightarrow \infty} \frac{(\mu \otimes m)\left(M_{j} \cap\left(H_{j}^{y} \times B_{n}\right)\right)}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)}
$$

On the other hand, since the simple function φ is assumed to vanish on M and also $\|\varphi\|_{\infty} \leqslant 1$, we have

$$
\begin{aligned}
\left|\left\langle\hat{\varphi}\left(\frac{\chi_{H_{j}^{y}}}{\mu\left(H_{j}^{y}\right)}\right), \frac{\chi_{B_{n}}}{m\left(B_{n}\right)}\right)\right| & =\left|\frac{1}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)} \int_{H_{j}^{y} \times B_{n}} \varphi d(\mu \otimes m)\right| \\
& \leqslant \frac{(\mu \otimes m)\left(\left(H_{j}^{y} \times B_{n}\right) \backslash M_{j}\right)}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)} \\
& =1-\frac{(\mu \otimes m)\left(M_{j} \cap\left(H_{j}^{y} \times B_{n}\right)\right)}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
Therefore,

$$
\begin{aligned}
1 \geqslant\left\|\left(\hat{\chi}_{M}+\hat{\varphi}\right)\left(g_{y}\right)\right\|_{\infty} \geqslant & \lim _{n \rightarrow \infty}\left|\left\langle\left(\hat{\chi}_{M}+\hat{\varphi}\right)\left(\sum_{j \in J(y)} \beta_{j} \frac{\chi_{H_{j}^{y}}}{\mu\left(H_{j}^{y}\right)}\right), \frac{\chi_{B_{n}}}{m\left(B_{n}\right)}\right\rangle\right| \\
\geqslant & \lim _{n \rightarrow \infty} \sum_{j \in J(y)} \beta_{j} \frac{(\mu \otimes m)\left(M \cap\left(H_{j}^{y} \times B_{n}\right)\right)}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)} \\
& -\lim _{n \rightarrow \infty} \sum_{j \in J(y)} \beta_{j}\left|\frac{1}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)} \int_{H_{j}^{y} \times B_{n}} \varphi d(\mu \otimes m)\right| \\
\geqslant & \lim _{n \rightarrow \infty} \sum_{j \in J(y)} \beta_{j} \frac{(\mu \otimes m)\left(M_{j} \cap\left(H_{j}^{y} \times B_{n}\right)\right)}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)} \\
& -\lim _{n \rightarrow \infty} \sum_{j \in J(y)} \beta_{j}\left[1-\frac{(\mu \otimes m)\left(M_{j} \cap\left(H_{j}^{y} \times B_{n}\right)\right)}{\mu\left(H_{j}^{y}\right) m\left(B_{n}\right)}\right]=1,
\end{aligned}
$$

which shows that $\hat{\chi}_{M}+\hat{\varphi}$ attains its norm at g_{y}.
Next we claim that there exists $y \in \delta(B)$ such that $\mu\left(H^{y}\right)>0$ and

$$
\left\|g_{y}-f_{0}\right\|_{1}<\frac{4 \epsilon}{1-\epsilon}
$$

For each $j=1, \ldots, m$ we set $B_{j}^{+}=\left\{y \in \delta(B): \mu\left(H_{j}^{y}\right)>0\right\}, B_{j}^{0}=\left\{y \in \delta(B): \mu\left(H_{j}^{y}\right)=0\right\}$ and $B^{0}=\bigcap_{j=1}^{m} B_{j}^{0}$. By applying Fubini's theorem the sets B_{j}^{+}and B_{j}^{0} are Lebesgue measurable subsets of $[0,1]$.

We note that for each $j=1, \ldots, m$

$$
\begin{aligned}
(\mu \otimes m)\left(M_{j}\right) & =(\mu \otimes m)\left(\left(A_{j} \times \delta(B)\right) \cap H_{j}\right) \\
& =(\mu \otimes m)\left(\left(A_{j} \times \delta(B)\right) \cap\left\{(x, y) \in H_{j}: \mu\left(H_{j}^{y}\right)>0\right\}\right)
\end{aligned}
$$

Since

$$
\left|\hat{\chi}_{M}\left(f_{0}\right)\left(\frac{\chi_{B}}{m(B)}\right)\right|>1-\epsilon,
$$

we have

$$
1-\epsilon<\sum_{j=1}^{m} \alpha_{j} \frac{(\mu \otimes m)\left(M_{j}\right)}{(\mu \otimes m)\left(A_{j} \times B\right)}
$$

which implies that

$$
\begin{equation*}
\sum_{j=1}^{m} \alpha_{j} \frac{(\mu \otimes m)\left(\left(A_{j} \times \delta(B)\right) \backslash\left\{(x, y) \in H_{j}: \mu\left(H_{j}^{y}\right)>0\right\}\right)}{(\mu \otimes m)\left(A_{j} \times B\right)}<\epsilon, \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{j=1}^{m} \alpha_{j} \frac{(\mu \otimes m)\left(\left(A_{j} \times B_{j}^{0}\right)\right)}{(\mu \otimes m)\left(A_{j} \times B\right)} \\
& \quad \leqslant \sum_{j=1}^{m} \alpha_{j} \frac{(\mu \otimes m)\left(\left(A_{j} \times \delta(B)\right) \backslash\left\{(x, y) \in H_{j}: \mu\left(H_{j}^{y}\right)>0\right\}\right)}{(\mu \otimes m)\left(A_{j} \times B\right)}<\epsilon, \tag{2}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\sum_{j=1}^{m} \alpha_{j} m\left(B_{j}^{0}\right)<\epsilon m(B) \tag{3}
\end{equation*}
$$

It follows from this inequality that $m\left(B^{0}\right)<\epsilon m(B)$. For $y \in \delta(B) \backslash B^{0}$,

$$
\begin{aligned}
\left\|g_{y}-f_{0}\right\|_{1} & =\sum_{j \neq J(y)} \alpha_{j}+\sum_{j \in J(y)}\left[\left(\frac{\beta_{j}}{\mu\left(H_{j}^{y}\right)}-\frac{\alpha_{j}}{\mu\left(A_{j}\right)}\right) \mu\left(H_{j}^{y}\right)+\alpha_{j} \frac{\mu\left(A_{j} \backslash H_{j}^{y}\right)}{\mu\left(A_{j}\right)}\right] \\
& =\sum_{j \notin J(y)} \alpha_{j}+1+\sum_{j \in J(y)}\left[-\alpha_{j} \frac{\mu\left(H_{j}^{y}\right)}{\mu\left(A_{j}\right)}+\alpha_{j} \frac{\mu\left(A_{j} \backslash H_{j}^{y}\right)}{\mu\left(A_{j}\right)}\right] \\
& =2 \sum_{j \neq J(y)} \alpha_{j}+\sum_{j \in J(y)} 2 \alpha_{j} \frac{\mu\left(A_{j} \backslash H_{j}^{y}\right)}{\mu\left(A_{j}\right)} .
\end{aligned}
$$

Assume that there is no $y \in \delta(B) \backslash B^{0}$ such that

$$
\left\|g_{y}-f_{0}\right\|_{1}<\frac{4 \epsilon}{1-\epsilon}
$$

Then

$$
\begin{aligned}
\frac{4 \epsilon}{1-\epsilon} m\left(\delta(B) \backslash B^{0}\right) & \leqslant \int_{\delta(B) \backslash B^{0}}\left\|g_{y}-f_{0}\right\|_{1} d m(y) \\
& =2 \int_{\delta(B) \backslash B^{0}}\left(\sum_{j \notin J(y)} \alpha_{j}+\sum_{j \in J(y)} \alpha_{j} \frac{\mu\left(A_{j} \backslash H_{j}^{y}\right)}{\mu\left(A_{j}\right)}\right) d m(y) .
\end{aligned}
$$

It follows from the inequalities (1)-(3) that

$$
\begin{aligned}
\int_{\delta(B) \backslash B^{0}} \sum_{j \notin J(y)} \alpha_{j} d m(y) & =\int_{\delta(B) \backslash B^{0}} \sum_{J=1}^{m}\left(\alpha_{j} \chi_{B_{j}^{0}}(y)\right) d m(y) \\
& \leqslant \sum_{j=1}^{m} \alpha_{j} m\left(B_{j}^{0}\right)<\epsilon m(B)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\delta(B) \backslash B^{0}} \sum_{j \in J(y)} \alpha_{j} \frac{\mu\left(A_{j} \backslash H_{j}^{y}\right)}{\mu\left(A_{j}\right)} d m(y) \\
& =\int_{\delta(B) \backslash B^{0}} \sum_{j=1}^{m}\left(\alpha_{j} \frac{\mu\left(A_{j} \backslash H_{j}^{y}\right)}{\mu\left(A_{j}\right)} \chi_{B_{j}^{+}}(y)\right) d m(y) \\
& =\sum_{j=1}^{m} \alpha_{j} \frac{(\mu \otimes m)\left(\left(A_{j} \times B_{j}^{+}\right) \backslash\left\{(x, y) \in H_{j}^{y}: y \in B_{j}^{y}\right\}\right)}{\mu\left(A_{j}\right)}<\epsilon m(B) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
4 \epsilon m(B) & <\frac{4 \epsilon}{1-\epsilon} m\left(\delta(B) \backslash B^{0}\right) \\
& \leqslant \int_{\delta(B) \backslash B^{0}}\left\|g_{y}-f_{0}\right\|_{1} d m(y)<4 \epsilon m(B),
\end{aligned}
$$

which is a contradiction.

Lemma 2.2. (See [3, Lemma 3.3].) Let $\left\{c_{n}\right\}$ be a sequence of complex numbers with $\left|c_{n}\right| \leqslant 1$ for every n, and let $\eta>0$ be such that for a convex series $\sum_{n=1}^{\infty} \alpha_{n}, \operatorname{Re} \sum_{n=1}^{\infty} \alpha_{n} c_{n}>1-\eta$. Then for every $0<r<1$, the set $A=\left\{i \in \mathbb{N}\right.$: $\left.\operatorname{Re} c_{i}>r\right\}$ satisfies the estimate

$$
\sum_{i \in A} \alpha_{i} \geqslant 1-\frac{\eta}{1-r}
$$

We recall that the set of simple functions is a dense subspace of $L_{\infty}(\mu \otimes m)$.
Theorem 2.3. For the complex Banach spaces $L_{1}(\mu)$ and $L_{\infty}(m)$, let $T: L_{1}(\mu) \rightarrow L_{\infty}(m)$ be a bounded operator such that $\|T\|=1$. Given $0<\epsilon<1 / 5$ and $f_{0} \in S_{L_{1}(\mu)}$ satisfying $\left\|T\left(f_{0}\right)\right\|_{\infty}>$ $1-\epsilon^{8}$, there exist $S \in \mathcal{L}\left(L_{1}(\mu), L_{\infty}(m)\right),\|S\|=1$ and $g_{0} \in S_{L_{1}(\mu)}$ such that

$$
\left\|S\left(g_{0}\right)\right\|_{\infty}=1, \quad\|T-S\|<\epsilon \quad \text { and } \quad\left\|f_{0}-g_{0}\right\|_{1}<2 \epsilon^{4}+\frac{4 \epsilon}{1-\epsilon}
$$

Proof. Since the set of all simple functions is dense in $L_{1}(\mu)$, we may assume

$$
f_{0}=\sum_{j=1}^{m} \alpha_{j} \frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)} \in S_{L_{1}(\mu)}
$$

where each A_{j} is a measurable subset of Ω with finite positive measure, $A_{k} \cap A_{l}=\emptyset, k \neq l$, and every α_{j} is a nonzero complex number with $\sum_{j=1}^{m}\left|\alpha_{j}\right|=1$. We may also assume that $0<\alpha_{j} \leqslant 1$ for every $j=1, \ldots, m$. Indeed, define $\Psi: L_{1}(\mu) \rightarrow L_{1}(\mu)$ by

$$
\Psi(f)=\sum_{j=1}^{m} e^{-i \theta_{j}} f \cdot \chi_{A_{j}}+f \cdot \chi_{\left(\Omega \backslash \bigcup_{j=1}^{m} A_{j}\right)},
$$

where $\theta_{j}=\arg \left(\alpha_{j}\right)$ for every $j=1, \ldots, m$. The operator Ψ is an isometric isomorphism of $L_{1}(\mu)$ onto $L_{1}(\mu)$,

$$
\left\|T\left(f_{0}\right)\right\|_{\infty}=\left\|\left(T \circ \Psi^{-1}\right)\left(\Psi\left(f_{0}\right)\right)\right\|_{\infty}>1-\epsilon^{8}
$$

and

$$
\Psi\left(f_{0}\right)=\sum_{j=1}^{m}\left|\alpha_{j}\right| \frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}
$$

hence we may replace T and f_{0} by $T \circ \Psi^{-1}$ and $\Psi\left(f_{0}\right)$, respectively.
Let h be the element in $L_{\infty}(\Omega \times I, \mu \otimes m),\|h\|_{\infty}=1$ corresponding to T, that is, $T=\hat{h}$. We can find a simple function

$$
h_{0} \in L_{\infty}(\Omega \times I, \mu \otimes m), \quad\left\|h_{0}\right\|_{\infty}=1
$$

such that $\left\|h-h_{0}\right\|_{\infty}<\left\|T\left(f_{0}\right)\right\|_{\infty}-\left(1-\epsilon^{8}\right)$, hence $\left\|\hat{h}_{0}\left(f_{0}\right)\right\|_{\infty}>1-\epsilon^{8}$. We can write $h_{0}=$ $\sum_{l=1}^{p} c_{l} \chi_{D_{l}}$, where each D_{l} is a measurable subset of $\Omega \times I$ with positive measure, $D_{k} \cap D_{l}=\emptyset$, $k \neq l$, the complex number $\left|c_{l}\right| \leqslant 1$ for every $l=1, \ldots, p$, and $\left|c_{l_{0}}\right|=1$ for some $1 \leqslant l_{0} \leqslant p$.

Let B be a Lebesgue measurable subset of I with $0<m(B)<\infty$ such that

$$
\left|\left\langle\hat{h}_{0}\left(f_{0}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right|>1-\epsilon^{8}
$$

Choose $\theta \in \mathbb{R}$ so that

$$
\begin{aligned}
1-\epsilon^{8} & <\left|\left\langle\hat{h}_{0}\left(f_{0}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right| \\
& =e^{i \theta}\left\langle\hat{h}_{0}\left(f_{0}\right), \frac{\chi_{B}}{m(B)}\right\rangle \\
& =\sum_{j=1}^{m} \alpha_{j} e^{i \theta}\left\langle\hat{h}_{0}\left(\frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}\right), \frac{\chi_{B}}{m(B)}\right\rangle .
\end{aligned}
$$

Let

$$
J=\left\{j: 1 \leqslant j \leqslant m, \operatorname{Re}\left[e^{i \theta}\left\langle\hat{h}_{0}\left(\frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right]>1-\epsilon^{4}\right\} .
$$

By Lemma 2.2 we have

$$
\alpha_{J}=\sum_{j \in J} \alpha_{j}>1-\frac{\epsilon^{8}}{1-\left(1-\epsilon^{4}\right)}=1-\epsilon^{4}
$$

We define

$$
f_{1}=\sum_{j \in J}\left(\frac{\alpha_{j}}{\alpha_{J}}\right) \frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}
$$

Then we can see $\left\|f_{1}\right\|_{1}=1$,

$$
\begin{aligned}
\left\|f_{0}-f_{1}\right\|_{1} & \leqslant\left\|\sum_{j \notin J} \alpha_{j} \frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}\right\|_{1}+\left(\frac{1}{\alpha_{J}}-1\right)\left\|\sum_{j \in J} \alpha_{j} \frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}\right\|_{1} \\
& =\sum_{j \notin J} \alpha_{j}+\left(1-\alpha_{J}\right)=2\left(1-\alpha_{J}\right)<2 \epsilon^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left\langle\hat{h}_{0}\left(f_{1}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right| & \geqslant \operatorname{Re}\left[e^{i \theta}\left\langle\hat{h}_{0}\left(f_{1}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right] \\
& =\frac{1}{\alpha_{J}} \sum_{j \in J} \alpha_{j} \operatorname{Re}\left[e^{i \theta}\left\langle\hat{h}_{0}\left(\frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right] \\
& >\frac{1}{\alpha_{J}} \sum_{j \in J} \alpha_{j}\left(1-\epsilon^{4}\right)=1-\epsilon^{4} .
\end{aligned}
$$

On the other hand, for each $j \in J$

$$
\begin{aligned}
1-\epsilon^{4} & <\operatorname{Re}\left[e^{i \theta}\left(\hat{h}_{0}\left(\frac{\chi_{A_{j}}}{\mu\left(A_{j}\right)}\right), \frac{\chi_{B}}{m(B)}\right\rangle\right] \\
& =\operatorname{Re}\left[e^{i \theta} \sum_{l=1}^{p} c_{l} \frac{(\mu \otimes m)\left(D_{l} \cap\left(A_{j} \times B\right)\right)}{\mu\left(A_{j}\right) m(B)}\right] \\
& =\operatorname{Re}\left[e^{i \theta} \sum_{l=1}^{p} c_{l} \gamma_{j} \frac{\gamma_{j, l}}{\gamma_{j}}\right]
\end{aligned}
$$

where

$$
\gamma_{j}=\sum_{l=1}^{p} \frac{(\mu \otimes m)\left(D_{l} \cap\left(A_{j} \times B\right)\right)}{\mu\left(A_{j}\right) m(B)}
$$

and

$$
\gamma_{j, l}=\frac{(\mu \otimes m)\left(D_{l} \cap\left(A_{j} \times B\right)\right)}{\mu\left(A_{j}\right) m(B)}
$$

We define

$$
L=\left\{l: 1 \leqslant l \leqslant p, \operatorname{Re}\left(e^{i \theta} c_{l}\right)>1-\frac{\epsilon^{2}}{4}\right\},
$$

and

$$
L_{j}=\left\{l: 1 \leqslant l \leqslant p, \operatorname{Re}\left(e^{i \theta} c_{l} \gamma_{j}\right)>1-\frac{\epsilon^{2}}{4}\right\}
$$

For each $j \in J$ we can see $\gamma_{j}>1-\epsilon^{4}$, and by Lemma 2.2 again

$$
\sum_{l \in L_{j}} \frac{\gamma_{j, l}}{\gamma_{j}}>1-\frac{\epsilon^{4}}{1-\left(1-\frac{\epsilon^{2}}{4}\right)}=1-4 \epsilon^{2}
$$

Hence

$$
\sum_{l \in L_{j}} \gamma_{j, l}>\left(1-4 \epsilon^{2}\right)\left(1-\epsilon^{4}\right) .
$$

For every $j \in J$ we note that $L_{j} \subset L$ and

$$
\begin{aligned}
\sum_{l \in L} \frac{(\mu \otimes m)\left(D_{l} \cap\left(A_{j} \times B\right)\right)}{\mu\left(A_{j}\right) m(B)} & \geqslant \sum_{l \in L_{j}} \frac{(\mu \otimes m)\left(D_{l} \cap\left(A_{j} \times B\right)\right)}{\mu\left(A_{j}\right) m(B)} \\
& =\sum_{l \in L_{j}} \gamma_{j, l}>\left(1-4 \epsilon^{2}\right)\left(1-\epsilon^{4}\right) .
\end{aligned}
$$

Set $D=\bigcup_{l \in L} D_{l}$.
Therefore

$$
\begin{aligned}
\left\langle\hat{\chi}_{D}\left(f_{1}\right), \frac{\chi_{B}}{m(B)}\right\rangle & =\sum_{j \in J}\left(\frac{\alpha_{j}}{\alpha_{J}}\right) \cdot \sum_{l \in L} \frac{\mu \otimes m\left(D_{l} \cap\left(A_{j} \times B\right)\right)}{\mu\left(A_{j}\right) m(B)} \\
& \geqslant \sum_{j \in J}\left(\frac{\alpha_{j}}{\alpha_{J}}\right)\left(1-4 \epsilon^{2}\right)\left(1-\epsilon^{4}\right)=\left(1-4 \epsilon^{2}\right)\left(1-\epsilon^{4}\right) \\
& >1-5 \epsilon^{2}>1-\epsilon .
\end{aligned}
$$

By Lemma 2.1 there is $g_{0} \in S_{L_{1}(\mu)}$ such that $\left\|\left(\hat{\chi}_{D}+\hat{\varphi}\right)\left(g_{0}\right)\right\|_{\infty}=1$ and $\left\|f_{1}-g_{0}\right\|<\frac{4 \epsilon}{1-\epsilon}$, where φ is any simple function in $L_{\infty}(\mu \otimes m)$ such that $\|\varphi\|_{\infty} \leqslant 1$ and φ vanishes on D. Therefore, we have

$$
\left\|f_{0}-g_{0}\right\|_{1} \leqslant\left\|f_{0}-f_{1}\right\|_{1}+\left\|f_{1}-g_{0}\right\|_{1} \leqslant 2 \epsilon^{4}+\frac{4 \epsilon}{1-\epsilon} .
$$

Define

$$
h_{1}=e^{-i \theta} \chi_{D}+\sum_{l \notin L} c_{l} \chi_{D_{l}} \in L_{\infty}(\mu \otimes m) .
$$

Let S be the operator in $\mathcal{L}\left(L_{1}(\mu), L_{\infty}(m)\right)$ corresponding to h_{1}. Then

$$
\left\|S\left(g_{0}\right)\right\|_{\infty}=\left\|\hat{h}_{1}\left(g_{0}\right)\right\|_{\infty}=1
$$

and

$$
\left\|h_{0}-h_{1}\right\|_{\infty}=\max _{l \in L}\left|c_{l}-e^{-i \theta}\right|=\max _{l \in L}\left|e^{i \theta} c_{l}-1\right| .
$$

However, $\operatorname{Re}\left(e^{i \theta} c_{l}\right)>1-\frac{\epsilon^{2}}{4}$ for every $l \in L$, hence

$$
\begin{aligned}
\left(\operatorname{Im}\left(e^{i \theta} c_{l}\right)\right)^{2} & \leqslant 1-\left(\operatorname{Re}\left(e^{i \theta} c_{l}\right)\right)^{2} \\
& <1-\left(1-\frac{\epsilon^{2}}{4}\right)^{2}=\frac{\epsilon^{2}}{2}-\frac{\epsilon^{4}}{16}
\end{aligned}
$$

Since

$$
\begin{aligned}
\left|e^{i \theta} c_{l}-1\right| & =\sqrt{\left(1-\operatorname{Re}\left(e^{i \theta} c_{l}\right)\right)^{2}+\left(\operatorname{Im}\left(e^{i \theta} c_{l}\right)\right)^{2}} \\
& <\sqrt{\epsilon^{4} / 16+\left(\epsilon^{2} / 2-\epsilon^{4} / 16\right)}=\frac{\epsilon}{\sqrt{2}}
\end{aligned}
$$

we conclude

$$
\left\|h_{0}-h_{1}\right\|_{\infty}<\frac{\epsilon}{\sqrt{2}}
$$

hence

$$
\|T-S\|_{\infty} \leqslant\left\|h-h_{0}\right\|_{\infty}+\left\|h_{0}-h_{1}\right\|_{\infty}<\epsilon^{8}+\frac{\epsilon}{\sqrt{2}}<\epsilon .
$$

Let us observe that for the real Banach spaces $L_{1}(\mu)$ and $L_{\infty}(m)$ better estimates could be obtained by inspecting the above proof.

Theorem 2.4. For the real Banach spaces $L_{1}(\mu)$ and $L_{\infty}(m)$, let T be a bounded operator from $L_{1}(\mu)$ into $L_{\infty}(m)$ such that $\|T\|=1$. Given $0<\epsilon<1 / 5$ and $f_{0} \in S_{L_{1}(\mu)}$ satisfying $\left\|T\left(f_{0}\right)\right\|_{\infty}>1-\epsilon^{4}$, there exist $S \in \mathcal{L}\left(L_{1}(\mu), L_{\infty}(m)\right),\|S\|=1$ and $g_{0} \in S_{L_{1}(\mu)}$ such that

$$
\left\|S\left(g_{0}\right)\right\|_{\infty}=1, \quad\|T-S\|<\epsilon \quad \text { and } \quad\left\|f_{0}-g_{0}\right\|_{1}<2 \epsilon^{2}+\frac{20 \epsilon}{1-5 \epsilon} .
$$

Acknowledgments

The authors warmly thank Rafael Payá for pointing out a very useful reference for the measurability of the set H in Lemma 2.1.

References

[1] M.D. Acosta, F.J. Aguirre, R. Payá, There is no bilinear Bishop-Phelps theorem, Israel J. Math. 93 (1996) 221-227.
[2] M.D. Acosta, D. García, M. Maestre, A multilinear Lindenstrauss theorem, J. Funct. Anal. 235 (2006) 122-136.
[3] M.D. Acosta, R.M. Aron, D. García, M. Maestre, The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (2008) 2780-2799.
[4] R. Aron, C. Finet, E. Werner, Some remarks on norm attaining N-linear forms, in: K. Jarosz (Ed.), Functions Spaces, in: Lect. Notes Pure Appl. Math., vol. 172, Marcel Dekker, New York, 1995, pp. 19-28.
[5] E. Bishop, R.R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961) 97-98.
[6] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. Lond. Math. Soc. 2 (1970) 181-182.
[7] J. Bourgain, On dentability and the Bishop-Phelps property, Israel J. Math. 28 (1977) 265-271.
[8] Y.S. Choi, S.G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. Lond. Math. Soc. 54 (1996) 135-147.
[9] A. Defant, K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud., vol. 176, Elsevier, Amsterdam, 1993.
[10] C. Finet, R. Payá, Norm attaining operators from L_{1} into L_{∞}, Israel J. Math. 108 (1998) 139-143.
[11] J. Johnson, J. Wolfe, Norm attaining operators, Studia Math. 65 (1979) 7-19.
[12] J. Kim, H.J. Lee, Strong peak points and strongly norm attaining points with applications to denseness and polynomial numerical indices, J. Funct. Anal. 257 (2009) 931-947.
[13] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963) 139-148.
[14] J.R. Partington, Norm attaining operators, Israel J. Math. 43 (1982) 273-276.
[15] R. Payá, Y. Saleh, Norm attaining operators from $L_{1}(\mu)$ into $L_{\infty}(v)$, Arch. Math. 75 (2000) 380-388.
[16] W. Schachermayer, Norm attaining operators and renorming of Banach spaces, Israel J. Math. 44 (1983) 201-212.

[^0]: * Corresponding author.

 E-mail addresses: aron@math.kent.edu (R.M. Aron), mathchoi@postech.ac.kr (Y.S. Choi), domingo.garcia@uv.es (D. García), manuel.maestre@uv.es (M. Maestre).
 ${ }^{1}$ Supported by MICINN and FEDER Project MTM2008-03211.
 ${ }^{2}$ Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0008543), and also by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0029638).
 ${ }^{3}$ Supported by MICINN and FEDER Project MTM2008-03211. Also supported by Prometeo 2008/101.

