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p-Compact homogeneous polynomials from an ideal point of
view

Richard M. Aron and Pilar Rueda

Abstract. We prove that the space of p-compact n-homogeneous polynomials
is a composition ideal of polynomials and prove an even stronger ideal condi-
tion. An application to the study of the stability of p−compactness under the
formation of projective symmetric tensor products is provided. We also show
that an n−homogeneous polynomial is p−compact if and only if its transpose
is quasi p−nuclear. This solves a problem posed in [2].

1. Introduction

The theory of p-compact operators was initiated by Sinha and Karn and inter-
est in this area has grown in the last few years. This is due in part to the fact that
p-compact operators turn out to be a Banach ideal of operators, denoted [Kp, kp],
whose norm kp was introduced by Sinha and Karn [17] and characterized by Del-
gado, Piñeiro and Serrano [6, Proposition 3.15]. The position of [Kp, kp] among
classical Banach ideals was first studied in [17], where it was proved that any op-
erator whose adjoint is p-compact is p-summing, Kp is contained in the ideal Πd

p

of operators with p-summing adjoint, and p-nuclear operators have adjoints that
are p-compact. This study was deepened in [6], where it was shown that an oper-
ator T is quasi p-nuclear if and only if its adjoint T ∗ is p-compact. The authors
of [6] also proved the related dual result: an operator is p-compact if and only if
its adjoint is quasi p-nuclear. The ideal [QN p, ν

Q
p ] of quasi p-nuclear operators,

introduced by Persson and Pietsch [13], was shown to be an important tool in the
study of p-nuclear operators and the approximation properties of order p [15]. The
above characterizations show the strong relationship between p-compact operators
and quasi p-nuclear operators. Moreover, the norms involved also display good be-
havior: νQp (T ) = kp(T

∗), whereas νQp (T ∗) ≤ kp(T ) for the related dual result (see
[6, Propositions 3.1 and 3.2]). These results show that Kp has a natural place in
operator ideal theory.

The concept of p-compact holomorphic mapping was introduced in [2] as a
generalization of p-compact operators to the non-linear case. There, the relation
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between p-compact holomorphic mappings and their Taylor series expansions was
discussed. Some topological aspects of these mappings were also analyzed.

A Banach operator ideal [I, ‖·‖I ] is tensor stable with respect to a tensor norm
α if T ⊗ S belongs to I(E⊗̂αF ;G⊗̂αH) whenever T ∈ I(E;G) and S ∈ I(F ;H).
As mentioned in [5], tensor stable ideals were first studied by Vala [18], who proved
the ε-stability of compact operators. Holub [10] proved that absolutely p−summing
operators are stable under the formation of injective tensor products and provided
an example of absolutely summing maps whose projective tensor product is not
p−absolutely summing for any 1 ≤ p < ∞. He also proved the α-stability of
nuclear operators for any crossnorm ε ≤ α ≤ π. Stability of operators ideals has
been also treated in [5, 11, 14].

In this paper, we look at p-compact m-homogeneous polynomials from an ideal
point of view. We show that the space of p-compact n-homogeneous polynomials is
a composition ideal of polynomials and prove an even stronger ideal condition (see
Theorem 3.2). As an application, we study the stability of p−compact operators
and p−compact polynomials under the formation of symmetric tensor products.
We prove that ⊗mT : ⊗̂m,s

πs
E → ⊗̂m,s

π F is p−compact whenever T : E → F
is a p−compact operator (see Section 2 for notation). The analogous result for
homogeneous polynomials is also obtained: ⊗mP : ⊗̂m,s

πs
E → ⊗̂m,s

π F is p−compact
whenever P : E → F is a p−compact m−homogeneous polynomial. The notion of
transpose of an operator was extended in [3, Proposition 3.2], to m-homogeneous
polynomials. Among other things, it was shown that anm-homogeneous polynomial
P is compact if and only if its “linear transpose” P ∗ is compact. Influenced by the
linear case studied in [6], the relationship between a p-compact polynomial and its
transpose is established. This solves a problem posed in [2].

2. Preliminaries and notation

In the sequel, E denotes a Banach space, BE its closed unit ball and E∗ its
topological dual. If x ∈ E and ε > 0 then Bε(x) is the open ball of center x
and radius ε. For 1 ≤ p < ∞, p′ is given by 1

p + 1
p′ = 1. Let �p(E) denote the

space of all sequences (xn)n in E that are strongly p-summable; in other words,
‖(xn)n‖p = (

∑∞
n=1 ||xn||p)1/p < ∞. In Section 3 we will need the related space

�wp (E) of weakly p−summable sequences in E. This space is formed by all sequences
(xn)n in E such that (ϕ(xn))n ∈ �p for every ϕ ∈ E∗. A set K ⊂ E is said to be
relatively p−compact if there exists a sequence (xn)n in �p(E) such that

K ⊂ {
∞∑

n=1

anxn : (an)n ∈ B�p′}.

We will use the abbreviated notation p-conv{(xn)n} to denote the set

{
∞∑

n=1

anxn : (an)n ∈ B�p′},

calling it the p-convex hull of (xn)n.
It is natural that for p = ∞, ∞−compact sets are just compact sets. In this

case, K ⊂ {
∑∞

n=1 anxn : (an)n ∈ B�1}, for some sequence (xn)n in c0(E) (see e.g.
[7, Lemma VIII.3.2]).

Given a subset A ⊂ E, the closed absolutely convex hull of A is denoted by
Γ(A). It is well-known that p-conv{(xn)n} is absolutely convex and for 1 < p < ∞
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it is closed. Therefore, for any 1 ≤ p < ∞, Γ(A) is p−compact whenever A is
relatively p−compact.

Let E and F be Banach spaces. We denote by L(mE;F ) the space of all
continuous m−linear mappings from E × · · · × E into F . Whenever m = 1,
L(1E;F ) = L(E;F ) coincides with the usual space of continuous linear opera-
tors, and for m = 0 we agree that L(0E;F ) is the space of constant mappings
and is identified with F . A mapping P : E −→ F is a continuous m-homogeneous
polynomial if there is A ∈ L(mE;F ) such that P (x) = A(x, . . . , x) for all x ∈ E.
Let P(mE;F ) denote the space of all continuous m-homogeneous polynomials from
E to F , endowed with the usual sup norm. In general, we will not explicitly say
that a polynomial is continuous since all polynomials considered will be assumed
to be continuous.

A mapping f : E −→ F is holomorphic if, for each a ∈ E, there are r > 0 and a

sequence (d̂mf(a))m of elements in P(mE;F ) such that f(x) =
∑∞

m=0
1
m! d̂

mf(a)(x−
a) uniformly for x ∈ Br(a). The space of all such mappings is denoted by H(E;F ).

We shall denote Pmf := 1
m! d̂

mf(0). For the general theory of homogeneous poly-
nomials and holomorphic functions we refer to [8] or [12].

A holomorphic mapping f ∈ H(E;F ) is said to be p−compact if for each x ∈ E
there is ε > 0 such that f(Bε(x)) is relatively p−compact in F . Let HKp

(E;F )
denote the space of all p−compact holomorphic mappings from E to F , and let
PKp

(mE;F ) := HKp
(E;F ) ∩ P(mE;F ).

By [2, Proposition 3.3], an m−homogeneous polynomial P is p−compact if and
only if P (BE) is relatively p−compact in F . In particular, for m = 1, the space
PKp

(1E;F ) coincides with the space Kp(E;F ) of all p−compact linear operators
from E to F . The norm

kp(T ) = inf{‖(xn)n‖p}
makes Kp a Banach ideal (see [6]), where the infimum is taken over all sequences
(xn)n ∈ �p(F ) such that T (BE) ⊂ p−conv{(xn)n}.

Given a Banach operator ideal [I, ‖ · ‖I ], the composition ideal of polynomials
I ◦ P consists of all homogeneous polynomials P between Banach spaces that can
be factored as P = u ◦ Q where Q is a homogeneous polynomial and u is a linear
operator belonging to I. For m ∈ N and Banach spaces E and F , the usual
composition norm ‖ · ‖I◦P of an m-homogeneous polynomial P ∈ I ◦ P(mE;F ) is
given by

(2.1) ‖P‖I◦P := inf{‖u‖I‖Q‖ : P = u ◦Q,Q ∈ P(mE;G), u ∈ I(G;F )}.

With this norm I ◦P becomes a Banach polynomial ideal (see [4, Proposition 3.7]).

By ⊗̂m,s
π E and ⊗̂m,s

πs
E we denote the m-fold completed symmetric tensor prod-

uct of E endowed with the projective norm π and the projective s-tensor norm πs,
respectively. The projective norm π is well-known (see e.g. [16]) and the projective
s-tensor norm πs is defined by

πs(z) = inf

⎧
⎨

⎩

k∑

j=1

|λj |‖xj‖m : k ∈ N, z =
k∑

j=1

λjxj ⊗ · · · ⊗ xj

⎫
⎬

⎭

for z ∈ ⊗m,sE (see [9]).
Given P ∈ P(mE;F ), by P̌ we mean the continuous symmetric m-linear map

associated to the polynomial P , that is, the unique symmetric continuous m-linear
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map P̌ ∈ L(mE;F ) fulfilling P̌ (x, . . . , x) = P (x) for all x ∈ E. Also,

PL : ⊗̂
m,s
π E −→ F, PL(x⊗ · · · ⊗ x) = P (x) and

PL : ⊗̂m,s
πs

E −→ F, PL(x⊗ · · · ⊗ x) = P (x)

denote the linearizations of P . If we consider the map δm : E −→ ⊗m,sE given
by δm(x) = x ⊗ · · · ⊗ x, it is clear that P = PL ◦ δm = PL ◦ δm. The map δm
is continuous when ⊗m,sE is endowed with either π or πs. It is well known that
‖PL‖ = ‖P‖, ‖PL‖ = ‖P̌‖ and that

(2.2) ‖P‖ ≤ ‖P̌‖ ≤ c(m,E)‖P‖,
where c(m,E) denotes the m−th polarization constant of E. For the general theory
of symmetric tensor products we refer to [9].

For 1 ≤ p < ∞, let [QN p, ν
Q
p ] denote the ideal of quasi p−nuclear operators.

Recall that a linear operator T : E → F is said to be quasi p−nuclear if jF ◦ T is
p−nuclear, where jF : F → �∞(BF∗) is the natural isometric embedding. It is well
known that T ∈ QN p(E;F ) if and only if there exists a sequence (x∗

n)n in �p(E
∗)

such that

‖T (x)‖ ≤ ‖(x∗
n(x))n‖p

for all x ∈ E. In this case,

νQp (T ) = inf ‖(x∗
n)n‖�p(E∗)

is the associated norm, making QN p into a Banach space. Here, the infimum is
taken over all sequences (x∗

n)n in �p(E
∗) fulfilling the above inequality.

3. The ideal of p−compact homogeneous polynomials

Given the Banach operator ideal [Kp, kp], we consider the composition ideal
of polynomials Kp ◦ P. An m-homogeneous polynomial P ∈ P(mE;F ) belongs
to Kp ◦ P(mE;F ) if there are a Banach space G, an m-homogeneous polynomial
Q ∈ P(mE;G) and an operator u ∈ Kp(G;F ) such that P = u◦Q. The composition
norm, as in (2.1) is given by

kp(P ) := inf{kp(u)‖Q‖ : P = u ◦Q,Q ∈ P(mE;G), u ∈ Kp(G;F )},
for P ∈ Kp◦P(mE;F ). If we now consider the space of all continuousm−multilinear
mappings L(mE;F ), the composition ideal of multilinear mappings Kp ◦ L can be
defined in a similar way.

We now obtain some characterizations of the ideal PKp
, which was defined in

Section 2. Among other things we show that it is indeed a composition ideal. In
fact, in (1) ⇐⇒ (2) below, we show that PKp

= Kp ◦ P.

Theorem 3.1. Let E and F be Banach spaces. The following are equivalent
for an m−homogeneous polynomial P : E −→ F :

(1) P ∈ PKp
(mE;F ).

(2) P ∈ Kp ◦ P(mE;F ).

(3) PL ∈ Kp(⊗̂
m,s

π E;F ).

(4) PL ∈ Kp(⊗̂
m,s
πs

E;F ).

(5) P̌ ∈ Kp ◦ L(mE;F ).
Moreover,

kp(P ) = kp(P
L) = inf{‖(xn)n‖�p(F ) : P (BE) ⊂ p− conv{(xn)n}.
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Proof. Since continuous m−homogeneous polynomials map bounded sets to
bounded sets, (2)⇒(1) is clear.

To prove (1)⇒(4) take P ∈ PKp
(mE;F ). Since B

̂⊗n,s
πs

E = Γ(δm(BE)) it follows

that

PL(Γ(δm(BE))) ⊂ Γ(PL(δm(BE))) = Γ(P (BE)).

Part (4) now follows from the fact that the closed absolutely convex hull of a
relatively p−compact set is p−compact.

All other implications and equality of norms follow from [4, Propositions 3.2
and 3.7]. �

By the ideal property, the composition of a p−compact homogeneous polyno-
mial with a continuous linear operator remains p−compact. Let us show a stronger
property: the composition of a p−compact m−homogeneous polynomial with any
n−homogeneous polynomial is p−compact.

Theorem 3.2. Let 1 ≤ p ≤ ∞. Any continuous homogeneous polynomial maps
relatively p−compact sets to relatively p−compact sets.

Proof. Let P ∈ P(mE;F ). Since P = PL ◦ δm and PL is continuous and
linear, it suffices to prove that δm maps relatively p−compact sets to relatively
p−compact sets.

Let (xn)n ∈ �p(E). Given x ∈ p−conv{(xn)n}, there exists a sequence (an)n ∈
B�p′ such that x =

∑∞
n=1 anxn. Then a calculation shows that

δm(x) = δm

( ∞∑

n=1

anxn

)

=

∞∑

n=1

anxn ⊗ · · · ⊗
∞∑

n=1

anxn

=

∞∑

i1,...,im=1

ai1 · · · aimxi1 ⊗ · · · ⊗ xim(3.1)

=
∑

i1≤···≤im

ai1 · · · aim
1

bi1,...,im

(
∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

)

(3.2)

Here bi1,...,im = k1! · · · kp! whenever the vector (i1, . . . , im) contains p different
entries, say ij1 , . . . , ijp and each ijl appears kl times in (i1, . . . , im). Notice that

k1 + · · · + kp = m. Indeed, in this case there are m!
k1!···kp!

summands in (3.1)

subindexed with the coordinates of (i1, . . . , im), whereas there are m! summands in
(3.2). Therefore, it is easy to conclude that bi1,...,im = k1! · · · kp!
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Notice that each
∑

σ∈Sm
xiσ(1)

⊗ · · · ⊗ xiσ(m)
is a symmetric tensor. Moreover,

∑

i1≤···≤im

[

π

(
1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

)]p

≤
∑

i1≤···≤im

1

bpi1,...,im
(m!)p‖xi1‖p · · · ‖xim‖p

≤ (m!)p
∞∑

i1=1

‖xi1‖p
⎛

⎝
∞∑

i2=i1

‖xi2‖p · · ·

⎛

⎝
∞∑

im=im−1

‖xim‖p
⎞

⎠ · · ·

⎞

⎠

≤ (m!)p‖(xn)n‖mp
p < ∞

Therefore the sequence (yn)n :=
(

1
bi1,...,im

∑
σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

)

i1≤...≤im
be-

longs to �p(⊗̂
m,s
π E).

On the other hand,

∑

i1≤···≤im

|ai1 · · · aim |p′
=

∞∑

i1=1

|ai1 |p
′

⎛

⎝
∞∑

i2=i1

|ai2 |p
′ · · ·

⎛

⎝
∞∑

im=im−1

|aim |p′

⎞

⎠ · · ·

⎞

⎠

≤ ‖(an)n‖mp′

p′ ≤ 1

Then δm(x) ∈ p−conv{(yn)n} and so δm(p−conv{(xn)n}) is relatively p−com-
pact. �

Corollary 3.3. Let E, F and G be Banach spaces and let 1 ≤ p ≤ ∞. If
P ∈ PKp

(mE;G) and Q ∈ P(nG;F ) then Q ◦ P ∈ PKp
(mnE;F ). Moreover,

kp(Q ◦ P ) ≤ ‖QL‖kp(P )n ≤ c(n,G)‖Q‖kp(P )n.

Proof. The first assertion is an easy consequence of Theorem 3.2. The second
inequality follows from (2.2). Let us prove that, under the assumptions,

kp(Q ◦ P ) ≤ ‖QL‖kp(P )n.

Let ε > 0. Let (xj)j ∈ �p(G) be such that P (BE) ⊂ p−conv{(xj)j} and kp(P )+ε ≥
‖(xj)j‖p. Following the proof and notation of Theorem 3.2 we have that

Q(P (BE)) ⊂ QL ◦ δn(p− conv{(xj)j})

⊂ QL

(
p− conv

{( 1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

)
i1≤...≤im

})

= p− conv
{(

QL

( 1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

))
i1≤...≤im

}
.
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Then,

kp(Q ◦ P ) ≤
∥
∥
(
QL

( 1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

))
i1≤...≤im

∥
∥
p

=

⎛

⎝
∑

i1≤···≤in

∥
∥QL

( 1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

)∥
∥p

⎞

⎠

1/p

≤ ‖QL‖

⎛

⎝
∑

i1≤···≤in

π
( 1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

)p

⎞

⎠

1/p

≤ ‖QL‖
( ∑

i1≤···≤in

1

bi1,...,im

∑

σ∈Sm

‖xiσ(1)
‖p · · · ‖xiσ(m)

‖p
)1/p

= ‖QL‖
( ∞∑

i1,...,in=1

‖xi1‖p · · · ‖xim‖p
)1/p

= ‖QL‖
( ∞∑

i1=1

‖xi1‖p
)1/p · · ·

( ∞∑

in=1

‖xin‖p
)1/p

= ‖QL‖‖(xi)i‖np
≤ ‖QL‖(kp(P ) + ε)n.

As ε is arbitrary the conclusion follows. �

Let us exploit once more the ideas and calculations used in the proof of Theorem
3.2. They now allow us to get the stability of the ideal Kp under the formation
of symmetric tensor products. If T : E → F is a continuous linear operator,
⊗mT denotes the continuous linear operator ⊗mT : ⊗̂m,s

πs
E → ⊗̂m,s

π F given by

⊗mT (
∑n

i=1 αixi ⊗ · · · ⊗ xi) =
∑n

i=1 αiT (xi)⊗ · · · ⊗ T (xi), which is then extended
by continuity to the completions.

Theorem 3.4. Let 1 ≤ p < ∞ and let E and F be Banach spaces. If T ∈
Kp(E;F ) then ⊗mT ∈ Kp(⊗̂

m,s
πs

E; ⊗̂m,s
π F ) for every m ∈ N.

Proof. By assumption there exists a sequence (xn)n ∈ �p(F ) such that

(3.3) T (BE) ⊂ p− conv{(xn)n}.

Since B⊗̂m,s
πs

E = Γ(δm(BE)), the linear map ⊗mT is continuous and the closed

absolutely convex hull of a relatively p−compact set is p−compact, it suffices to
prove that ⊗mT (δm(BE)) is relatively p−compact.
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Let x ∈ BE . By (3.3) we can write T (x) =
∑∞

i=1 aixi, for some sequence
(ai)i ∈ B�p′ . Then,

⊗mT (δm(BE)) = T (x)⊗ · · · ⊗ T (x)

=

∞∑

i=1

aixi ⊗ · · · ⊗
∞∑

i=1

aixi

=
∞∑

i1,...,im=1

ai1 · · · aimxi1 ⊗ · · · ⊗ xim

=
∑

i1≤···≤im

ai1 · · · aim
1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

,

where bi1,...,im are as in the proof of Theorem 3.2. The same calculations show that
the sequence

(yn)n :=

(
1

bi1,...,im

∑

σ∈Sm

xiσ(1)
⊗ · · · ⊗ xiσ(m)

)

i1≤...≤im

belongs to �p(⊗̂
m,s
π F ) and that (ai1 · · · aim)i1≤···≤im is in B�p′ . Then

⊗mT (δm(BE)) ∈ p− conv{(yn)n}.
Hence, ⊗mT is p−compact. �

The lack of associativity in the projective symmetric tensor product does not
permit us to define the tensor product ⊗nP of an m−homogeneous polynomials P
for n �= m. However, the next definition shows how to handle the case n = m. Let
P ∈ P(mE;F ). The m−tensor product of P is the m−homogeneous polynomial

⊗mP ∈ P(m⊗̂m,s
πs

E; ⊗̂m,s
π F ) given by ⊗mP = (⊗mPL) ◦ δm.

The commutativity of the diagram

⊗̂m,s
πs

E
⊗mP

��

δm
����

���
���

��
⊗̂m,s

π F

⊗̂m,s
πs

(⊗̂m,s
πs

E)

⊗mPL

�������������

makes clear that (⊗mP )L = ⊗mPL. Notice that ⊗̂m,s
πs

(⊗̂m,s
πs

E) and ⊗̂m2,s
πs

E may dif-

fer. Then, although P(m⊗̂m,s
πs

E; ⊗̂m,s
π F ) and L(⊗̂m,s

πs
(⊗̂m,s

πs
E); ⊗̂m,s

π F ) are isomet-

rically isomorphic via the canonical linearization, we cannot conclude that (⊗mP )L

belongs to L(⊗̂m2,s
πs

E; ⊗̂m,s
π F ).

The composition ideal I ◦ P is stable under the formation of symmetric tensor
products if ⊗mP belongs to I ◦ P(m⊗̂m,s

πs
E; ⊗̂m,s

π F ) for all P ∈ I ◦ P(mE;F ).
The next result shows that the stability by forming tensor products of an oper-

ator ideal can be transferred to the ideal of polynomials obtained by composition.

Proposition 3.5. If an operator ideal I is stable under the formation of sym-
metric tensor products then so is the composition ideal of polynomials I ◦ P.

Proof. Let P ∈ I ◦ P(mE;F ). By [4, Propositions 3.2] PL ∈ I(⊗̂m,s
πs

E;F ).
By the hypothesis and the comments above,

(⊗mP )L = ⊗mPL ∈ I(⊗̂m,s
πs

(⊗̂m,s
πs

E); ⊗̂m,s
π F ).
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Then ⊗mP ∈ I ◦ P(m⊗̂m,s
πs

E; ⊗̂m,s
π F ). �

From Theorem 3.4 and the above proposition, we have the following.

Corollary 3.6. If P ∈ PKp
(mE;F ) then ⊗mP ∈ PKp

(m⊗̂m,s
πs

E; ⊗̂m,s
π F ).

The next result solves a problem related to transposes that appeared in [2].
The notion of transpose of a compact operator was extended in [3, Proposition
3.2] to the case of an m−homogeneous polynomial P : E → F as follows. For
P ∈ P(mE;F ), the transpose of P is defined as the continuous linear operator
P ∗ : F ∗ → P(mE) given by P ∗(ϕ)(x) = ϕ(P (x)) (ϕ ∈ F ∗, x ∈ E). Among other
things, it was shown that P is compact if and only if P ∗ is compact. In [6] it
is proved that an operator T : E → F is p−compact if and only if it transpose
T ∗ : F ∗ → E∗ is quasi p−nuclear. In a similar way to the linear case, we get
the analogous result for polynomials in Theorem 3.8 below. In order to establish
this result we will make use of the following lemma, whose proof is based on [6,
Proposition 3.1].

Lemma 3.7. Let P ∈ P(mE;F ) and 1 ≤ p < ∞. Given (yn)n ∈ �wp (F ),

P (BE) ⊂ p− conv{(yn)n} if and only if ‖P ∗(y∗)‖ ≤ ‖(y∗(yn))n‖p for all y∗ ∈ F ∗.

Proof. Assume first that ‖P ∗(y∗)‖ ≤ ‖(y∗(yn))n‖p for all y∗ ∈ F ∗, but there
is x0 ∈ BE such that P (x0) does not belong to p− conv(yn). As p−conv{(yn)n} is
absolutely convex, by the Hahn-Banach theorem there is y∗ ∈ F ∗ and α > 0 such
that |y∗(P (x0))| > α and |y∗(y)| ≤ α for all y ∈ p−conv{(yn)n}. Then

α < |y∗(P (x0))| = |P ∗(y∗)(x0)|
≤ ‖P ∗(y∗)‖‖x0‖m

≤ ‖P ∗(y∗)‖
≤ ‖(y∗(yn))n‖p
≤ α,

a contradiction.
Assume now that P (BE) ⊂ p− conv{(yn)n}. Given ε > 0 and y∗ ∈ BF∗ choose

x ∈ BE such that

‖P ∗(y∗)‖ − ε

2
< |P ∗(y∗)(x)| = |y∗(P (x))|.

Take (αn)n ∈ B�p′ with

(3.4) ‖P (x)−
∞∑

n=1

αnyn‖ ≤ ε

2
.

Then,
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‖P ∗(y∗)‖ ≤ |y∗(P (x))|+ ε

2

≤ |y∗(P (x)−
∞∑

n=1

αnyn)|+ |y∗(
∞∑

n=1

αnyn)|+
ε

2

≤ ε

2
+

∞∑

n=1

|αn||y∗(yn)|+
ε

2

≤ ‖(αn)n‖p′‖(y∗(yn))n‖p + ε

≤ ‖(y∗(yn))n‖p + ε

Since ε is arbitrary the result follows. �

We observe that if p > 1, then in fact p− conv{(yn)n} = p − conv{(yn)n}.
Hence, the argument above is easier since (3.4) can be replaced by P (x) =

∑∞
n=1 αnyn.

Theorem 3.8. Let P ∈ P(mE;F ) and 1 ≤ p < ∞. Then P is p−compact if
and only if P ∗ is quasi p−nuclear. In this case, νQp (P ∗) ≤ kp(P ).

Proof. Assume first that P is p−compact. Given ε > 0, choose (yn)n ∈ �p(F )
such that P (BE) ⊂ p−conv{(yn)n} and kp(P ) + ε > ‖(yn)n‖p. By Lemma 3.7,

‖P ∗(y∗)‖ ≤ ‖(y∗(yn))n‖p
for all y∗ ∈ F ∗. Then P ∗ ∈ QNp(F

∗,P(mE)) and

νQp (P ∗) ≤ ‖(yn)n‖p < kp(P ) + ε.

Conversely, if P ∗ ∈ QN p(F
∗;P(mE)), by [6, Corollary 3.4] it follows that

P ∗∗ ∈ Kp(P(mE)∗, F ∗∗). Consider the evaluation map δ : E → P(mE)∗ given
by δx(P ) = P (x). Since δ maps BE into BP(mE)∗ , it follows that P ∗∗ ◦ δ(BE) is
relatively p−compact. On the other hand, P ∗∗ ◦ δ = jF ◦P , where jF : F → F ∗∗ is
the natural injection. Then, by [6, Corollary 3.6], P (BE) is relatively p−compact
in F . �
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