NAME.....

15 20 15 10 52 112 max. A B C D M Total

Intuitive Calculus 11012 Examination 2 **A**March 11, 2010 Richard M. Aron

Directions: Please answer questions A, B, C, and D in the space provided. Please write extremely neatly. The rest of the Examination questions are to be answered on the "scan-tron" papers, but you must show your work on this paper—even for the "scan-tron" part. Good luck!

Product Rule: if $p(x) = f(x) \cdot g(x)$, then $p'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$. Quotient Rule: if $q(x) = \frac{f(x)}{g(x)}$, then $q'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$.

A. Let $f(x) = x^4 - 4x^3 + 4x^2$ on the interval [0,3].

(a). Find all critical numbers of f(x). $4 \times 3 - 12 \times 2 + 8 \times 3 + 4 \times (1 \times 2 - 3 \times 4 \times 1) = 0$ $(x - 3) \times 3 + 4 \times 3 = 0$

(b). Classify the critical numbers found in part (a). (That is, explain whether a particular critical number corresponds to a relative maximum or a relative minimum of f(x).)

mum or a relative minimum of
$$f(x)$$
.)

$$y'' = 12 \times 2 - 2 \times 2 \times 2 = 4 (3 \times 2 - 6 \times 2).$$

$$y''(0) = 9 > 0 \quad min$$

$$y''(1) = -4 < 0 \quad max$$

$$y''(2) = 8 > 0 \quad min.$$

(c). Find the absolute extreme values of f(x) on the closed interval [0,3].

$$y(0) = 0$$

 $y(1) = 4$
 $y(2) = 0$
 $y(3) = 81 - 108 + 36 = 9$

B. A car dealer can sell four cars per day at a price of \$12,000. She estimates that for each \$200 price reduction, she can sell two more cars per day. What price should she charge to maximize her revenue R(x)? How many cars will she sell each day? [Hint: Let x = the number of \$200 price reductions.]

Step 1. Let p(x) be the price she charges for a car, after x price reductions. $p(\gamma) = 12000 - 200 \gamma$

Step 2. Let q(x) be the quantity of cars she sells in a day, after x price reductions.

Step 3. Calculate R(x) and the number of cars that are sold.

$$R(x) = (12000 - 200x)(4+2x)$$
= 48000 + 23200 x - 400 x²

Step 4. Maximize R(x), explaining why your answer gives a maximum. $R'(x) = 23200 - 800x , R'' = -800 < 0, mc_x.$ $x = \frac{232}{3} = 29$

Step 5. What price should she charge to maximize her revenue? How many cars will she sell each day?

y cars will she sell each day?
$$p(x) = 12000 - 200(29) = 6200$$

$$q(x) = 4 + 29 - 2 = 62$$

C. On the axes below, draw an extremely clear, careful sketch of the graph of a function f which has the following properties: f is continuous and differentiable, f(0) = 0, f'(x) > 0 for $x \in (0,2)$, f is concave down on (-2,0) and f''(x) > 0 on (0,2). Indicate any relative maxima or minima, and any inflection points.

D.(a). Evaluate.
$$f'$$
 and f'' for $f(x) = 12\sqrt{x^3} - 9\sqrt[3]{x}$.
(a). $f'(x) =: \frac{3l_2}{\sqrt{2} - 9\sqrt{3}} = \frac{9\sqrt{3}}{\sqrt{2}}$.

(b).
$$f''(x) =:$$
 $9 \times \frac{1}{2} + 3 \times \frac{5}{3}$

The rest of this Examination is to be done using the "scantron" sheet. Please write your work on this paper.

1. Let $f(x) = (2x+1)^{10}$. Then f'(x) =:

- (a). $10(2x+1)^9$. (b) $20(2x+1)^9$.
 - (c). $10(2x)^9$.
 - (d). None of the above answers.

2. Let y = f(x) be a differentiable function on [-2,2], whose graph is given below.

Which of the following is the sign diagram for f'?

(a)

(b)

- 3. Let $y = f(x) = 2x^3 3x^2 12x$, where x is in the closed interval [-2,4]. Then the smallest and largest values that the function attains in this interval are:
- (a). 0 and ∞ .
- (b). -20 and 7.
- (c). $-\infty$ and ∞ .
- (d). -20 and 32.
- 4. The point x = 0 is where the function $y = f(x) = x^4 + 6$ has:
- (a), a relative maximum.
- (b). a relative minimum.
- (c). neither a relative maximum nor a relative minimum.
- (d). Answer cannot be determined from the given information.
- 5. Let y = f(x) be a function such that f'(x) has the following sign diagram.

Which of the following is true? f has:

- (a) a relative maximum at -1.
- (b).) a relative maximum at -1 and a relative minimum at 0.
- (c). relative maxima at -1 and at 1.
- (d). a relative minimum at -1 and a relative maximum at 1.

6

6. The derivative of $y = f(x) = (x^{10} + 3x^5 - 2x^3 - 4)^6$ is: (a). $10(x^9 + 15x^4 - 6x)^5$. (b). $6(10x^9 + 15x^2 - 6x)^5$. (c) $6(x^{10} + 3x^5 = 6x)^5(10x^9 + 15x^4 - 6x)$. (d). $10x^9 + 15x^4 - 6x^2$.

7. The critical numbers for the function $f(x) = x^3 - 9x$ are:

(a). 0, 3, and -3.

(b). $\sqrt{3}, -\sqrt{3}$.

(c). 0.

- (d). 3 and -3.
- 8. Which are the points of inflection in the following graph?

- (a). Only -1 and 1.
- (b). Only 0 and 1.

(c). Only 0.

- (d). There are no inflection points in this graph.
- 9. Let f have critical points at -1, 0, and 2. If $f''(x) = x^4 16x^2 + 9,$ then f has a relative maximum at:
- (a). 0 and 2.
- (b).) -1 and 2.

(c). 0.

(d). None of the above answers.

10. As
$$x \to -\infty$$
, the function $f(x) = \frac{3x^2 + 15x - 10}{4x^2 - 7}$ tends to (a). $10/7$. (b) $3/4$. (c). 3.

(d). -10.

11. Let

$$y = f(x) = \frac{(x^2 + x)^3}{x + 2}.$$

Then
$$f'(x) =$$

$$\frac{(x+2)[3(x^2+x)^2(2x+1)]-(x^2+x)^3}{(x+2)^2}.$$

(b).

$$3(x^2+x)^2(2x+1).$$

(c).

$$\frac{(x^2+x)^3 - (x+2)[3(x^2+x)^2(2x+1)]}{(x+2)^2}.$$

(d). None of the above answers

Use the following information for the next two problems: A supermarket expects to sell 10,000 boxes of a certain pet food in a year. The supermarket owner must pay \$3.00 for each box. There is a \$10.00 delivery charge for each delivery from the manufacturer, and there is a \$2.00 annual storage charge per box of pet food. Let x be the number of boxes of pet food that the supermarket owner purchases from the manufacturer each time.

- 12. What are the annual storage costs for the dealer, in dollars?
- (a). 3x.
- (b). 3x + 10.
- (c). 2x.
- (d), x.
- 13. What does it cost, in dollars, the supermarket owner each time she places an order for this pet food?
- (a) 3x.
- (b).)3x + 10.
- (c). 5x.
- (d). 5x + 10.

Directions: Please answer questions A, B, C, and D in the space provided. Please write extremely neatly. The rest of the Examination questions are to be answered on the "scan-tron" papers, but you must show your work on this paper—even for the "scan-tron" part. Good luck!

Product Rule: if $p(x) = f(x) \cdot g(x)$, then $p'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$. Quotient Rule: if $q(x) = \frac{f(x)}{g(x)}$, then $q'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$.

(b). Classify the critical numbers found in part (a). (That is, explain whether a particular critical number corresponds to a relative maximum or a relative minimum of f(x).)

$$y'' = 12x^2 + 24x + 8$$

 $y''(0) = 8$, min
 $y''(-1) = -4$, may
 $y''(-2) = 8$, min

(c). Find the absolute extreme values of f(x) on the closed interval [-2,1]. $y = x^4 + 4x^3 + 4x^2$

$$y(-1) = 0$$

 $y(-1) = 1$
 $y(0) = 0$
 $y(1) = 9$

B. A car dealer can sell four cars per day at a price of \$24,000. She estimates that for each \$400 price reduction, she can sell one more car per day. What price should she charge to maximize her revenue R(x)? How many cars will she sell each day? [Hint: Let x = the number of \$400 price reductions.]

Step 1. Let p(x) be the price she charges for a car, after x price reductions.

Step 2. Let q(x) be the quantity of cars she sells in a day, after x price reductions.

Step 3. Calculate
$$R(x)$$
,
$$P(x) = P(x) q(x) = (24000-400x) (4+x)$$

$$- 96000 + 23400x - 400x^{2}$$

Step 4. Maximize R(x), explaining why your answer gives a maximum.

Step 5. What price should she charge to maximize her revenue? How many cars will she sell each day?

$$x = \frac{22400}{800} = 28.$$

$$price p(28) = 412800$$

$$q(x) = q(28) = 32$$

C. On the axes below, draw an extremely clear, careful sketch of the graph of a function f which has the following properties: f is continuous and differentiable, f(0) = 0, f'(x) < 0 for $x \in (0,2)$, f''(x) > 0 on (-2,0) and f is concave down on (0,2). Indicate any relative maxima or minima, and any inflection points.

D.(a). Evaluate. f' and f'' for $f(x) = 4\sqrt{x^3} - 18\sqrt[3]{x^2}$. = 4 (x) = (x) + (x)

(b).
$$f''(x) =: 3 \times \frac{1}{2} + 4 \times \frac{4}{3}$$

The rest of this Examination is to be done using the "scantron" sheet. Please write your work on this paper.

1. Let $f(x) = (3x - 5)^8$. Then f'(x) =: (a). $8(3x-5)^7$.

(b) $24(2x)^7$.

(c) $24(3x-5)^7$. (d). None of the above answers.

2. Let y = f(x) be a differentiable function on [-2, 4], whose graph is given below.

Which of the following is the sign diagram for f'?

(b)

(c)

3. Let $y = f(x) = x^3 + 3x^2 - 9x$, where x is in the closed interval [-3, 4]. Then the smallest and largest values that the function attains in this interval are:

- (a) -5 and 76.
- (b). 0 and ∞ .
- (c). -5 and 27.
- (d). -20 and 32.
- 4. The point x = 0 is where the function $y = f(x) = x^4 8$ has:
- (a). a relative minimum.
- (b) a relative maximum.
- (c). neither a relative maximum nor a relative minimum.
- (d). Answer cannot be determined from the given information.

5. Let y = f(x) be a function such that f'(x) has the following sign diagram.

Which of the following is true? f has:

- (a). a relative maximum at -1.
- (b). a relative maximum at -1 and a relative minimum at 0.
- (c). relative maxima at -1 and at 1.
- (d) a relative minimum at -1 and a relative maximum at 1.

6. The derivative of $y = f(x) = (x^{12} + 4x^4 - 3x^2 - 5)^4$ is:

(a). $12(x^{11} + 16x^3 - 9x)^3$.

(b). $4(x^{12} + 4x^4 - 3x^2 - 5)^3(12x^{11} + 16x^3 - 6x)$.

(c). $4(x^{12} + 4x^4 - 3x^2 - 5)^3$.

(d). $12x^{11} + 16x^3 - 6x$.

7. The critical numbers for the function $f(x) = x^3 - 25x$ are:

(a) $5\sqrt{3}$ and $-5\sqrt{3}$. (b). 0, 5, and -3.

(c). 5 and -5.

(d). 0.

8. Which are the points of inflection in the following graph?

- (a). Only -1 and 1.
- (b). Only 0 and 1.

(c).) Only 1.

(d). There are no inflection points in this graph.

9. Let f have critical points at -1, 0, and 1. If $f''(x) = x^3 - 8x^2 + 2$, then f has a relative maximum at:

(a). 0 and 1.

(b).
$$-1$$
 and 1.

(d). None of the above answers.

$$f''(0) = 2 > 0$$

 $f''(1) = -5 < 0$ max
 $f''(-1) = -7 < 0$ max

10. As
$$x \to -\infty$$
, the function $f(x) = \frac{4x^{3} + 5x - 1}{2x^{2} + 3}$ tends to (a) 2. (b) $-1/3$.

(c). -1.

(d). 4.

11. Let

$$y = f(x) = \frac{(x^2 - x)^3}{x + 1}.$$

Then f'(x) =

(a).

$$\frac{(x^2-x)^3-3(x+1)(x^2-x)^2(2x-1)}{(x+1)^2}.$$

(b).

$$3(x^2 - x)^2(2x - 1).$$

$$\frac{3(x+1)(x^2-x)^2(2x-1)-(x^2-x)^3}{(x+1)^2}.$$

(d). None of the above answers.

Use the following information for the next two problems: A supermarket expects to sell 16,000 boxes of a certain pet food in a year. The supermarket owner must pay \$2.00 for each box. There is a \$20.00 delivery charge for each delivery from the manufacturer, and there is a \$3.00 annual storage charge per box of pet food. Let x be the number of boxes of pet food that the supermarket owner purchases from the manufacturer each time.

- 12. What are the annual storage costs for the dealer, in dollars?
- (a).)3x/2.
- (b). 3x + 20.
- (c). 2x.
- (d). 3x.
- 13. What does it cost, in dollars, the supermarket owner each time he places an order for this pet food?
- (a). 3x.
- (b). 3x + 20.
- (c) 2x. (d) 2x + 20.