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Abstract. An entire function f ∈ H(C) is called universal with respect to

translations if for any g ∈ H(C), R > 0, and ε > 0, there is n ∈ N such that

|f(z +n)− g(z)| < ε whenever |z| < ε. Similarly, it is universal with respect to

differentiation if for any g, R, and ε, there is n such that |f (n)(z)−g(z)| < ε for

|z| ≤ R. In this survey article, we review G. MacLane’s proof of the existence

of universal functions with respect to differentiation, and we give a simplified
proof of G. D. Birkhoff’s theorem showing the existence of universal functions

with respect to translation. We also discuss Godefroy and Shapiro’s extension
of these results to convolution operators as well as some new, related results

and problems.

1. Introduction.

Our interest here will be in what has come to be called hypercyclic oper-

ators on the space H(C) of entire functions of one complex variable. This
subject has its origins in 1929 with the paper [2] by G. D. Birkhoff, in
which he proved that there is f ∈ H(C) such that the set of all translates
{f(z), f(1 + z), ..., f(n + z), ...} is dense in H(C). About 25 years later, G.
MacLane [9] proved an analogous result for derivatives: There is an entire

function f such that the set of all derivatives {f, f ′, ..., f (n), ...} is dense in
H(C). We present a survey of these results in §2, presenting a somewhat
simpler, and certainly shorter, proof of Birkhoff’s result.

Recall that an operator T : X → X is said to be hypercyclic if there is some
(hypercyclic) vector x ∈ X such that {x, T (x), ..., T n(x), ...} is dense in X.
These two results can be restated in terms of hypercyclic operators on H(C),
by simply noting that Birkhoff’s result means that the translation operator
T : H(C) → H(C), T (h)(z) ≡ h(1 + z) is hypercyclic. Likewise, MacLane’s
result just says that the differentiation operator is hypercyclic. This funda-
mental observation was made by Godefroy and Shapiro [6] who generalized
it to show that every continuous linear operator L : H(C) → H(C) which
commutes with translations and which is not a multiple of the identity is
hypercyclic. In §3, we review their result and the connection with so-called
convolution operators. We also present examples of new hypercyclic opera-
tors and pose some problems related to these operators.
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2. Classical results of Birkhoff and MacLane.

Theorem 1 [2]. There is a function f ∈ H(C) with the following property:
For every g ∈ H(C) and every R, ε > 0, there is n ∈ N such that |f(z +n)−
g(z)| < ε for every z ∈ C, |z| ≤ R.
Proof. Let (Pj)j be a dense sequence of polynomials in H(C). To simplify
the argument, let’s assume that each Pj occurs infinitely often in this se-
quence. Let (Dj)j be a sequence of disjoint closed discs, each Dj of radius
j, such that the centers (cj) form an increasing sequence on the positive real
axis. Let Ej be a sequence of closed discs, each centered at the origin, such
that Dj ⊂ Ej and Dj+1 ∩ Ej = ∅. (Hence, Di ⊂ Ej for 1 ≤ i ≤ j and
Di ∩ Ej = ∅ for i ≥ j + 1.)

Call Q1 = P1. By Runge’s theorem, there is a polynomial Q2 such that
||Q2||E1 < 1

2 and such that

|Q2(z) − (P2(z − c2) − Q1(z))| <
1

2

on D2. Next, choose a polynomial Q3 such that ||Q3||E2 < 1
22 and such that

|Q3(z) − (P3(z − c3) − Q1(z) − Q2(z))| <
1

22

on D3. In general, let Qn be a polynomial such that ||Qn||En−1 < 1
2n−1 and

such that

|Qn(z) − (Pn(z − cn) −
n−1
∑

i=1

Qi(z))| <
1

2n−1

on Dn.
We claim that the function f =

∑∞
n=1 Qn works. It is easy to see that f is

entire, and so there only remains to show that if g ∈ H(C), R > 0, and ε > 0
are arbitrary, then for some j, |f(z + cj) − g(z)| < 2ε whenever |z| ≤ R. In
fact, it is enough to demonstrate this for g = P = Pk, for some k. Noting
that there are infinitely many k for which P = Pk, we can choose such a
large k so that

||f −
k

∑

i=1

Qi||Ek−1
< ε.

Also,

|
k

∑

i=1

Qi(z) − P (z − ck)| < ε

for all z ∈ Dk. In other words, for all z ∈ Dk, |f(z) − P (z − ck)| < 2ε, and
the result follows by a change of variable. �

We next present the original argument of MacLane, which shows that
there is an entire function whose collection of derivatives is dense in H(C).
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The method of proof will be useful to us later.

Theorem 2 [9]. There is an entire function f such that the set {fn : n ∈
N} is dense in H(C).

Proof. Let I : H(C) → H(C) be defined by

I(h)(z) =

∫ z

0
h(w)dw.

Note that if g(z) = zn, then I(g)(z) = zn+1

n+1 and, in general,

Ikg(z) =
zn+k

(n + k) · · · (n + 1)
.

So, for |z| ≤ R,

|Ikg(z)| ≤
Rn+k

(n + k)(· · · (n + 1)
≤ Rn Rk

k!
.

Thus, max|z|≤R |Ikg(z)| → 0 as k → ∞, and from this it is obvious that

given any polynomial P, any δ > 0 and any R > 0, there is k̃ ∈ N such that
max|z|≤R |IkP (z)| < δ whenever k ≥ k̃. Moreover, given h ∈ H(C), ε > 0,
and M ∈ N, if |h(z)| ≤ δ whenever |z| ≤ R, then

|h(j)(w)| ≤
j! max|z|≤R |h(z)|

(R/2)j
for any |w| ≤ R/2,

≤ j!(2/R)jδ < ε

for any j = 0, . . . , M, provided δ is small enough.
To summarize, given any polynomial P, any ε > 0, and R > 0, and any

M ∈ N, there is some k̃ ∈ N such that if k ≥ k̃ and Q(z) ≡ IkP (z), then

max
|z|≤R

|Q(j)(z)| < ε

for every j = 0, . . . , M.
With this, we are now ready to prove the theorem. Let {Pj : j ∈ N} be

a dense sequence of polynomials in H(C). The required function f will have
the form

f =
∞

∑

j=1

Ikj (Pj).

Let k1 = 0, Q1 = P1, and choose k2 > k1 + degP1. Call Q2 = Ik2(P2), where
k2 is chosen to further satisfy the condition that |Q2(z)| < 1

22 for |z| ≤ 2.

Next, let k3 > k2+degP2, and call Q3 = Ik3(P3) where k3 has been chosen
to further satisfy the conditions that

|Q3(z)| ≤
1

23
, |Q′

3(z)| ≤
1

23
, . . . , |Q

(k2)
3 (z)| ≤

1

23



4 ARON AND MARKOSE

on |z| ≤ 3. In general, let kn > kn−1+degPn−1, kn so large that if Qn =
Ikn(Pn), then

|Qn(z)| ≤
1

2n
, |Q′

n(z)| ≤
1

2n
, . . . , |Q(kn−1)

n (z)| ≤
1

2n

on |z| ≤ n. Let f =
∑∞

n=1 Qn. We claim that f works. First, since

max|z|≤n |Qn(z)| ≤ 1
2n , it is clear that the series converges to f uniformly on

bounded subsets of C. Second, let g ∈ H(C), R > 0, and ε > 0 be arbitrary.
We choose n0 ∈ N so that n0 > R and 1

2n−1 < ε. Choose n ≥ n0 such that

max|z|≤n0
|g(z)−Pn(z)| < ε. We claim that max|z|≤n0

|g(z)− f (kn)(z)| < 2ε.
In fact, this is very simple since if |z| ≤ n, then

|g(z) − f (kn)(z)| ≤ |g(z) − Pn(z)| +
∑

j>n

|Q
(kn)
j | < 2ε.

�

C. Blair and L. Rubel [3] were perhaps the first to observe that one can
find a function f ∈ H(C) satisfying the conclusions of both Theorem 1
and Theorem 2. Their proof involves a combination of the arguments given
above, together with a slightly more complicated application of Runge’s the-
orem. As we will see in the next section, the Blair-Rubel result is subsumed
by several other considerably stronger theorems.

3. Convolution operators

Let O(H(C)) = {L : H(C) → H(C) : L is continuous, linear, and com-
mutes with translations }. In other words, O(H(C)) consists of all linear,
continuous operators L such that for any a ∈ C and f ∈ H(C), we have
L(τaf) = τa(Lf); here τaf(z) = f(z + a). The elements of O(H(C)) are
called convolution operators. The easiest non-trivial examples of such op-
erators are those described in Theorems 1 and 2 above, namely L(f)(z) =
f(z + a) and L(f) = f ′. In what follows, entire functions of exponential
type will play a major role. Recall that Exp(C) = {g ∈ H(C) : for some

C, R > 0, |g(z)| ≤ CeR|z| for every z ∈ C}.

The basis for this section is the very beautiful paper [6] of G. Godefroy
and J. Shapiro, which in turn relies heavily on the independent work of C.
Kitai [8] and R. Gethner and J. Shapiro [5]. These papers provide a sufficient
condition for the hypercyclicity of operators on Fréchet spaces. We recall
their hypercyclicity condition in Theorem 5, below.
Proposition 3. The spaces O(H((C)), H′(C), and Exp(C) are isomorphic
as vector spaces.
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Sketch of Proof. (1). Given L ∈ O(H(C)), define TL : H(C) → C by
TL(f) = L(f)(0). Conversely, given T ∈ H′(C), let LT : H(C) → H(C)
be given by LT (f)(w) = T (τwf). It is routine that LTL

= L for every
L ∈ O(H(C)), and conversely that TLT

= T for every T ∈ H′(C).

(2) Given T ∈ H′(C), let T̂ : C → C be given by T̂ (λ) = T (eλz). Since T
is continuous, there are C and R > 0 such that |T (h)| ≤ C max|z|≤R |h(z)|.

Therefore |T̂ (λ)| ≤ C max|z|≤R |eλz| = CeR|λ|. For the other direction, given
an entire function g which is of exponential type, let Tg ∈ H′(C) be defined

by Tg(f) =
∑∞

n=0
g(n)(0)

n! f (n)(0). Note that an entire function g is in Exp(C) if

and if supn |g
(n)(0)|

1
n < ∞, from which convergence of Tg easily follows. �

We next indicate why the three spaces are isomorphic as algebras. At
first glance, this may seem surprising: Exp(C) is obviously a commutative
algebra under pointwise multiplication. On the other hand, while O(H(C))
is an algebra under composition of operators, it is not at all clear that it
is commutative. Finally, there is no obvious multiplication on H′(C). To
remedy this, for S and T ∈ H′(C), let S ∗ T : H(C) → H(C) be defined by
S ∗ T (f) = S(T ∗ f) where, in turn, T ∗ f(λ) = T (τλf). It is not difficult
to verify that for L1, L2 ∈ O(H(C)), TL1◦L2 = TL1 ∗ TL2 , and furthermore

for T1, T2 ∈ H′(C), T̂1 ∗ T2 = T̂1T̂2. The conclusion is summarized in the
following:

Proposition 4. The three spaces O(H(C)), H′(C), and Exp(C) are isomor-
phic as algebras.

We omit the proof of the following fundamental theorem, due indepen-
dently to C. Kitai and R. Gethner and J. Shapiro. The proof makes use of
only the Baire category theorem (plus some cleverness).

Theorem 5. (Hypercyclicity Condition) [5, 8].
Let T : X → X be a continuous linear operator on a Fréchet space X.

Suppose that Y and Z are dense subsets of X and that there is a mapping
S : Z → Z such that the following three conditions are satisfied:

(i). For all y ∈ Y, T n(y) → 0 as n → ∞.
(ii). For all z ∈ Z, Sn(z) → 0 as n → ∞.
(iii). T ◦ S = IZ .

Then T is hypercyclic; that is, there is a vector x0 ∈ X such that the set
{x0, Tx0, ..., T

nx0, ...} is dense in X.

Note that in the above, Y and Z need not be vector spaces, nor is it
necessary that S be linear or continuous.
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The following result was originally proved for convolution operators act-
ing on H(Cn). In order to maintain a consistent presentation, we have opted
to state and prove it only in the one variable case (although there are no
particular difficulties in extending the argument to H(Cn)).

Theorem 6. [6] Let L ∈ O(H(C)) be a convolution operator which is not
a multiple of the identity. Then L is hypercyclic.

Proof of Theorem: Let L ∈ O(H(C)) be any convolution operator which
is not a multiple of the identity. By Proposition 3, corresponding to L is a
unique function gL ∈ Exp(C), where if gL(z) =

∑∞
j=0 ajz

j then L(f)(z) =
∑∞

j=0 ajf
(j)(z) (z ∈ C, f ∈ H(C)). It is useful to observe that L is a multi-

ple of the identity if and only if the associated function gL is constant. Note
also that for each fixed b ∈ C, the function fb(z) = ebz is an eigenvector of
L : L(fb)(z) =

∑

j ajb
jfb(z) = gL(b)fb(z). To continue the proof, we will

need the following result:

Sublemma 7. For each open, non-empty subset V ⊂ C, span{fb : b ∈ V }
is dense in H(C).

Proof of Sublemma. Fix b ∈ V. For all sufficiently small δ > 0, b + δ ∈ V
and it is easy to verify that

lim
δ→0

e(b+δ)z − ebz

δ
→ zebz

in H(C). Thus, zebz ∈ span{fb : b ∈ V }. Next, z2ebz ∈ span{fb : b ∈ V }

since ebz [eδz−1−δz]
δ

∈ span{fb : b ∈ V }. Continuing, we conclude that for

every n ∈ N, znebz ∈ span{fb : b ∈ V }. Now, let f ∈ H(C) be arbitrary,
and let

∑∞
n=0 anzn be the Taylor series of g(z) = e−bzf(z). Thus, f can

be represented as f(z) = ebzg(z) =
∑∞

n=0 anznebz, and the Sublemma is
proved. �

Returning to the proof of Theorem 6, let V = {b ∈ C : |gL(b)| < 1} and
let W = {b ∈ C : |gL(b)| > 1}. Note that both V and W are open and
non-empty, since gL is non-constant. Let’s apply the hypercyclicity condi-
tion with Y = span{fb : b ∈ V } and Z = span{fb : b ∈ W}, and verify
conditions (1), (2), and (3) of Theorem 5. First, (1) follows directly from
the fact that Ln(fb) = gL(b)nfb → 0 as n → ∞ for each b ∈ V. As for (2)

and (3), define S : Z → Z by S(fb)(z) = fb(z)
gL(b) for b ∈ W, extending linearly

to all of Z. Note that S is well-defined and clearly satisfies L ◦ S(fb) = fb

for all b ∈ W. Thus (3) holds. As for (2), since |gL(b)| > 1, it is clear that
Sn(fb) → 0 for each b ∈ W, and hence Sn → 0 pointwise on Z. �
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The proof of the Sublemma is somewhat more direct than that given in
[6]. By this Sublemma, span{fb : b ∈ C} is dense in H(C). Since each fb is
in the range of L, the following is obvious:

Corollary 8. Every non-zero convolution operator L has dense range.
Proof. Let L 6= 0 be a convolution operator. If L = cI, then it is clear
that L is surjective. Otherwise, Sublemma 7 and the proof of Theorem
6 above apply, to give that each fb ∈ range L, and therefore H(C) =

span{fb : b ∈ C} = L(H(C)). �

At this point, we should mention that much more is true. In fact, it is
a result of Malgrange [10] that every non-zero convolution operator L is
surjective. Since we already have most of the preliminaries, we will sketch
this argument, which was extended by C. Gupta [7] to the class of nuclear
entire functions of bounded type on a Banach space. The proof rests on the
following technical lemma:

Lemma 9. [10] Suppose that g1, g2, and g3 are in H(C)), such that g1 =
g2 · g3 and g2 6= 0. If both g1 and g2 are in Exp(C), then so is g3.

Proposition 10. Suppose that L1 and L2 are in H(C)′ with L2 6= 0.
Suppose that for all complex polynomials P and all λ ∈ C, the following
implication holds: If L2 ∗ (P (z)eλz) = 0, then L1(P (z)eλz) = 0.
Then

L̂1

L̂2

∈ Exp(C).

Proof. Suppose that λ is a zero of order k of L̂2. Then L̂
(j)
2 (λ) = 0 for every

j < k, and a computation shows that then L2(z
jeλz) = 0 for all such j. By

hypothesis, L1(z
jeλz) = 0 as well, which implies that λ is a zero of (at least)

order k of L̂1. This proves that L̂1

L̂2
∈ H(C) and the conclusion follows from

Lemma 9. �

Theorem 11. [10] If L ∈ O(H(C)) is non-zero, then it is surjective.
Proof. The proof makes use of the Dieudonné-Schwartz theorem [4]: If
u : E → F is a linear continuous operator between Fréchet spaces E and
F, then u is surjective if and only if ut is injective and ut has weak-star
closed range in E ′. So, in order to prove the theorem, it suffices to show
that Lt has weak-star closed range and is injective. As for the latter as-
sertion, suppose that LtS = 0 for some S ∈ H′(C). Therefore, for all
f ∈ H(C), LtS(f) = S(Lf) = S((TL ∗ f) = S ∗ T (f) = 0. Consequently,

S ∗ T = 0, and so ŜT̂ = 0. Since L 6= 0, it follows that T̂ 6= 0. Thus, Ŝ = 0,
and so S = 0.
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Next, let’s show that Lt has weak-star closed range. In fact, we’ll show
more, namely that

(∗) Lt(H(C)′) = {f ∈ H(C) : L(f) = 0}⊥.

This equality will prove the result, since {f ∈ H(C) : L(f) = 0}⊥ =
∩{T ∈ H(C)′ : T (f) = 0}, the intersection being over all f such that
L(f) = 0. Now, each set {T ∈ H(C)′ : T (f) = 0} is clearly weak-star
closed, and it follows that Lt(H(C)′) is weak-star closed. To prove (*)
above, take a functional of the form Lt(T ). For any f such that L(f) = 0,
Lt(T )(f) = T (L(f)) = 0, and so we have proved that the left hand side
of (*) is contained in the right hand side. For the converse, suppose that
T ∈ {f ∈ H(C) : L(f) = 0}⊥. By Proposition 10,

T̂

L̂
∈ Exp(C).

Proposition 4 yields that T̂ = Ŝ ∗ L̂ for some S ∈ H(C)′, and consequently
T = S ∗ L. Thus, for any entire function f, T (f) = S ∗ L(f) = S(T ∗ f) =
S(L(f)) = Lt(S)(f). In other words, T belongs to Lt(H(C)′), and the proof
is finished. �

Corollary 12. Given a convolution operator L which is not a multiple of
the identity, there is a dense vector space M ⊂ H(C) such that for every
f ∈ M, f 6= 0, the set {f, L(f), ..., Ln(f), ...} is dense in H(C).

In other words, there is a dense subspace of H(C), every non-zero element
of which is hypercyclic for L.
Proof. Let M = {P (L)(f) : P is a polynomial}. By Corollary 12, for
any P 6= 0, P (L) : H(C) → H(C) has dense range. Thus, for each non-zero
P, {Ln(P (L)(f)) n ∈ N} = P (L) ({Ln(f) : n ∈ N}) is dense in H(C). In
other words, every non-zero element of M is hypercyclic for L. �

We conclude with some recent partial results and some open problems.
First, we do not know of a completely satisfactory extension of Theorem 6
to convolution operators acting on a space of entire functions of infinitely

many variables. There has been some limited progress in this direction by
the first author and J. Bes [1], as well some interesting related work by H.
Petersson [11], but the following problem remains open:
Problem. Let L : HNb(E) → HNb(E) be a convolution operator acting on
the space of entire functions of nuclear-bounded type on a separable Banach
space E (see [7] for background notation and terminology). If L is not a
multiple of the identity map, is L hypercyclic?

Second, and perhaps of greater interest, is the question of what other

operators L : H(C) → H(C) are hypercyclic? We show here that certain
analogues of the differentiation operator are hypercyclic, while others are
not.
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Theorem 13. For λ, b ∈ C, define T : H(C) → H(C) be given by
T (f)(z) = f ′(λz + b). Then T is hypercyclic provided |λ| ≥ 1.

Proof. Since the case when λ = 1 has already been covered in Theorems
2 and 6, there is no loss in generality in assuming that λ 6= 1. The proof
consists in applying the Hypercyclicity Condition of Theorem 5, where Y =
Z will be the space of analytic polynomials in X = H(C). A straightforward
calculation shows that

Tnf(z) = λ
n(n−1)

2 f (n)(λnz + [
1 − λn

1 − λ
]b).

So, condition (i) of Theorem 5 is satisfied. (In fact, it is satisfied for any
λ ∈ C.) Next, let S : Z → Z be defined as follows:

S(zk) ≡
1

k + 1

(

z − b

λ

)k+1

,

and extended linearly. It is easy to verify that T ◦ S(zk) = zk, so that
condition (iii) of Theorem 5 is also true. As for condition (ii),

Sn(zk) =
k!

(k + n)!

(

z − b[1 + λ]

λn

)k+n

.

Therefore, for any R > 0,

max
|z|≤R

|Sn(zk)| ≤
k!

(k + n)!
(R + |b|(1 + |λ|))k+n ,

since |λ| ≥ 1, which tends to 0 as n → ∞. Thus, condition (iii) holds for all
zk and therefore it holds for all polynomials. �

It should be noted that unless λ = 1, the operator T is not a convolution
operator; although it is clearly linear and continuous, T does not commute
with translations. One particular case of the above result is noteworthy. If

we let T (f)(z) = f ′(e
2πi

p
q z) where p, q ∈ N, then T is hypercyclic. A direct

argument for this result is easy, since T q(f) = f (q) which is a convolution
operator. It is trivial that if a power of an operator is hypercyclic then the
operator itself is hypercyclic, and so T is seen to be hypercyclic. However,
there does not seem to be a way to use this easy observation to conclude

that T (f)(z) = f ′(λz) is hypercyclic if |λ| = 1, λ 6= e
2πi

p
q .

The following result complements the preceeding Theorem by showing
that in a sense, the “weighted differentiation” operator Tλ, Tλ(f)(z) =
f ′(λz), acting on H(C) behaves in an analogous manner to the weighted
backward shift Bλ : `2 → `2. In the latter case, Bλ is hypercyclic if and only
if |λ| > 1. Indeed, the condition is obviously necessary since if |λ| ≤ 1, then
||Bλ|| ≤ 1. In Theorem 13, we showed that Tλ is hypercyclic if |λ| ≥ 1, and
we now show that this condition on λ is also necessary.
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Proposition 14. For any λ ∈ C such that |λ| < 1 and any f ∈ H(C), the
sequence (T n

λ (f))n → 0. Consequently, for these λ, Tλ is not hypercyclic.
Proof. Fix f and λ as in the proposition, and let R > 0. As noted in the
proof of the previous theorem,

Tn
λ (f)(z) = λ

n(n−1)
2 f (n)(λnz).

Therefore, max|z|≤R |Tn
λ (f)(z)| = |λ

n(n−1)
2 |max|z|≤R |f (n)(λnz)|. For all large

n such that |λnR| ≤ 1
2 an application of Cauchy’s inequality shows that the

above is ≤ n!|λ
n(n−1)

2 |2n max|w|≤1 |f(w)|. Now by Stirling’s formula, this is
dominated by an expression of the form

C(
n

e
)n2n|λ

n(n−1)
2 | = C[

2n|λ|
n−1

2

e
]n.

Since n|λ|
n−1

2 → 0, we conclude that max|z|≤R |Tn
λ (f)(z)| → 0 as n → ∞.
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