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Abstract

We show that there is an infinite dimensional vector space of differ-
entiable functions on R, every non-zero element of which is nowhere
monotone. We also show that there is a vector space of dimension 2c

of functions R → R, every non-zero element of which is everywhere
surjective.

1 Introduction

This article is a contribution to an ongoing search for what are often large vector
spaces of functions on [0, 1] or on R which have special properties. Given such
a property, we say that the subset M of functions on [0, 1] which satisfy it is
spaceable if M ∪{0} contains a closed infinite dimensional subspace. The set M
will be called lineable if M ∪ {0} contains an infinite dimensional vector space.
At times, we will be more specific, referring to the set M as µ−lineable if it
contains a vector space of dimension µ. Also, we let λ(M) be the maximum
cardinality (if it exists) of such a vector space.
One of the earliest results in this direction was proved by the second author [5],
see also [7], who showed that the set of nowhere differentiable functions on [0, 1]
is lineable. Soon after, V. Fonf, V. Kadeč and the second author [3] showed
that the set of nowhere differentiable functions on [0, 1] is spaceable; that is,
there is a closed, infinite dimensional subspace X ⊂ C[0, 1], the Banach space
of continuous functions on [0, 1], every non-zero element of which is nowhere
differentiable on [0, 1]. In fact, much more is true. L. Rodŕıguez-Piazza showed
that the X in [3] can be chosen to be isometrically isomorphic to any separable
Banach space [12]. Several years ago, S. Hencl [9] showed that any separable
Banach space is isometrically isomorphic to a subspace of C[0, 1] whose non-
zero elements are nowhere approximately differentiable and nowhere Hölder. It
is clear that the set of everywhere differentiable functions on [0, 1] is linear and
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hence lineable. The second author showed in [5] that this cannot be improved:
the set of everywhere differentiable functions on [0, 1] is not spaceable. Recently,
P. Enflo and the second author have shown [2] that for any infinite dimensional
subspace X ⊂ C[0, 1], the set of functions in X having infinitely many zeros in
[0, 1] is spaceable in X.
Our work here continues this type of ‘bad news-good news’ program. Our main
results are the following:
Theorem 3.4. The set DNM(R) of differentiable functions on R which are
nowhere monotone is lineable in C(R).
In order to state our second main result, we need some notation: Let us agree
to denote by F(R) the set of all functions f : R→R which are ‘everywhere
surjective;’ that is, for any non-trivial interval (a, b) ⊂ R, f(a, b) = R. The
existence of such functions f was noticed by H. Lebesgue in [11] (see also [4]).
In fact, the point of the theorem below is that such functions are quite plentiful,
in a very strong way.
Theorem 4.3. The set F(R) is 2c−lineable.
Our argument for Theorem 4.3 will appeal to some set theoretic considerations.
Also, the interested reader should refer to work of Katznelson and Stromberg
[10] in connection with Theorem 3.4.

2 Fat functions and some problems of differen-
tiability

The main tool in the proof of Theorem 3.4 will be pointwise analogues of classical
results on differentiation of uniformly convergent series. We believe that these
analogues may be of independent interest.

Definition 2.1 Let f : R → R be a function which is integrable on each finite
subinterval. We say that f is H−fat (0 < H < ∞) if for each a < b,

1
b− a

·
∣∣∣∣∣
∫ b

a

f(t)dt

∣∣∣∣∣ ≤ H ·min {|f(a)|, |f(b)|} (1)

Hf = inf(H) in (1) will be called the fatness of f . We say that f is fat if
it is H-fat for some H ∈ (0,∞). A family F of such functions {f} be called
uniformly fat if HF = supf∈F (Hf ) < ∞.

Roughly speaking, if a function is fat then its average value on any interval
cannot be very large compared to its values at the endpoints of the interval.

Definition 2.2 A positive continuous even function ϕ on R that is decreasiing
on R+ is called a scaling function.

The next result gives a useful sufficient condition for fatness.

Proposition 2.3 Given a scaling function ϕ, if for each b > 0

1
b
·
∫ b

0

ϕ(t)dt ≤ K · ϕ(b), (2)

then ϕ is fat and Hϕ ≤ 2K. For 0 < a < b in (1) one can take H = K.
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Proof The basic idea of the proof utilizes the fact that the average value of
a scaling function ϕ over an interval [0, b] is at least as big as its average over
[a, b], where 0 < a < b.
By symmetry, there is no loss if we suppose that |a| < b. There are two cases to
consider:

1. −b < a ≤ 0. Then

1
b− a

·
∫ b

a

ϕ(t)dt ≤ 2
b
·
∫ b

0

ϕ(t)dt ≤ 2K · ϕ(b)

2. 0 < a < b. Making the linear substitution t = t(x) = a + b−a
b x we have

t(0) = a, t(b) = b, so that we have t(x) ≥ x on [0, b]. Since ϕ is decreasing,
ϕ(t(x)) ≤ ϕ(x). Therefore

1
b− a

·
∫ b

a

ϕ(t)dt =
1
b
·
∫ b

0

ϕ[t(x)]dx ≤ 1
b
·
∫ b

0

ϕ(x)dx ≤ K · ϕ(b).

Example 2.4 Each scaling function (1 + |t|)−α, 0 < α < 1 is fat. In particular,
for the function

ϕ(t) =
1√

1 + |t| (3)

we have that Hϕ ≤ 4.

Indeed

1
b · ϕ(b)

·
∫ b

0

dx√
1 + x

=
2(b + 1−√b + 1)

b
= 2−

√
b + 1− 1

b
< 2

So, Hϕ ≤ 4.

Definition 2.5 For a scaling function ϕ, let L(ϕ) denote the set of functions
of the form

Ψ(x) =
n∑

j=1

cj · ϕ(λj(x− αj)) where cj , λj > 0, and αj ∈ R. (4)

For obvious reasons, the functions in L(ϕ) will be called of ‘ϕ-wavelet’ type, or
merely ϕ-functions.

It is easy to see that the following is true:

Proposition 2.6 If a scaling function ϕ is fat, then L(ϕ) is uniformly fat.
Moreover, HL(ϕ) = Hϕ.

Proof The proof follows by verifying that fatness of positive functions is
preserved under translation, dilations, and positive linear combinations, and
then using the description of the elements of L(ϕ) given in (4).
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Proposition 2.7 [flexibility of L(ϕ)] Choose an arbitrary scaling function
ϕ, n ∈ N, n distinct real numbers {αj}n

j=1, and intervals {Ij = (yj , ỹj)}n
j=1,

where 0 < yj < ỹj for each j = 1, 2, . . . , n. Then there exists ψ ∈ L(ϕ) such that
the following two conditions are satisfied:

1. ψ(αj) ∈ Ij for j = 1, 2, . . . , n.

2. ψ(x) < max1≤j≤n ỹj for all x ∈ R.

Proof For a given ε > 0, it is not difficult to construct an “ε-analogue” of
the δ-function in L(ϕ), namely a function ϕε(x) ∈ L(ϕ), such that ϕε(0) = 1,
ϕε(x) ≤ 1 for all x ∈ R, and such that ϕε(x) < ε for x /∈ [−ε, ε]. The result
follows by judicious use of the family (4).

The main tool here is based on the following “pointwise” analogue of classical
“uniform” theorems on differentiation of series.

Theorem 2.8 Let
∑∞

n=1 Ψn(x) be a formal series of continuously differentiable
functions on R, such that for some x0 ∈ R,

∑∞
n=1 Ψn(x0) converges. For each

n, let Ψ′n = ψn and suppose that {ψn : n ∈ N} is a uniformly fat sequence of
positive functions, with

∑∞
n=1 ψn(a) converging to s, say, for some a. Then

1. F (x) ≡ ∑∞
n=1 Ψn(x) is uniformly convergent on each bounded subset of R.

2. F ′(a) exists and F ′(a) = s.

In particular, if
∑∞

n=1 ψn(x) = s(x) < ∞ for each x ∈ Rn, then F ′(x) = s(x)
for all x ∈ R. (Of course s(x) need not be continuous if the convergence is not
uniform).

Proof Take b > max {|a|, |x0|} and let

Ψ̃n(x) =
∫ x

0

ψn(t)dt, n = 1, 2, . . .

Since ψn is H-fat for some H < ∞, n = 1, 2, . . . , we have for |x| ≤ b

∣∣∣Ψ̃n(x)
∣∣∣ ≤

∣∣∣∣
∫ a

0

ψn(t)dt

∣∣∣∣ +
∣∣∣∣
∫ x

a

ψn(t)dt

∣∣∣∣

≤ H · |a| · ψn(a) + H · |x− a| · ψn(a) ≤ 3Hbψn(a)

So, by the Weierstrass M-test,
∑∞

n=1 Ψ̃n(x) converges uniformly on [−b, b] to
some function F̃ .
Next, since Ψn(x) = Ψ̃n(x) + Cn for each n and since

∑
n Ψn(x0) converges,

it follows that
∑

n Cn = C converges. Consequently,
∑∞

n=1 Ψn(x) is uniformly
convergent on [−b, b] to some function F (x) = F̃ (x) + C, which proves 1.
Let ε > 0 be arbitrary, and choose N such that

∑∞
n=N+1 ψn(a) < ε

2(H+1) . By
the continuity of each ψn, there is some δ > 0 such that for all |h| < δ and
n < N, ∣∣∣∣∣

1
h
·
∫ a+h

a

ψn(t)dt− ψn(a)

∣∣∣∣∣ <
ε

2N
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The uniform fatness of {ψn : n ∈ N} implies that

∣∣∣∣
F (a + h)− F (a)

h
− s

∣∣∣∣ =

∣∣∣∣∣
F̃ (a + h)− F̃ (a)

h
− s

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

(
1
h
·
∫ a+h

a

ψn(t)dt− ψn(a)

)∣∣∣∣∣ ≤

∣∣∣∣∣
N∑

n=1

(
1
h
·
∫ a+h

a

ψn(t)dt− ψn(a)

)∣∣∣∣∣ +

∣∣∣∣∣
∞∑

n=N+1

(
1
h
·
∫ a+h

a

ψn(t)dt− ψn(a)

)∣∣∣∣∣ ≤

εN

2N
+

∞∑

n=N+1

(Hψn(a) + ψn(a)) <
ε

2
+

ε

2
= ε

Remark: The assumption that each of the ψn’s be non-negative can be avoided
by instead requiring that

∑∞
n=1 |ψn(a)| < ∞.

3 Existence of differentiable functions with some
given properties of their derivatives

Our main results in this section are Theorems 3.4 and 3.5, which are conse-
quences of the following two results.

Theorem 3.1 Let 0 = y0 < y1 < y2 < . . . < yn < . . . → 1. Let S0 = {α0
j}∞j=1

be a countable set of distinct real numbers and, for each i ∈ N, let Si = {α(i)
j }mi

j=1

be a finite set of distinct real numbers. Suppose further that the sets {Si}∞i=0 are
pairwise disjoint. Then, there exists a differentiable function F on R such that

1. F ′(α(i)
j ) = yj for all j = 1, 2, ..., mi and i = 1, 2, . . .

2. F ′(α(0)
j ) = 1 for all j ∈ N.

3. 0 < F ′(x) ≤ 1, for all x ∈ R.

Proof For each i and each interval Ii = (yi−1, yi), consider a strictly increasing
sequence (yi,j) such that {yij} ∈ Ii and lim

j→∞
yij = yi. Let ϕ be a fat scaling

function on R. By Proposition 2.7 there exists f1 = ψ1 ∈ L(ϕ) such that:

I1. ψ1(α
(1)
j ) ∈ (y1,0, y1,1) for j = 1, 2, . . . ,m1.

I2. ψ1(α0
1) ∈ (y1,0, y1,1), and

I3. ψ1(x) < y1,1 for all x ∈ R.

By Proposition 2.7, we can choose ψ2 ∈ L(ϕ) such that if f2 = ψ1 + ψ2, then
the following hold:

II1. f2(α
(1)
j ) ∈ (y1,1, y1,2), for j = 1, 2, . . . , m1.

f2(α
(2)
j ) ∈ (y2,1, y2,2), for j = 1, 2, . . . , m2.

II2. f2(α0
j ) ∈ (y2,1, y2,2) for j = 1, 2, and

II3. f2(x) < y2,2, for all x ∈ R.
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Continuing we get a sequence (fn), where fn =
∑n

i=1 ψi, n = 1, 2, . . . , and
where each ψi ∈ L(ϕ) is such that the following conditions hold:

N1. fn(α(1)
j ) ∈ (y1,n−1, y1,n), for j = 1, 2, . . . , m1.

fn(α(2)
j ) ∈ (y2,n−1, y2,n), for j = 1, 2, . . . , m2.

...
fn(α(n)

j ) ∈ (yn,n−1, yn,n), for j = 1, 2, . . . , mn.

N2. fn(α0
j ) ∈ (yn,n−1, yn,n) for j = 1, 2, . . . , n.

N3. fn(x) < yn,n, for all x ∈ R.

Since fn(x) ≤ 1 and ψn(x) > 0 for all x, the series ψ(x) =
∑∞

n=1 ψn(x) converges
for all x ∈ R.
It follows from Theorem 2.8 that the function F (x) =

∫∞
0

ψ(x)dx satisfies all
the assertions in the statement of the theorem.

Remark: It would be interesting to determine whether a weaker condition than
fatness suffices to yield the conclusions of Theorems 2.8 and 3.1.

The following is a simple consequence of Theorem 2.8.

Theorem 3.2 Let A+, A−, A0 be pairwise disjoint countable sets in R. There
exists a differentiable function F on R such that F ′(x) ≤ 1 for all x ∈ R and
such that:

1. F ′(x) > 0, x ∈ A+.

2. F ′(x) < 0, x ∈ A−.

3. F ′(x) = 0, x ∈ A0.

Proof By theorem 2.8 there exist two everywhere differentiable functions
F (x), G(x) such that

1. F ′(x) = 1 for x ∈ A+ ∪ A0, F ′(x) < 1 for x ∈ A−, and 0 < F ′(x) ≤ 1 for
x ∈ R.

2. G′(x) = 1 for x ∈ A− ∪ A0, G′(x) < 1 for x ∈ A+, and 0 < G′(x) ≤ 1 for
x ∈ R.

Obviously, the function H(x) = F (x)−G(x) satisfies the conditions of theorem
3.1.

Theorem 3.2 easily implies the following classical result (see, e.g., [4]).

Corollary 3.3 There exist everywhere differentiable nowhere monotone func-
tions on R.

Proof Apply theorem 3.2 for A+, A− and A0 dense in R.

Moreover, there are “linearly many” such functions:
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Theorem 3.4 The set DNM(R) is lineable in C(R).

Proof Let’s consider the sequence on triples of pairwise disjoint sets
{A+

k , A−k , A0
k} with the following properties:

1. Each of the three sets in each triple is dense in R.

2. Each of the three sets in the triple {A+
k , A−k , A0

k} is a subset of A0
k−1.

By Theorem 3.1, for each k there exists an everywhere differentiable function
fk(x) on R such that

1. fk(x) > 0, x ∈ A+
k .

2. fk(x) < 0, x ∈ A−k .

3. fk(x) = 0, x ∈ A0
k.

Obviously each fk is nowhere monotone and the sequence {fk}∞1 is linearly
independent. To complete the proof, let us show that if f =

∑n
k=1 αkfk, {αk}n

1

not all zero, then f is nowhere monotone. Without loss, we may suppose that
αn 6= 0. On A+

n all fk vanish for k < n, and so f = αnfn, which implies that f
is nowhere monotone. This proves the lineability of DNM(R).

We conclude this section with a corollary, which follows directly from the pre-
vious results and [5], and some remarks.

Theorem 3.5 For finite a, b the set DNM[a, b] is lineable and not spaceable
in C[a, b].

This is an immediate consequence of Theorem 3.4 and [6].

Final Remarks: 1. An obvious question related to Theorem 3.5 is whether
the set DNM(R) is spaceable in the Fréchet space C(R), endowed with the
topology of uniform convergence on closed intervals in R. We conjecture that
this is indeed the case.

2. There seem to be a number of interesting questions concerning the relation
between finite lineability and countably infinite lineability. For instance, in [1],
the authors show that for any 3−homogeneous polynomial P : X → R defined on
a real Banach space X, P−1(0) is n−lineable for any n. However, it is unknown
if P−1(0) contains an infinite dimensional subspace.
It is not difficult to provide natural examples of sets which are n−lineable for
every n but which are not infinitely lineable. For instance, let j1 ≤ k1 < j2 ≤
. . . ≤ km < jm+1 ≤ . . . be integers and let M = ∪m{

∑km

i=jm
aix

i : ai ∈ R}.
Since the sets {{∑km

i=jm
aix

i : ai ∈ R} : n ∈ N} are pairwise disjoint, M
is finitely, but not infinitely, lineable in C[0, 1]. Depending on the choice of the
sequence (jn), M may even be closed in C[0, 1]. For instance, it is shown in [8]
that if (jn) is a lacunary sequence, then {(xjn

n )} is a basic sequence in C[0, 1].
On the other hand, no matter what sequence j1 ≤ k1 < j2 < ... we take, the
corresponding set of complex polynomials M = ∪n{

∑kn

`=jn
a`z

` : a` ∈ C} is
always closed in H∞.
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4 Everywhere surjective functions

H. Lebesgue [11] was perhaps the first to show a somewhat surprising example
of a function f : R → R with the property that on every non-trivial interval
(a, b), f(a, b) = R. (A more modern reference is [4], where examples of other
functions are indicated.) Our main goal in this section is to prove that the
set of such everywhere surjective functions is lineable. In fact, the set of such
functions contains a vector subspace of the largest possible dimension, 2c.
In order to do this, we first show that the set of surjective functions f : R→ R
is 2c−lineable. The proof makes use of the following simple observation:

Lemma 4.1 Let C1, C2, . . . , Cm be distinct non-empty sets. Then there exists
a k ∈ {1, 2, . . . , m} such that Ck \ Ci 6= ∅ for all i 6= k.

Proof Suppose that for every k ∈ {1, 2, . . . , m} there exists i 6= k such that
Ck \Ci = ∅. By relabelling the sets, we would then have C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂
Cm−1 ⊂ Cm, which is a contradiction.

Proposition 4.2 There exists a vector space Λ of functions R → R with the
following two properties:
(i). Every non-zero element of Λ is an onto function, and
(ii). dim(Λ)= 2c.

Proof Let r ∈ R, r 6= 0, be fixed. For a non-empty subset C ⊂ R, define
HC : RN −→ R by

HC(y, x1, x2, x3, . . .) = ϕr(y) ·
∞∏

i=1

IC(xi).

Here, IC is the indicator function and ϕr(y) = ery − e−ry, the most important
property of this function being the fact that for any r 6= 0, ϕr : R→ R is onto.
First of all, we show that the family {HC : ∅ 6= C ⊂ R} is linearly independent.
Indeed, let’s take m distinct subsets C1, C2, · · · , Cm of R. Suppose that for some
choice of scalars, the function

m∑

j=1

λjHCj

is identically 0. Clearly, we may assume that no λj is 0, and since all the Cj ’s
are different we may further assume that for every j < m, there exists a point
xj ∈ Cm \ Cj . Evaluating at the point

x = (1, x1, x2, . . . , xm−2, xm−1, xm−1, xm−1, . . .),

we obtain

0 =
m∑

j=1

λjHCj (x) = ϕr(1) ·
m∑

j=1

[
λj ·

∞∏

i=1

HCj (xi)

]
= ϕr(1) · λm.

So, we get that λm = 0, which is a contradiction. Hence the family {HA : A ⊂
R, A 6= ∅} is linearly independent.
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We now show that every h ∈ Γ = span{HA : A ⊂ R, A 6= ∅}, h 6= 0, is onto.
First, given s ∈ R choose b ∈ R such that ϕr(b) = s. Then HA(b, a, a, a, . . .) = s,
where a ∈ A is arbitrary, which shows that each HA is onto. If h ∈ Γ \ {0} then
for some non-zero real numbers λ1, λ2, . . . , λm and some distinct non-empty
subsets of R, C1, C2, . . . , Cm, we have

h =
m∑

j=1

λjHCj .

Arguing as before, we first find some Cj (which, without loss, is Cm) such that
for each j = 1, ..., m − 1, there is a point xj ∈ Cm\Cj . Given s ∈ R, let x =
(a, x1, x2, . . . , xm−2, xm−1, xm−1, . . .), where ϕr(a) = s

λm
. It is straightforward

to verify that h(x) = s.
So, every h ∈ Γ \ {0} is onto. It is clear that dim(Γ) = 2c since Card({A :
A ⊂ R, A 6= ∅}) = 2c. Since there is a bijection between R and RN, we can also
construct a vector space Λ of onto functions f : R→ R having dimension 2c.

We now come to the main result of this section, that the set of so-called Lebesgue
everywhere surjective functions is 2c−lineable. Note that 2c is the cardinality
of all functions R→ R, so obviously this result is best possible.

Theorem 4.3 The set F(R) = {f : R→ R : for every (a, b) ⊂ R, f(a, b) =
R} is 2c-lineable.

Proof Choose Λ as in the preceding proposition, and fix any everywhere sur-
jective function f . We claim that the vector space ∆ = {H ◦f : H ∈ Λ} satisfies
the required conditions. First, dim(∆)= 2c since dim(Λ)= 2c. To see this it is
enough to show that given m linear independent functions Hj ∈ Λ \ {0}, j =
1, . . . , m, then the family {Hj◦f}m

j=1 is also linear independent. Take m nonzero
real numbers {λj}m

j=1, and suppose that the function h =
∑m

j=1 λj · (Hj ◦ f)
is identically zero. By construction h can be written as h = G ◦ f , where G is
onto. Take any 0 6= s ∈ R. There exists d ∈ R with G(d) = s, and there also
exists a ∈ R so that f(a) = d. Thus h(a) = s 6= 0, which is a contradiction.

Next let’s take g ∈ ∆ \ {0}, s ∈ R, and any interval (a, b) ⊂ R. We need to
find ` ∈ (a, b) such that g(`) = s. We can express g as g = G ◦ f , with G being
an onto function. So, for s ∈ R there exists d ∈ R such that G(d) = s. Now, we
can find ` ∈ (a, b) with f(`) = d (since f is our everywhere surjective function).
So we have

g(`) = (G ◦ f)(`) = G(f(`)) = G(d) = s, and

we are done.

In future work, the authors hope to investigate ‘algebrability’ of sets M of func-
tions, that is, when does a set M of functions contain a large algebra? In
particular, the question of whether there is a Banach algebra of nowhere differ-
entiable functions on [0, 1] seems interesting.

The authors express their gratitude to the Referee whose thorough analysis
and insightful remarks improved the text.
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Mathematics, Springer-Verlag, to appear.

9. S. Hencl, Isometrical embeddings of separable Banach spaces into the set
of nowhere approximatively differentiable and nowhere Hölder functions,
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