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Abstract. For a complex Banach space X , let Au(BX) be the Banach algebra of
all complex valued functions defined on BX that are uniformly continuous on BX and
holomorphic on the interior of BX , and let Awu(BX) be the Banach subalgebra consisting
of those functions in Au(BX) that are uniformly weakly continuous on BX . In this
paper we study a generalization of the notion of boundary for these algebras, originally
introduced by Globevnik. In particular, we characterize the boundaries of Awu(BX)
when the dual of X is separable. We exhibit some natural examples of Banach spaces
where this characterization provides concrete criteria for the boundary. We also show
that every non-reflexive Banach space X which is an M-ideal in its bidual cannot have
a minimal closed boundary for Au(BX).

1. Introduction

A classical result of Šilov ([30], [31, Theorem 7.4] or [17, Theorem I.4.2]) states that if
K is a compact Hausdorff topological space and A is a unital and separating subalgebra
of C(K) then there is a minimal closed subset M ⊂ K such that ‖f‖ = maxm∈M |f(m)|
for every f ∈ A. This set is known as the Šilov boundary for A.

Five years after Šilov’s paper, Bishop ([11, Theorem 1]) proved that if A is a separating
Banach algebra of continuous functions on a compact metrizable space K, then K has a
minimal subset M (not necessarily closed) satisfying the following condition:

For all f ∈ A, there exists m ∈ M such that |f(m)| = ‖f‖ (∗) .

In fact, M is the set of all peak points (see definition below) for A.
About twenty years after the classical results of Šilov and Bishop, Globevnik [21]

considered the problem of extending those results to the setting of certain subalgebras
A ⊂ Cb(Ω), where Ω is a topological space which is not necessarily compact, and where
Cb(Ω) denotes the space of continuous and bounded functions on Ω endowed with the
usual sup norm.

Following Globevnik, we make the following definition.
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Definition 1.1. We say that a subset Γ of a topological space Ω is a boundary for a
function algebra A ⊂ Cb(Ω) if

‖f‖ = sup{|f(x)| : x ∈ Γ}, for all f ∈ A.

Globevnik studied the boundaries for two important algebras of holomorphic functions
that are closed subalgebras of Cb(Ω) in case Ω is the closed unit ball of the complex Banach
space c0 (see [20, 21]). The pioneering work of Globevnik was followed by many authors
(see, e.g., [6], [27], [28], [13], [1], [2], [14], [4], [15] and [12]), who studied the existence
and characterization of such generalized boundaries. These authors considered algebras of
holomorphic mappings defined on the closed unit ball of concrete complex Banach spaces
which were, by and large, sequence spaces.

Our aim here is to study more general situations, and our results will contain many of
the cases already studied. We will be more specific below, after introducing some notation
and definitions.

Some classes of subsets of Ω play an essential role in the characterization of the bound-
aries for the subalgebras of Cb(Ω) that we are going to consider. We introduce these classes
of sets in a more general setting, since they will be important in the characterization of
the boundaries for other algebras of functions.

If Ω is a topological space, an element x0 ∈ Ω is a peak point for a subspace A of
Cb(Ω) if there exists a function f ∈ A such that

f(x0) = 1 and |f(x)| < 1, for all x ∈ Ω\{x0} .

If Ω is a metric space, then x0 ∈ Ω is a strong peak point for A if there exists a function
f ∈ A such that f(x0) = 1 and for all ε > 0, there exists δ > 0 such that

if d(x, x0) > ε, then |f(x)| < 1 − δ .

Throughout, X will be a complex Banach space with unit sphere, resp. closed unit ball,
denoted by SX , resp. BX . The dual of X will be written X ′. A point x ∈ SX is called a
complex extreme point of BX if

y ∈ X, ‖x + λy‖ ≤ 1 for all λ ∈ C, |λ| ≤ 1 implies that y = 0 .

Given a Banach space X, the set of all complex extreme points of BX will be denoted by
ExtCBX .

If A is a subalgebra of Cb(Ω) containing 1 and S∗
1 = {ϕ ∈ A′ : ϕ(1) = 1 = ‖ϕ‖}, then

to each x ∈ Ω corresponds the element δx ∈ S∗
1 , where δx(f) = f(x) for all f ∈ A. The

Choquet boundary for A is the set χA of all x ∈ Ω such that δx is an extreme point
of S∗

1 . Given a Banach subalgebra A of Cb(Ω), we denote by ρA and by ∂ A, respectively,
the set of peak points for A and the closed boundary contained in every closed boundary
for A. We remark that if Ω is a compact Hausdorff space, ∂ A exists and is called the
Šilov boundary for A. However, without the presence of compactness, ∂ A may fail to
exist.

In Section 2, we study boundaries for the algebra Au(BX) (resp. Awu(BX)) of uniformly
(resp. weakly uniformly) continuous functions on BX that are holomorphic on the interior
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of the ball. We give special attention to the case when X is the canonical predual of a
Lorentz sequence space, characterizing the complex extreme points of the unit ball of
the bidual of this space, and thereby obtaining precise information about boundaries for
Awu(BX).

In the final section, we provide a wide class of Banach spaces X for which there is no
minimal boundary for the algebra A∞(BX) of continuous and bounded functions on BX

that are holomorphic on the interior of BX . In particular, we show that this occurs when
X is a proper M-ideal in X ′′ and, after renorming, when X contains a complemented
copy of c0.

2. Boundaries for some algebras of holomorphic functions

Various types of boundaries have already been considered in [6] and [12]. For instance,
the set T of complex extreme points of Bℓ∞ is a closed boundary in the sense of Definition
1.1 for the larger algebra A∞(Bℓ∞), but there are also closed boundaries Γ ⊂ Bℓ∞ such
that Γ ∩ T = ∅. On the other hand, Sℓp

is the intersection of all closed boundaries for
A∞(Bℓp

), 1 ≤ p < ∞. In [12], the authors describe boundaries for Au(BX) for certain
spaces X whose bidual is a Marcinkiewicz space. They show that the set of complex
extreme points of BX is a non-empty closed set but that no minimal boundary for Au(BX)
exists.

For a complex Banach space X, let Awu(BX) be the Banach algebra of those complex
valued functions defined on the closed unit ball BX of X that are weakly uniformly
continuous on BX and holomorphic on the interior of BX , endowed with the sup norm
and let Aw∗u(BX′′) be the Banach algebra of all complex valued functions defined on
the closed unit ball BX′′ of X ′′ that are weakly star (uniformly) continuous on BX′′

and holomorphic on the interior of BX′′ , endowed with the sup norm. In this section
we are going to study the boundaries for the Banach algebra Awu(BX) in case X is a
complex Banach space whose dual is separable. We will present a characterization of the
boundaries for Awu(BX) in terms of the complex extreme points of BX′′ . Later we will
apply the general results to some special cases.

The space of all holomorphic functions from X into C that, when restricted to any
bounded subset of X, are uniformly weakly continuous will be denoted by Hwu(X), and the
space of all holomorphic functions from X ′′ into C that, when restricted to any bounded
subset of X ′′, are (uniformly) w∗-continuous will be denoted by Hw∗u(X

′′). For every
non-negative integer n, we will write Pwu(

nX) := P(nX) ∩ Hwu(X) and Pw∗u(
nX ′′) :=

P(nX ′′)∩Hw∗u(X
′′), where P(nX) is the space of continuous n-homogeneous polynomials

on X. Let Au(BX) denote the Banach algebra of all complex valued functions defined
on BX which are uniformly continuous on BX and holomorphic on the interior of BX

endowed with the sup norm. Let Hb(X) be the space of all holomorphic functions from
X into C that are bounded on bounded subsets of X. Since (BX′′ , w∗) is compact, the
boundaries Γ for Aw∗u(BX′′) (in the sense of Globevnik) that are w∗-closed are boundaries
for Aw∗u(BX′′) in the standard sense, that each f ∈ Aw∗u(BX′′) achieves its norm.

Proposition 2.1. The space of all functions f ∈ Awu(BX) such that f = g|BX for some
g ∈ Hwu(X) is dense in Awu(BX). Moreover, for each f ∈ Awu(BX) there exists a unique
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f̃ ∈ Aw∗u(BX′′) such that f̃ |BX = f. In addition, the extension mapping f → f̃ is an
algebraic and isometric isomorphism.

Proof. The proof of the density in Awu(BX) of the space of all functions f ∈ Awu(BX)
such that f = g|BX for some g ∈ Hwu(X) can be found in [18, Proposition 6.1]. Given
f ∈ Awu(BX), since f is uniformly w-continuous on BX , BX is w*-dense in BX′′ and

σ(X ′′, X ′)|X = σ(X, X ′), there exists a unique extension f̃ of f to BX′′ which is w∗-
continuous. By the above, there exists a sequence (gn) in Hwu(X) such that (gn|BX

)
converges to f in Awu(BX). For each n, take the unique g̃n ∈ Hw∗u(X

′′) that extends gn

([26, Theorem 8 and Remark 9]) . It is easy to check that (g̃n|BX′′) is a Cauchy net in
the Banach algebra Aw∗u(BX′′), and so it converges to a function g ∈ Aw∗u(BX′′) that

satisfies g = f̃ . The equality ‖ f̃ ‖ = ‖ f ‖ follows by density, as does the fact that the
extension is a homomorphism. This completes the proof. �

Remark 2.2. The above proposition shows that the Banach algebra Awu(BX) enjoys the
property that it is “essentially” the uniform algebra Aw∗u(BX′′). As such, questions about
boundaries for the algebra Awu(BX) transfer to similar, easier questions for Aw∗u(BX′′).
Thus, for instance, a subset Γ ⊂ BX is a boundary for Awu(BX) (in the sense of Definition
1.1) if and only if Γ is weak-star dense in the Šilov boundary ∂Aw∗u(BX′′).

Roughly speaking, this occurs because Awu(BX) consists of a relatively small set of
functions that have very good properties. On the other hand, except in certain very
unusual situations, the algebras Au(BX) and A∞(BX) are much larger and have a much
more complicated maximal ideal space (homomorphism) structure. Thus, for instance,
one can find a copy of βN\N in the fiber structure over interior points of Au(Bℓ2) [7], and
so the Šilov boundary of such algebras seems extremely difficult to determine.

Proposition 2.3. If X is a Banach space whose dual X ′ is separable and Γ is a subset

of BX, then Γ is a boundary for Awu(BX) if and only if Γ
w∗

contains all the complex
extreme points of BX′′ .

Proof. First, we recall that (BX′′ , w∗) is a compact Hausdorff topological space which is
also metrizable since X ′ is separable. Let P (BX′′) ⊂ C(BX′′) denote the Banach algebra
generated by the constants and the restrictions to BX

′′ of the elements of X ′. So, by
using a result due to Arenson [5], we have that ExtCBX′′ = χP (BX′′) and in view of [25,
Theorem 9.7.2], we have χP(BX′′) = ρP(BX′′). It is clear that ρP(BX′′) ⊂ ρAw∗u(BX′′)
and by [20, Theorem 4] we know that ρAw∗u(BX′′) ⊂ ExtCBX′′ . From this we deduce that
ρAw∗u(BX′′) = ExtCBX′′ . Moreover, by Bishop’s Theorem ([11, Theorem 1]), we know
that ρAw∗u(BX′′) is the minimal boundary for Aw∗u(BX′′).

We are ready to prove the stated result. If Γ is a boundary for Awu(BX), then in

view of Proposition 2.1 we have that Γ
w∗

is a closed boundary for Aw∗u(BX′′). Thus, it
contains the minimal boundary which in this case coincides with ExtCBX′′ . Conversely,

if ExtCBX′′ ⊂ Γ
w∗

, it is clear that Γ
w∗

is a boundary for Aw∗u(BX′′) and, by Proposition
2.1, Γ is also a boundary for Awu(BX). �
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Remark 2.4. It is not known if the separability of X ′ is essential for the necessity in this
result.

Now we will apply the previous result to some special cases. We sketch a proof of the
following fact, which will be used in these applications.

Proposition 2.5. Let X be a complex Banach space such that Pwu(
nX) = P(nX) for

every n ≥ 1. Then Au(BX) = Awu(BX).

Proof. We show that any f ∈ Au(BX) is weakly uniformly continuous on BX . For this,
let ε > 0 be arbitrary. Since f is uniformly continuous on BX , we can find s > 1 so

that sup‖x‖≤1 |f(x) − f(x
s
)| < ε

2
. Since fs(x) := f(x

s
) is holomorphic on s

◦

BX it can be

approximated uniformly on BX by its Taylor series
∑m

n=0 Pn. That is, sup‖x‖≤1 |fs(x) −
∑m

n=0 Pn(x)| < ε
2
. The proof is concluded by observing that each Pn is weakly uniformly

continuous on BX and that Awu(BX) is complete. �

It is well known that Propositions 2.3 and 2.5 apply to c0 . We can also apply Propo-
sition 2.3 to some other special cases.

We start by considering the space T ∗ defined by Tsirelson in [32]. The Tsirelson’s space
is a reflexive Banach space with Schauder basis. For all n ≥ 1 every element of P(nT ∗)
is weakly sequentially continuous (see [16, p. 121]) and, since T ∗ does not contain a copy
of ℓ1, by [22, Theorem 4] we have that Pwu(

nT ∗) = P(nT ∗) for every n ≥ 1. So, these
propositions apply and we deduce that a subset Γ of BT ∗ is a boundary for Au(BT ∗), if
and only if, Γ

w
contains all the complex extreme points of BT ∗ .

The definition of the Tsirelson-James space T ∗
J can be found in [8], where the authors

show that the T ∗
J satisfies the equation Pwu(

nT ∗
J ) = P(nT ∗

J ) for every n ≥ 1 and that T ∗
J

has a shrinking basis and so its dual is separable. So, Propositions 2.3 and 2.5 apply and

we have that a subset Γ of BT ∗

J
is a boundary for Au(BT ∗

J
) if and only if Γ

w∗

contains all
the complex extreme points of the closed unit ball of the bidual of T ∗

J .

The rest of this section is devoted to another application of Proposition 2.3. In order
to do so, we need to recall the definition of the Lorentz sequence space d(w, 1) and its
canonical pre-dual d∗(w, 1). For more details we refer to [29, 19].

Given a decreasing sequence w of positive real numbers satisfying w ∈ c0\ℓ1, the com-
plex Lorentz sequence space d(w, 1) is the space of all sequences x : N −→ C such that

sup
{

∞
∑

n=1

|x(σ(n))|wn : σ ∈ Π(N)
}

< +∞

(where Π(N) is the set of permutations on N), endowed with the norm given by

‖x‖ = sup
{

∞
∑

n=1

|x(σ(n))|wn : σ ∈ Π(N)
}

.

Moreover, if for each bounded complex sequence z we define
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φn(z) = sup
|J |=n

{(

n
∑

j=1

wj

)−1 ∑

j∈J

|zj|
}

(where |J | denotes the cardinality of the set J ⊂ N), we consider the space of the complex
sequences z such that limn→∞φn(z) = 0, endowed with the norm given by

‖z‖ = max
n∈N

φn(z) .

This space is denoted by d∗(w, 1), and it is a complex Banach space. It is easy to check
that d∗(w, 1) ⊂ c0 as a set and {ei} is a normalized Schauder basis in d∗(w, 1) (where
ei = (δji)

∞
j=1, for all i ∈ N). It is known that the space d∗(w, 1) is a predual of the

Lorentz sequence space d(w, 1) (see [29, 19]).
For a sequence x ∈ c0, we will denote by x∗ the decreasing rearrangement of x, de-

termined by the properties that it is a decreasing sequence of non-negative real numbers
such that

{x∗
n : n ∈ N} ⊂ {|xn| : n ∈ N} ⊂ {x∗

n : n ∈ N} ∪ {0},

and

|{n ∈ N : x∗
n = |xn0

|}| = |{n ∈ N : |xn| = |xn0
|}|, for all n0 ∈ {n ∈ N : xn 6= 0} .

It is known ([29, Lemma 8] and [19, Theorem 11]) that the dual d′(w, 1) of d(w, 1) is
the space of complex sequences z such that supn∈N φn(z) < ∞, endowed with the norm
given by

‖z‖ = sup
n∈N

φn(z) (z ∈ d′(w, 1)) .

We remark that d′(w, 1) is a subset of c0 and

‖z‖ = sup
n

{

(Wn)−1

n
∑

k=1

z∗k

}

, for all z ∈ d′(w, 1) ,

where Wn =
n
∑

j=1

wj for each positive integer n and W0 = 0.

Our first result shows that in case when X = d∗(w, 1) where w /∈ ℓp for all p ∈ N the
study of Au(Bd∗(w,1)) reduces to the study of the algebra Awu(Bd∗(w,1)).

Proposition 2.6. If w /∈ ℓp for all p ∈ N then Au(Bd∗(w,1)) = Awu(Bd∗(w,1)).

Proof. By using Examples III.1.4c, Corollaries III.3.7 and III.3.3 of [23], every nonre-
flexive subspace of d∗(w, 1) contains an isomorphic copy of c0. From this we infer that
d∗(w, 1) does not contain an isomorphic copy of ℓ1. Since d∗(w, 1) has the approximation
property, by [9, Proposition 2.12] and [10, Proposition 2.7] we have Pwsc(

nd∗(w, 1)) =

Pwu(
nd∗(w, 1)) = Pf(nd∗(w, 1)), where Pwsc(

nd∗(w, 1)) denotes the space of the complex
valued weakly sequentially continuous n-homogeneous polynomials on d∗(w, 1). More-
over by [24, Theorem 3.2] we have that P(nd∗(w, 1)) = Pwsc(

nd∗(w, 1)) for every n ≥ 2
whenever w /∈ ℓp for all p ∈ N, and it is clear that P(1d∗(w, 1)) = Pwsc(

1d∗(w, 1)) =
Pwu(

1d∗(w, 1)). Therefore we have that Pwu(
nd∗(w, 1)) = P(nd∗(w, 1)) for every n ≥ 1

and the result follows by using Proposition 2.5. �
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Let us observe that the condition Au(Bd∗(w,1)) = Awu(Bd∗(w,1)) clearly implies that
P(nd∗(w, 1)) = Pwu(

nd∗(w, 1)) for every n. In view of [24, Theorem 3.2], we deduce that
w /∈ ℓp for all p ≥ 1. Hence the above result is a characterization of when w ∈ ℓp.

Since the dual of d∗(w, 1) is separable, Proposition 2.3 can be used to characterize the
boundaries for Awu(Bd∗(w,1)). This characterization will be given after we describe the set
of complex extreme points of the unit ball of its bidual.

Lemma 2.7. Let X = d′(w, 1) and z = (zk) ∈ BX a non-negative, decreasing sequence of
real numbers. Then z is a complex extreme point of BX if and only if

lim inf
{

Wn −
n

∑

k=1

zk

}

= 0.

Proof. Assume first that (zk) is a decreasing sequence of non-negative real numbers sat-

isfying lim inf
{

Wn −
n
∑

k=1

zk

}

= 0. Let y = (yk) ∈ X be such that for all λ ∈ C, |λ| = 1,

(1) ‖z + λy‖ ≤ 1.

For every n ∈ N, let us denote

tn := |zn + yn| + |zn − yn| − 2zn, Zn :=
n

∑

k=1

zk, and Tn :=
n

∑

k=1

tk.

It is easy to verify that tk ≥ 0 for every k ∈ N, and consequently (Tn) is an increasing
sequence. Moreover, for every n ∈ N we have

Zn =
1

2

n
∑

n=1

2zk =
1

2

(

n
∑

n=1

|zk + yk| +
n

∑

n=1

|zk − yk|
)

−
1

2
Tn (by (1))

≤
1

2
(Wn + Wn) −

Tn

2
= Wn −

Tn

2
.

From the hypothesis lim inf {Wn − Zn} = 0 and from the fact that Tn

2
≤ Wn − Zn for

every n ∈ N we infer that (Tn) has a subsequence (Tnk
) that tends to 0. Consequently, as

(Tn) is increasing and non-negative, we get that Tn = 0 for every n ∈ N and hence tn = 0
for every n ∈ N. We then obtain that

2zn = |(zn + yn) + (zn − yn)| = |zn + yn| + |zn − yn|,

and from this equation and from the fact that (zn) is a sequence of positive real numbers
we infer that yn ∈ R for every n ∈ N. Now, if we repeat the same argument replacing tn
by

t′n = |zn + iyn| + |zn − iyn| − 2zn,

we obtain that iyn ∈ R for every n ∈ N. Since yn ∈ R and iyn ∈ R, it follows that yn = 0
for every n ∈ N, so y = 0. This proves that z is a complex extreme point of BX in case
that z is a non-negative decreasing sequence.
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Conversely, if z is a C-extreme point of BX , we will prove that lim inf
{

Wn−
n
∑

k=1

zk

}

= 0.

In case z ∈ c00 it is easy to see that z is not a complex extreme point. We argue by

contradiction. Suppose that lim inf
{

Wn −
n
∑

k=1

zk

}

6= 0. Since z ∈ BX and lim inf
{

Wn −

n
∑

k=1

zk

}

6= 0, it follows that lim inf
{

Wn −
n
∑

k=1

zk

}

> 0. By the assumption, the set {n ∈

N : φn(z) = 1} is finite. Let N := max{n ∈ N : φn(z) = 1} if {n ∈ N : φn(z) = 1} 6= ∅ and
N = 1 otherwise. As z /∈ c00 and z ∈ c0, given k0 > N we may choose k0 < k < l < m
as follows: k is the smallest natural number bigger than k0 such that zk0

> zk, l is the
smallest natural number bigger than k such that zk > zl and m is the smallest natural
number bigger than l such that zl > zm.

We set ε0 := 1
2
infn>N

{

Wn −
∑n

s=1 zs

}

, ε := min
{

zk0
− zk, zk − zl, zl − zm, ε0

}

, and

y := ε(ek − el). We will verify that

‖z ± y‖ ≤ 1, ‖z ± iy‖ ≤ 1 .

We first remark that our assumption implies that ε0 > 0 and so ε is positive and y 6= 0.
It is easily checked that the above conditions imply that z is not an extreme point of BX .

Clearly, (z + y)∗n = z∗n = zn for every n ≤ k0. So for every j ≤ k0, we have

j
∑

s=1

(z + y)∗s =

j
∑

s=1

zs ≤ Wj ,

while for every k0 < j,

j
∑

s=1

(z + y)∗s =

k0
∑

s=1

zs +

j
∑

s=k0+1

(z + y)∗s

≤
k0

∑

s=1

zs +

j
∑

s=k0+1

zs + ε

=

j
∑

s=1

zs + ε

≤ Wj .

Therefore, ‖z + y‖ ≤ 1 and the same argument also gives ‖z − y‖ ≤ 1.
Next, it is clear that

|(z + iy)k| = |zk + iε| ≤ zk + ε,

|(z + iy)l| = |zl − iε| ≤ zl + ε

and that for all n ≤ k0,

(z + iy)∗n = zn.

By the choice of m, for every n ≥ m and s ≤ m, we have

(z + iy)∗n = zn, for all n ≥ m
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and

z∗m = zm ≤ |zs + iys|, for all s ≤ m .

So, for all j ≤ k0,
j

∑

s=1

(z + iy)∗s =

j
∑

s=1

zs ≤ Wj.

For k0 ≤ j, by the choice of ε we have, as in the first case,

j
∑

s=1

(z + iy)∗s ≤ 2ε +

j
∑

s=1

zs ≤ 2ε0 +

j
∑

s=1

zs ≤ Wj .

This shows that ‖z + iy‖ ≤ 1. Using a similar argument, we get that ‖z − iy‖ ≤ 1, which
shows that z is not a C-extreme point of BX . �

Theorem 2.8. Let X = d′(w, 1). If z ∈ BX , then z is a complex extreme point of BX if
and only if lim inf {Wn −

∑n

k=1 z∗k} = 0.

Proof. Before starting the proof, we observe that given any infinite set M ⊂ N and an
arbitrary bijection σ between N and M , the subspace E ⊂ d′(w, 1) given by

(2) E := {x ∈ d′(w, 1) : xn = 0 for all n ∈ N\M}

is isometric to d′(w, 1), by the isometry T : E −→ d′(w, 1) given by

(3) T (x) = (xσ(n)) (x ∈ E).

Now assume that z ∈ BX and lim infn{Wn −
∑n

k=1 z∗k} = 0. If zk 6= 0 for every k,
it follows from Lemma 2.7 that z is a complex extreme point of the unit ball since the
set of complex extreme points of the unit ball is invariant under isometries. Otherwise
supp z 6= N and the assumption lim infn{Wn−

∑n

k=1 z∗k} = 0 implies that supp z is infinite.
Assume that ‖z + λy‖ ≤ 1 for some y ∈ d′(w, 1) and for every λ ∈ C with |λ| ≤ 1. For
M := supp z, consider the subspace E and the isometry T : E −→ d′(w, 1) defined as
in (2) and (3), respectively. Let PE : d′(w, 1) −→ E be the canonical projection from
d′(w, 1) onto E. It is easy to verify that for all λ ∈ C, |λ| ≤ 1,

‖PE(z + λy)‖ ≤ 1,

and so

‖TPE(z + λy)‖ ≤ 1.

Let us write z := TPE(z) and y := TPE(y). We know that

‖z + λy‖ ≤ 1,

for all λ ∈ C, |λ| ≤ 1 . Since zσ(n) 6= 0 for every n, we can apply the previous argument to
z to deduce that y = 0, that is, yσ(n) = 0 for every n. This means that ym = 0 for every
m ∈ M . We will check that y = 0. Assume that yk 6= 0 for some k ∈ N\M . Since w ∈ c0,
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there exists an integer N such that wm < |yk| for every m ≥ N. Let us fix ε < |yk|−wN+1.
By the assumption, lim inf {Wn −

∑n
k=1 z∗k} = 0, and hence for some n > N we have

Wn −
n

∑

k=1

z∗k < ε .

So, there is J ⊂ M with |J | = n such that Wn −
∑

i∈J |zi| < ε. From this we infer that

Wn+1 = Wn + wn+1 <
∑

i∈J

|zi| + ε + wn+1 <

<
∑

i∈J

|zi| + |yk| − wN+1 + wn+1 ≤

∑

i∈J

|zi| + |yk|

and so, since J ⊂ M and k /∈ M , ‖z + y‖ > 1. Since this is impossible, we have proved
that y = 0 and that z is a complex extreme point of BX .

Conversely, if z is a C-extreme point of BX , we prove that lim inf
{

Wn −
n
∑

k=1

z∗k

}

= 0.

In case z ∈ c00 it is easy to see that z is not a complex extreme point. We remark that
|z| := (|zk|) is a complex extreme point of BX whenever z is a complex extreme point
of BX . Since z /∈ c00 we have that M := supp z is infinite. Let E be the subspace
defined in (2) and T the isometry given in (3). Hence PE(|z|) is a complex extreme point
of BE . Consequently TPE(|z|) is a complex extreme point of BX . By Lemma 2.7, we
infer that lim inf {Wn −

∑n

k=1 |zσ(k)|} = 0, where σ : N −→ M is a mapping such that
|zσ(n)| = z∗(n) for every n. This completes the proof since the previous condition implies
that lim inf {Wn −

∑n
k=1 z∗k} = 0. �

Proposition 2.9. If X = d∗(w, 1), we have BX′′ = ExtC(BX′′)
w∗

.

Proof. Let us fix x′′ ∈ BX′′ \{0} and choose any n0 ∈ N such that Pn0
x′′ 6= 0, where Pn0

is
the natural projection. Let m be the number of elements in the set I = {k ≤ n0 : |x′′

k| 6=
0}. As

lim
k

{Wm+k+1 − Wm+k

k + 1 − k

}

= lim
k
{wm+k+1} = 0,

so

lim
k

{Wm+k

k

}

= 0 .

Hence

lim
k

{1

k

(

Wm+k −
n0
∑

i=1

|x′′
i |

)}

= 0 .

Therefore, we can choose an integer k such that

a :=
1

k

(

Wm+k −
n0

∑

i=1

|x′′
i |

)

< min{|x′′
i | : i ∈ I}.
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We remark that x′′ ∈ BX′′ implies
n0
∑

i=1

|x′′
i | =

∑

i∈I
|x′′

i | ≤ Wm < Wm+k for every k ∈ N

and so a > 0. Let

y := Pn0
x′′ + a

n0+k
∑

i=n0+1

ei .

We claim that y ∈ BX and sup|J |=m+k

∑

j∈J

|yj| = Wm+k i.e, φm+k(y) = 1. To see this,

we first remark that

‖y‖ = sup
1≤p≤m+k

φp(y)

since y has only m + k non-zero coordinates.
As a < min{|x′′

i | : i ∈ I}, we have

y∗
m ∈ {|x′′

i | : i ∈ I}

and so

y∗
m > a = |yn0+1| = ... = |yn0+k| .

Hence, for all 1 ≤ p ≤ m we have

max
|J |=p

∑

j∈J

|yj| ≤ max
|J |=p

∑

j∈J

|x′′
j | ≤ Wp .

For p = m + k we have

sup
|J |=m+k

∑

j∈J

|yj| =

n0
∑

i=1

|x′′
i | + ka =

n0
∑

i=1

|x′′
i | + Wm+k −

n0
∑

i=1

|x′′
i | = Wm+k.

Finally, let p = m + r with 1 ≤ r < k. Clearly

k Wm+r − r Wm+k = (k − r) Wm + (k − r)

m+r
∑

i=m+1

wi − r

m+k
∑

i=m+r+1

wi.

As w is a decreasing sequence of positive real numbers we have

min{wi : m + 1 ≤ i ≤ m + r} = wm+r ≥ wm+r+1 = max{wi : m + r + 1 ≤ i ≤ m + k},

and so

(k − r)

m+r
∑

i=m+1

wi − r

m+k
∑

i=m+r+1

wi ≥ (k − r)rwm+r − r(k − r)wm+r+1 ≥ 0 .

Consequently,

k Wm+r − r Wm+k ≥ (k − r) Wm
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and so

Wm+r ≥
1

k

(

(k − r)Wm + rWm+k

)

≥
1

k

(

(k − r)

n0
∑

i=1

|x′′
i | + rWm+k

)

=

n0
∑

i=1

|x′′
i | + r

1

k

(

Wm+k −
n0
∑

i=1

|x′′
i |

)

=

n0
∑

i=1

|x′′
i | + ra

= max
|J |=m+r

∑

j∈J

|yj|.

This completes the proof that y ∈ BX and φm+k(y) = 1.

Summarizing, we have just proved that there exist k1 ∈ N and a positive real number
a1 such that

y(1) = Pn0
x′′ + a1

n0+k1
∑

i=n0+1

ei

satisfies y(1) ∈ BX and φm+k(y
(1)) = 1. We recall that n0 is any nonnegative integer

satisfying Pn0
(x

′′

) 6= 0. Continuing the process, we obtain an increasing sequence (kj) ⊂ N

and a sequence (aj) ⊂ c0 such that aj > 0 for all j ∈ N so that the element

y(j) = Pn0
x′′ + a1

n+k1
∑

i=n+1

ei + a2

n+k2
∑

i=n+k1+1

ei + ... + aj

n+kj
∑

i=n+kj−1+1

ei

satisfies

y(j) ∈ BX and φm+ki
(y(j)) = 1 for all 1 ≤ i ≤ j.

It is easy to check that the weak∗-limitz
′′

of (y(j)) is a complex extreme point of BX
′′ in

view of Theorem 2.8 and that Pn0
(z

′′

) = Pn0
(x′′). Now, we can repeat this construction in

order to get a sequence (z
′′

n)∞n=1 ⊂ ExtC(BX′′) such that Pn(z′′n) = Pn(x′′) for every n large

enough. Clearly (z
′′

n)
w∗

→ x
′′

and this completes the proof of BX′′ = ExtC(BX′′)
w∗

. �

Corollary 2.10. A subset Γ of Bd∗(w,1) is a boundary for Awu(Bd∗(w,1)) if and only if

Bd′(w,1) = Γ
w∗

. As a consequence, if w /∈ ℓp for every 1 ≤ p < ∞, then Γ is a boundary

for Au(Bd′(w,1)) if and only if Bd′(w,1) = Γ
w∗

.

Proof. Since d(w, 1) is a separable Banach space, the result follows by using Proposition
2.3 and Proposition 2.9. The second statement follows immediately from Proposition
2.6. �
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One way of summarizing a number of these results is to say that Γ is a boundary for
Awu(BX) if and only if Γ is w∗-dense in the set of complex extreme points of BX

′′ . As we
have already noted, the set of complex extreme points of Bℓ∞ is itself w∗-closed, whereas
Proposition 2.9 shows that the complex extreme points can also be w∗-dense in BX

′′ in
some cases.

3. On the Existence of the Minimal Closed Boundary for A∞(BX)

There have been a number of contributions to the study of the existence of the minimal
closed boundaries for larger algebras of holomorphic functions defined on the unit ball of
a complex Banach space (see [6, 21, 27, 28, 13, 1, 14, 2, 4, 3]). For instance, we know that
for X = c0, d∗(w, 1), K(H) and C(K) (when H is an infinite dimensional Hilbert space
and K is an infinite compact space), there is no minimal closed boundary for Au(BX).
In this section we will give a more general result that includes almost all the previous
cases. We will concentrate on the Banach algebra A∞(BX) of all complex valued functions
defined on BX that are continuous and bounded on BX and holomorphic on the interior
◦

BX of BX . Clearly Awu(BX) ⊂ Au(BX) ⊂ A∞(BX).

In order to do this, it will be convenient to introduce the following property. We say
that a Banach space has property (∗) provided it satisfies the following condition:

There is 0 < r < 1 such that for every x1, x2 ∈ BX and ε > 0, there are y1, y2 ∈ BX

and u ∈ X satisfying ‖yi − xi‖ < ε, i = 1, 2, dist (u, Lin (y1, y2)) ≥ r, and ‖yi +λu‖ ≤
1, i = 1, 2, for all λ ∈ T , where T denotes the set {λ ∈ C : |λ| = 1}.

It is easily checked that the spaces c0, d∗(w, 1) and K(H), for an infinite-dimensional
complex Hilbert space H satisfy (∗), and so some of the results appearing in [2] can be
deduced from the following theorem.

Theorem 3.1. If X is a complex Banach space that satisfies the above property (∗), then
every closed boundary for A∞(BX) contains a proper closed subset which is a boundary
for A∞(BX).

Proof. Given a positive number ε, we first choose 0 < δ < min
{

1 − r, r
4

}

and then let

R > 0 satisfy δ+1−r
R

< ε, where r ∈ (0, 1) is the real number in the definition of (∗).
Assume that Γ is a boundary for A∞(BX) and let x1 ∈ Γ. Given h ∈ A∞(BX), there is
x2 ∈ BX such that |h(x2)| > ‖h‖ − δ

R
. By using the continuity of h and the assumption

on X, there are elements yi ∈ BX (i = 1, 2) and u ∈ X such that ‖yi−xi‖ < δ, |h(y2)| >
‖h‖ − δ

R
, ‖yi + λu‖ ≤ 1, for all λ ∈ T, and dist (u, Lin (y1, y2)) ≥ r .

We choose u′
0 ∈ SX′ such that u′

0(yi) = 0 for i = 1, 2 and |u′
0(u)| ≥ r. Let λ0 be a

complex number with |λ0| = 1, chosen so that

(4) |h(y2 + λ0u)| ≥ |h(y2)| .

Now we choose µ0 ∈ C satisfying |µ0| = 1 and

|Rh(y2 + λ0u) + µ0u
′
0(λ0u)| = |Rh(y2 + λ0u)| + |u′

0(u)| .
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We define the function g by

g(x) := Rh(x) + µ0u
′
0(x) (x ∈ BX) .

Since h ∈ A∞(BX), g also belongs to A∞(BX) and we have

‖g‖ ≥ |g(y2 + λ0u)|

= |Rh(y2 + λ0u)| + |u′
0(u)| (by (4))

≥ |Rh(y2)| + |u′
0(u)| (by the choice of u′

0 and y2)

> R‖h‖ − δ + r .

Since Γ is a boundary for A∞(BX), there is v ∈ Γ such that |g(v)| > R‖h‖ − δ + r.
Hence we have

(5) R‖h‖ + |u′
0(v)| ≥ R|h(v)| + |u′

0(v)| ≥ |g(v)| > R‖h‖ − δ + r ,

and so,

|u′
0(v)| > r − δ .

By the choice of y1 and δ we have

‖v − x1‖ ≥ ‖v − y1‖ − ‖y1 − x1‖

> |u′
0(v − y1)| − δ

= |u′
0(v)| − δ

≥ r − 2δ >
r

2
.

In view of (5) we also obtain

R|h(v)| + 1 ≥ R|h(v)| + |u′
0(v)| > R‖h‖ − δ + r

and so

|h(v)| > ‖h‖ +
−δ + r − 1

R
> ‖h‖ − ε .

We have proved that Γ\(x1 + r
2
BX) is also a boundary for A∞(BX). �

The following is a consequence of the above proof.

Corollary 3.2. Let X be a complex Banach space that satisfies the above property (∗).
There is a positive number s satisfying that if Γ ⊂ BX is a boundary for A∞(BX) and

x1 ∈ Γ, then Γ\(x1 + s
◦

BX) is also a boundary. Therefore, there is no minimal closed
boundary for A∞(BX). The same result also holds for every subalgebra A ⊂ A∞(BX)
that contains the 1-degree polynomials on X.

We now provide a wider class where the same result can be applied.

Definition 3.3. ([23, Definition II.4.1]) A Banach space is said to have the intersection
property if for every ε > 0, there is a finite set G ⊂ SX and δ > 0 such that whenever
x ∈ X is such that ‖z ± x‖ ≤ 1 + δ for all z ∈ G, then ‖x‖ ≤ ε.
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One large class having the intersection property are those Banach spaces having the
Radon-Nikodým property (see [23, Proposition II.4.2]). However, as we will see, spaces
that lack the intersection property are also of interest.

The following implication is easy to verify and will be useful in the proof of the next
lemma.

(6) If ‖x ± z‖ ≤ 1, then ‖x ± tz‖ ≤ 1 for all t ∈ [−1, 1]

Lemma 3.4. A Banach space X lacks the intersection property if and only if for some

r ∈ (0, 1) the following property holds: For every finite set F ⊂
◦

BX there is some u ∈
X, ‖u‖ > r, such that for all z ∈ F,

‖z ± u‖ ≤ 1.

Proof. If X fails the intersection property, then for some 0 < ε0 < 1
2

we have that for any
finite subset G of SX and δ > 0 there exists x ∈ X satisfying ‖x‖ > ε0 and ‖z±x‖ ≤ 1+δ,

for all z ∈ G . Take F ⊂
◦

BX , finite and let G :=
{

z
‖z‖

: z ∈ F, z 6= 0
}

⊂ SX . Choose

s := max{‖z‖ : z ∈ F} < 1 and apply the hypothesis to G and 0 < δ < min{1
s
− 1, 1} to

get an element x ∈ X, ‖x‖ > ε0, such that for all 0 6= z ∈ F,
∥

∥

∥

z

‖z‖
± x

∥

∥

∥
≤ 1 + δ.

Now it suffices to take u = x
1+δ

and r := ε0

2
< ε0

1+δ
and use (6) to show that for all

0 6= z ∈ F,
‖z ± u‖ ≤ 1.

We can clearly take ‖u‖ ≤ 1, so, if 0 ∈ F , the above inequality is also satisfied for z = 0.

Conversely, suppose that for some r > 0 we have that given any finite subset F of
◦

BX ,
there exists u ∈ X, ‖u‖ > r, that satisfies

‖z ± u‖ ≤ 1,

for all z ∈ F .

Given a finite subset G ⊂ SX and δ > 0, take F := G
1+δ

⊂
◦

BX . By hypothesis, there is

u ∈ X, ‖u‖ > r, such that for all x ∈ G,
∥

∥

∥

x

1 + δ
± u

∥

∥

∥
≤ 1 .

So, for all x ∈ G,
‖x ± u(1 + δ)‖ ≤ 1 + δ,

and ‖u(1 + δ)‖ ≥ r(1 + δ) > r. Hence X does not have the intersection property. �

We now give a broad class of Banach spaces to which Theorem 3.1 can be applied. In
order to do this, we will relate the intersection property and property (∗).

Proposition 3.5. If X is a Banach space not satisfying the intersection property, then
X satisfies property (∗).
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Proof. Since X does not have the intersection property, there is r > 0 satisfying the
condition stated in the previous lemma, so we know that r < 1. Now, if x1, x2 ∈ BX and

ε > 0, we choose η > 0 such that 2η < min
{

ε,
r

4

}

and let zi := 1
1+η

xi (i = 1, 2). Hence

there is u ∈ X such that

(7) r < ‖u‖ and ‖z ± u‖ ≤ 1

for all z ∈ F, where F ⊂ 1
1+η

BM is a finite set such that

(8) {z1, z2} ⊂ F and
1

1 + η
BM ⊂ F + ηBX ,

and M := Lin {x1, x2}.
For each λ ∈ T, λzi ∈

1
1+η

BM (i = 1, 2) and so for some z ∈ F, ‖λzi − z‖ ≤ η. Then

(9) ‖λzi + u‖ ≤ ‖λzi − z‖ + ‖z + u‖ ≤ 1 + η .

If we take yi := zi

1+η
= xi

(1+η)2
(i = 1, 2) and v := u

1+η
, we also obtain that

‖yi − xi‖ ≤ ‖yi − zi‖ + ‖zi − xi‖ ≤ 2η < ε

and we deduce from inequality (9) that

‖λyi + v‖ ≤ 1,

for all λ ∈ T .
Let us write d := dist (u, M). There is m0 ∈ BM such that ‖u − m0‖ = d. If m0 = 0,

then d = ‖u‖ > r. Otherwise, by using (8) and (7) we have
∥

∥

∥

m0

‖m0‖
± u

∥

∥

∥
≤ 1 + 2η. If

m′
0 ∈ SX′ satisfies m′

0(m0) = ‖m0‖, then |Re m′
0(u)| ≤ 2η.

If m′
0 ∈ SX′ satisfies m′

0(m0) = ‖m0‖, then |Re m′
0(u)| ≤ 2η.

From the inequality
∣

∣‖m0‖ − m′
0(u)

∣

∣= |m′
0(m0 − u)‖ ≤ ‖m0 − u‖ = d

we obtain

‖m0‖ − d ≤ |Re m′
0(u)| ≤ 2η,

that is,

‖m0‖ − 2η ≤ d .

If ‖m0‖ <
r

2
, then

d = ‖u − m0‖ ≥ ‖u‖ − ‖m0‖ > r −
r

2
=

r

2
.

Otherwise

d ≥ ‖m0‖ − 2η ≥
r

2
− 2η >

r

4
.

In any case we obtain d > r
4

and so dist (v, M) > r
4(1+η)

> r
5
.

�
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We recall that a Banach space X is an M-ideal in its bidual if there is a decomposition
X ′′′ = X ′ ⊕1 X⊥, that is,

‖x′ + x′′′‖ = ‖x′‖ + ‖x′′′‖,

for all x′ ∈ X ′, x′′′ ∈ X ′′′ ∩X⊥ . X is said to be a proper M-ideal in X ′′ if it is an M-ideal
in X ′′ and it is not reflexive.

Corollary 3.6. Assume that X is a complex Banach space which is a proper M-ideal in
X ′′ and let A be an arbitrary subalgebra of A∞(BX) containing the 1-degree polynomials
on X. Then every closed boundary for A contains a proper closed subset which is a
boundary for A. In particular, there is no minimal closed boundary for A.

Proof. It is known that a proper M-ideal in its bidual does not have the intersection
property [23, Theorem II.4.4], so in view of Proposition 3.5, it satisfies property (∗).
By Corollary 3.2, there is no minimal closed boundary for A for every subalgebra A of
A∞(BX) containing the 1-degree polynomials on X. �

Since d∗(w, 1) is a proper M-ideal in its bidual (see [33, Proposition 2.2] or [23, Examples
III.1.4c]), we deduce that there is no minimal closed boundary for Awu(Bd∗(w,1)).

The next result is due to Whitfield and Zizler in the real case and it provides a class
of spaces to which the last theorem can also be applied. The same argument used in the
proof of [34, Theorem 1.c] also works for the complex case.

Proposition 3.7. If (X, ‖ ‖) is a Banach space that contains a complemented copy of
c0, then there exists an equivalent norm |‖ |‖ in X such that (X, |‖ |‖) has the following
property. If K is a compact subset of the closed unit ball B1 of (X, |‖ |‖) and 0 < s < 1
then there exists u ∈ X such that |‖u|‖ > s and K + u ⊂ B1. Hence (X, |‖ |‖) satisfies
property (∗).

As a consequence of Proposition 3.7 and Corollary 3.2 we obtain the following result:

Corollary 3.8. If (X, ‖ ‖) contains a complemented copy of c0, there exists an equivalent
norm |‖ |‖ in X so that if B1 is the closed unit ball of (X, |‖ |‖) then every closed boundary
for A∞(B1) contains a proper closed subset which is a boundary for A∞(B1). In fact, there
is a positive number r such that if Γ ⊂ B1 is a boundary for A∞(B1) and z ∈ Γ, then

Γ\(z + r
◦

B1) is also a boundary. Indeed, in this case, r can be taken arbitrarily close to 1.
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