
Advances in Mathematics 228 (2011) 617–628
www.elsevier.com/locate/aim

The Bishop–Phelps–Bollobás theorem for
L(L1(μ),L∞[0,1])

Richard M. Aron a,1, Yun Sung Choi b,2, Domingo García c,∗,1,
Manuel Maestre c,3

a Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
b Department of Mathematics, POSTECH, Pohang (790-784), Republic of Korea

c Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50,
46100 Burjasot (Valencia), Spain

Received 13 November 2010; accepted 22 May 2011

Available online 1 June 2011

Communicated by N.G. Makarov

Abstract

We show that the Bishop–Phelps–Bollobás theorem holds for all bounded operators from L1(μ) into
L∞[0,1], where μ is a σ -finite measure.
© 2011 Elsevier Inc. All rights reserved.

MSC: 46B20; 46B22

Keywords: Operator; Norm attaining; Bishop–Phelps–Bollobás theorem; Measure space

* Corresponding author.
E-mail addresses: aron@math.kent.edu (R.M. Aron), mathchoi@postech.ac.kr (Y.S. Choi), domingo.garcia@uv.es

(D. García), manuel.maestre@uv.es (M. Maestre).
1 Supported by MICINN and FEDER Project MTM2008-03211.
2 Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by

the Ministry of Education, Science and Technology (No. 2010-0008543), and also by Priority Research Centers Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(No. 2010-0029638).

3 Supported by MICINN and FEDER Project MTM2008-03211. Also supported by Prometeo 2008/101.
0001-8708/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2011.05.023



618 R.M. Aron et al. / Advances in Mathematics 228 (2011) 617–628
1. Introduction

In 1961, Bishop and Phelps [5] proved the celebrated Bishop–Phelps theorem, which shows
that for every Banach space X, every element in its dual space X∗ can be approximated by ones
that attain their norms. Since then, this theorem has been extended to linear operators between
Banach spaces [7,11,13,14,16], and also to nonlinear mappings [1,4,2,8,12]. On the other hand,
Bollobás [6] sharpened it to apply a problem about the numerical range of an operator, now
known as Bishop–Phelps–Bollobás theorem. We denote the unit sphere of a Banach space X

by SX , the closed unit ball by BX , as usual.

Theorem 1.1 (Bishop–Phelps–Bollobás theorem). Suppose x ∈ SX , f ∈ SX∗ and |f (x) − 1| �
ε2/2 (0 < ε < 1

2 ). Then there exist y ∈ SX and g ∈ SX∗ such that g(y) = 1, ‖f − g‖ < ε and
‖x − y‖ < ε + ε2.

Recently, Acosta, Aron, García and Maestre [3] defined the Bishop–Phelps–Bollobás property
for a pair of Banach spaces. A pair of Banach spaces (X,Y ) is said to have the Bishop–Phelps–
Bollobás property for operators (BPBP) if for every ε > 0 there are η(ε) > 0 and β(ε) > 0 with
limε→0 β(ε) = 0 such that for all T ∈ SL(X,Y ) and x0 ∈ SX satisfying ‖T (x0)‖ > 1 − η(ε), there
exist a point u0 ∈ SX and an operator S ∈ SL(X,Y ) that satisfy the following conditions:

‖Su0‖ = 1, ‖u0 − x0‖ < β(ε), and ‖S − T ‖ < ε.

This property is a uniform one in nature.
Let (Ω, A,μ) be a σ -finite measure space and (I,Σ,m) be the Lebesgue measure space,

where I = [0,1]. Finet and Payá [10] showed that the set of all norm attaining operators is dense
in the space L(L1(μ),L∞(m)). Further, we will show in this paper that the pair (L1(μ),L∞(m))

has the BPBP.

2. The result

It is well known that the space L(L1(μ),L∞(m)) is isometrically isomorphic to the space
L∞(μ ⊗ m), where μ ⊗ m denotes the product measure on Ω × I . More precisely, the operator
ĥ corresponding to an essentially bounded function h is given by

[
ĥ(f )

]
(t) =

∫
Ω

h(ω, t)f (ω)dμ(ω)

for m-almost every t ∈ I and for all f ∈ L1(μ) (see [9]).
We recall the Lebesgue density theorem: given a measurable set E ⊂ R, we have

m(E	δ(E)) = 0, where δ(E) is the set of points y ∈ R of density of E, that is,

δ(E) =
{
y ∈ R: lim

h→0

m(E ∩ [y − h,y + h])
2h

= 1

}
,

and E	δ(E) is the symmetric difference of the sets E and δ(E). In addition, the closed unit
ball of L1(m) is the closed absolutely convex hull of the set { χB

m(B)
: B ∈ Σ, 0 < m(B) < ∞},

equivalently,
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‖g‖∞ = sup

{
1

m(B)

∣∣∣∣
∫
B

g dm

∣∣∣∣: B ∈ Σ, 0 < m(B) < ∞
}

for every g ∈ L∞(m). For a measurable subset M of Ω × I , let Mx = {y ∈ I : (x, y) ∈ M} for
each x ∈ Ω and My = {x ∈ Ω: (x, y) ∈ M} for each y ∈ I .

Lemma 2.1. Let M be a measurable subset of Ω × I with positive measure, 0 < ε < 1, and

f0 = ∑m
j=1 αj

χAj

μ(Aj )
∈ SL1(μ), where each Aj is a measurable subset of Ω with finite positive

measure, Ak ∩ Al = ∅, k �= l, and αj is a positive real number for every j = 1, . . . ,m with∑m
j=1 αj = 1. If ‖χ̂M(f0)‖∞ > 1 − ε, then there exists a simple function g0 ∈ SL1(μ) such that

∥∥(χ̂M + ϕ̂)(g0)
∥∥∞ = 1 and ‖f0 − g0‖1 <

4ε

1 − ε
,

for any simple function ϕ in L∞(μ ⊗ m) such that ‖ϕ‖∞ � 1 and ϕ vanishes on M .

Proof. Since ‖χ̂M(f0)‖∞ > 1 − ε, there is a measurable subset B of I such that 0 < m(B) and

∣∣∣∣
〈
χ̂M(f0),

χB

m(B)

〉∣∣∣∣ > 1 − ε.

For each j = 1, . . . ,m we put Mj = M ∩ (Aj × B) and let

Hj = {
(x, y): x ∈ Aj , y ∈ δ

(
(Mj )x

)}
.

As in the proof of Proposition 5 in [15], Hj ’s are disjoint measurable subsets of Ω × I and
(μ ⊗ m)(H) > 0, where H = ⋃m

j=1 Hj . Then there is y ∈ I such that μ(Hy) > 0. We also note
that for each j = 1, . . . ,m we have Hj ⊂ Aj × δ(B) and (μ ⊗ m)(Mj	Hj) = 0. Let

J (y) = {
j : μ

(
H

y
j

)
> 0, 1 � j � m

}
.

For y ∈ δ(B) with J (y) �= ∅ we define gy ∈ SL1(μ) by

gy =
∑

j∈J (y)

βj

χH
y
j

μ(H
y
j )

,

where βj = αj/(
∑

k∈J (y) αk).
We first claim that χ̂M + ϕ̂ attains its norm at gy for every y with μ(Hy) > 0.
Fix such y and let Bn = [y − γn, y + γn], where (γn) is a sequence of positive numbers

converging to 0. Note that for every x ∈ H
y
j we have (x, y) ∈ Hj , which implies that

lim
n→∞

m((Mj )x ∩ Bn)

m(Bn)
= 1.

The Lebesgue dominated convergence and Fubini theorems show that for each j ∈ J (y)
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1 = lim
n→∞

1

μ(H
y
j )

∫
H

y
j

m((Mj )x ∩ Bn)

m(Bn)
dμ(x) = lim

n→∞
(μ ⊗ m)(Mj ∩ (H

y
j × Bn))

μ(H
y
j )m(Bn)

.

On the other hand, since the simple function ϕ is assumed to vanish on M and also ‖ϕ‖∞ � 1,
we have

∣∣∣∣
〈
ϕ̂

( χH
y
j

μ(H
y
j )

)
,

χBn

m(Bn)

〉∣∣∣∣ =
∣∣∣∣ 1

μ(H
y
j )m(Bn)

∫
H

y
j ×Bn

ϕ d(μ ⊗ m)

∣∣∣∣

�
(μ ⊗ m)((H

y
j × Bn) \ Mj)

μ(H
y
j )m(Bn)

= 1 − (μ ⊗ m)(Mj ∩ (H
y
j × Bn))

μ(H
y
j )m(Bn)

→ 0,

as n → ∞.
Therefore,

1 �
∥∥(χ̂M + ϕ̂)(gy)

∥∥∞ � lim
n→∞

∣∣∣∣
〈
(χ̂M + ϕ̂)

( ∑
j∈J (y)

βj

χH
y
j

μ(H
y
j )

)
,

χBn

m(Bn)

〉∣∣∣∣
� lim

n→∞
∑

j∈J (y)

βj

(μ ⊗ m)(M ∩ (H
y
j × Bn))

μ(H
y
j )m(Bn)

− lim
n→∞

∑
j∈J (y)

βj

∣∣∣∣ 1

μ(H
y
j )m(Bn)

∫
H

y
j ×Bn

ϕ d(μ ⊗ m)

∣∣∣∣

� lim
n→∞

∑
j∈J (y)

βj

(μ ⊗ m)(Mj ∩ (H
y
j × Bn))

μ(H
y
j )m(Bn)

− lim
n→∞

∑
j∈J (y)

βj

[
1 − (μ ⊗ m)(Mj ∩ (H

y
j × Bn))

μ(H
y
j )m(Bn)

]
= 1,

which shows that χ̂M + ϕ̂ attains its norm at gy .
Next we claim that there exists y ∈ δ(B) such that μ(Hy) > 0 and

‖gy − f0‖1 <
4ε

1 − ε
.

For each j = 1, . . . ,m we set B+
j = {y ∈ δ(B): μ(H

y
j ) > 0}, B0

j = {y ∈ δ(B): μ(H
y
j ) = 0} and

B0 = ⋂m
j=1 B0

j . By applying Fubini’s theorem the sets B+
j and B0

j are Lebesgue measurable
subsets of [0,1].
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We note that for each j = 1, . . . ,m

(μ ⊗ m)(Mj ) = (μ ⊗ m)
((

Aj × δ(B)
) ∩ Hj

)
= (μ ⊗ m)

((
Aj × δ(B)

) ∩ {
(x, y) ∈ Hj : μ

(
H

y
j

)
> 0

})
.

Since ∣∣∣∣χ̂M(f0)

(
χB

m(B)

)∣∣∣∣ > 1 − ε,

we have

1 − ε <

m∑
j=1

αj

(μ ⊗ m)(Mj )

(μ ⊗ m)(Aj × B)
,

which implies that

m∑
j=1

αj

(μ ⊗ m)((Aj × δ(B)) \ {(x, y) ∈ Hj : μ(H
y
j ) > 0})

(μ ⊗ m)(Aj × B)
< ε, (1)

and

m∑
j=1

αj

(μ ⊗ m)((Aj × B0
j ))

(μ ⊗ m)(Aj × B)

�
m∑

j=1

αj

(μ ⊗ m)((Aj × δ(B)) \ {(x, y) ∈ Hj : μ(H
y
j ) > 0})

(μ ⊗ m)(Aj × B)
< ε, (2)

which implies that

m∑
j=1

αjm
(
B0

j

)
< εm(B). (3)

It follows from this inequality that m(B0) < εm(B). For y ∈ δ(B) \ B0,

‖gy − f0‖1 =
∑

j /∈J (y)

αj +
∑

j∈J (y)

[(
βj

μ(H
y
j )

− αj

μ(Aj )

)
μ

(
H

y
j

) + αj

μ(Aj \ H
y
j )

μ(Aj )

]

=
∑

j /∈J (y)

αj + 1 +
∑

j∈J (y)

[
−αj

μ(H
y
j )

μ(Aj )
+ αj

μ(Aj \ H
y
j )

μ(Aj )

]

= 2
∑

αj +
∑

2αj

μ(Aj \ H
y
j )

μ(Aj )
.

j /∈J (y) j∈J (y)
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Assume that there is no y ∈ δ(B) \ B0 such that

‖gy − f0‖1 <
4ε

1 − ε
.

Then

4ε

1 − ε
m

(
δ(B) \ B0) �

∫
δ(B)\B0

‖gy − f0‖1 dm(y)

= 2
∫

δ(B)\B0

( ∑
j /∈J (y)

αj +
∑

j∈J (y)

αj

μ(Aj \ H
y
j )

μ(Aj )

)
dm(y).

It follows from the inequalities (1)–(3) that

∫
δ(B)\B0

∑
j /∈J (y)

αj dm(y) =
∫

δ(B)\B0

m∑
J=1

(
αjχB0

j
(y)

)
dm(y)

�
m∑

j=1

αjm
(
B0

j

)
< εm(B),

and

∫
δ(B)\B0

∑
j∈J (y)

αj

μ(Aj \ H
y
j )

μ(Aj )
dm(y)

=
∫

δ(B)\B0

m∑
j=1

(
αj

μ(Aj \ H
y
j )

μ(Aj )
χB+

j
(y)

)
dm(y)

=
m∑

j=1

αj

(μ ⊗ m)((Aj × B+
j ) \ {(x, y) ∈ H

y
j : y ∈ B

y
j })

μ(Aj )
< ε m(B).

Therefore,

4εm(B) <
4ε

1 − ε
m

(
δ(B) \ B0)

�
∫

δ(B)\B0

‖gy − f0‖1 dm(y) < 4εm(B),

which is a contradiction. �
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Lemma 2.2. (See [3, Lemma 3.3].) Let {cn} be a sequence of complex numbers with |cn| � 1 for
every n, and let η > 0 be such that for a convex series

∑∞
n=1 αn, Re

∑∞
n=1 αncn > 1 − η. Then

for every 0 < r < 1, the set A = {i ∈ N: Re ci > r} satisfies the estimate

∑
i∈A

αi � 1 − η

1 − r
.

We recall that the set of simple functions is a dense subspace of L∞(μ ⊗ m).

Theorem 2.3. For the complex Banach spaces L1(μ) and L∞(m), let T : L1(μ) → L∞(m) be a
bounded operator such that ‖T ‖ = 1. Given 0 < ε < 1/5 and f0 ∈ SL1(μ) satisfying ‖T (f0)‖∞ >

1 − ε8, there exist S ∈ L(L1(μ),L∞(m)), ‖S‖ = 1 and g0 ∈ SL1(μ) such that

∥∥S(g0)
∥∥∞ = 1, ‖T − S‖ < ε and ‖f0 − g0‖1 < 2ε4 + 4ε

1 − ε
.

Proof. Since the set of all simple functions is dense in L1(μ), we may assume

f0 =
m∑

j=1

αj

χAj

μ(Aj )
∈ SL1(μ),

where each Aj is a measurable subset of Ω with finite positive measure, Ak ∩Al = ∅, k �= l, and
every αj is a nonzero complex number with

∑m
j=1 |αj | = 1. We may also assume that 0 < αj � 1

for every j = 1, . . . ,m. Indeed, define Ψ : L1(μ) → L1(μ) by

Ψ (f ) =
m∑

j=1

e−iθj f · χAj
+ f · χ(Ω\⋃m

j=1 Aj ),

where θj = arg(αj ) for every j = 1, . . . ,m. The operator Ψ is an isometric isomorphism of
L1(μ) onto L1(μ),

∥∥T (f0)
∥∥∞ = ∥∥(

T ◦ Ψ −1)(Ψ (f0)
)∥∥∞ > 1 − ε8

and

Ψ (f0) =
m∑

j=1

|αj |
χAj

μ(Aj )
,

hence we may replace T and f0 by T ◦ Ψ −1 and Ψ (f0), respectively.
Let h be the element in L∞(Ω × I,μ ⊗ m), ‖h‖∞ = 1 corresponding to T , that is, T = ĥ.

We can find a simple function

h0 ∈ L∞(Ω × I,μ ⊗ m), ‖h0‖∞ = 1
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such that ‖h − h0‖∞ < ‖T (f0)‖∞ − (1 − ε8), hence ‖ĥ0(f0)‖∞ > 1 − ε8. We can write h0 =∑p

l=1 clχDl
, where each Dl is a measurable subset of Ω × I with positive measure, Dk ∩Dl = ∅,

k �= l, the complex number |cl | � 1 for every l = 1, . . . , p, and |cl0 | = 1 for some 1 � l0 � p.
Let B be a Lebesgue measurable subset of I with 0 < m(B) < ∞ such that

∣∣∣∣
〈
ĥ0(f0),

χB

m(B)

〉∣∣∣∣ > 1 − ε8.

Choose θ ∈ R so that

1 − ε8 <

∣∣∣∣
〈
ĥ0(f0),

χB

m(B)

〉∣∣∣∣
= eiθ

〈
ĥ0(f0),

χB

m(B)

〉

=
m∑

j=1

αje
iθ

〈
ĥ0

(
χAj

μ(Aj )

)
,

χB

m(B)

〉
.

Let

J =
{
j : 1 � j � m,Re

[
eiθ

〈
ĥ0

(
χAj

μ(Aj )

)
,

χB

m(B)

〉]
> 1 − ε4

}
.

By Lemma 2.2 we have

αJ =
∑
j∈J

αj > 1 − ε8

1 − (1 − ε4)
= 1 − ε4.

We define

f1 =
∑
j∈J

(
αj

αJ

)
χAj

μ(Aj )
.

Then we can see ‖f1‖1 = 1,

‖f0 − f1‖1 �
∥∥∥∥∑

j /∈J

αj

χAj

μ(Aj )

∥∥∥∥
1
+

(
1

αJ

− 1

)∥∥∥∥∑
j∈J

αj

χAj

μ(Aj )

∥∥∥∥
1

=
∑
j /∈J

αj + (1 − αJ ) = 2(1 − αJ ) < 2ε4

and
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∣∣∣∣
〈
ĥ0(f1),

χB

m(B)

〉∣∣∣∣ � Re

[
eiθ

〈
ĥ0(f1),

χB

m(B)

〉]

= 1

αJ

∑
j∈J

αj Re

[
eiθ

〈
ĥ0

(
χAj

μ(Aj )

)
,

χB

m(B)

〉]

>
1

αJ

∑
j∈J

αj

(
1 − ε4) = 1 − ε4.

On the other hand, for each j ∈ J

1 − ε4 < Re

[
eiθ

〈
ĥ0

(
χAj

μ(Aj )

)
,

χB

m(B)

〉]

= Re

[
eiθ

p∑
l=1

cl

(μ ⊗ m)(Dl ∩ (Aj × B))

μ(Aj )m(B)

]

= Re

[
eiθ

p∑
l=1

clγj

γj,l

γj

]
,

where

γj =
p∑

l=1

(μ ⊗ m)(Dl ∩ (Aj × B))

μ(Aj )m(B)
,

and

γj,l = (μ ⊗ m)(Dl ∩ (Aj × B))

μ(Aj )m(B)
.

We define

L =
{
l: 1 � l � p, Re

(
eiθ cl

)
> 1 − ε2

4

}
,

and

Lj =
{
l: 1 � l � p, Re

(
eiθ clγj

)
> 1 − ε2

4

}
.

For each j ∈ J we can see γj > 1 − ε4, and by Lemma 2.2 again

∑
l∈Lj

γj,l

γj

> 1 − ε4

1 − (1 − ε2

4 )
= 1 − 4ε2.

Hence
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∑
l∈Lj

γj,l >
(
1 − 4ε2)(1 − ε4).

For every j ∈ J we note that Lj ⊂ L and

∑
l∈L

(μ ⊗ m)(Dl ∩ (Aj × B))

μ(Aj )m(B)
�

∑
l∈Lj

(μ ⊗ m)(Dl ∩ (Aj × B))

μ(Aj )m(B)

=
∑
l∈Lj

γj,l >
(
1 − 4ε2)(1 − ε4).

Set D = ⋃
l∈L Dl .

Therefore〈
χ̂D(f1),

χB

m(B)

〉
=

∑
j∈J

(
αj

αJ

)
·
∑
l∈L

μ ⊗ m(Dl ∩ (Aj × B))

μ(Aj )m(B)

�
∑
j∈J

(
αj

αJ

)(
1 − 4ε2)(1 − ε4) = (

1 − 4ε2)(1 − ε4)

> 1 − 5ε2 > 1 − ε.

By Lemma 2.1 there is g0 ∈ SL1(μ) such that ‖(χ̂D + ϕ̂)(g0)‖∞ = 1 and ‖f1 − g0‖ < 4ε
1−ε

,
where ϕ is any simple function in L∞(μ ⊗ m) such that ‖ϕ‖∞ � 1 and ϕ vanishes on D. There-
fore, we have

‖f0 − g0‖1 � ‖f0 − f1‖1 + ‖f1 − g0‖1 � 2ε4 + 4ε

1 − ε
.

Define

h1 = e−iθχD +
∑
l /∈L

cl χDl
∈ L∞(μ ⊗ m).

Let S be the operator in L(L1(μ),L∞(m)) corresponding to h1. Then

∥∥S(g0)
∥∥∞ = ∥∥ĥ1(g0)

∥∥∞ = 1

and

‖h0 − h1‖∞ = max
l∈L

∣∣cl − e−iθ
∣∣ = max

l∈L

∣∣eiθ cl − 1
∣∣.

However, Re(eiθ cl) > 1 − ε2

4 for every l ∈ L, hence

(
Im

(
eiθ cl

))2 � 1 − (
Re

(
eiθ cl

))2

< 1 −
(

1 − ε2 )2

= ε2

− ε4

.

4 2 16
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Since

∣∣eiθ cl − 1
∣∣ =

√(
1 − Re

(
eiθ cl

))2 + (
Im

(
eiθ cl

))2

<

√
ε4/16 + (

ε2/2 − ε4/16
) = ε√

2
,

we conclude

‖h0 − h1‖∞ <
ε√
2
,

hence

‖T − S‖∞ � ‖h − h0‖∞ + ‖h0 − h1‖∞ < ε8 + ε√
2

< ε. �
Let us observe that for the real Banach spaces L1(μ) and L∞(m) better estimates could be

obtained by inspecting the above proof.

Theorem 2.4. For the real Banach spaces L1(μ) and L∞(m), let T be a bounded operator
from L1(μ) into L∞(m) such that ‖T ‖ = 1. Given 0 < ε < 1/5 and f0 ∈ SL1(μ) satisfying
‖T (f0)‖∞ > 1 − ε4, there exist S ∈ L(L1(μ),L∞(m)), ‖S‖ = 1 and g0 ∈ SL1(μ) such that

∥∥S(g0)
∥∥∞ = 1, ‖T − S‖ < ε and ‖f0 − g0‖1 < 2ε2 + 20ε

1 − 5ε
.
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