NAME.....

Intuitive Calculus 11012 Quiz A
April 8, 2010 Richard M. Aron

1. Find each indefinite integral:

(a).
$$\int 18y^{17}dy =$$
 y $+$ C

(b).
$$\int (u+1)(u+2)du = \int (u^2 + 3u + 2)du$$

= $u^3 + 3u^2 + 2u + C$

(c).
$$\int (e^{3x} - \frac{3}{x}) dx = \frac{e^{\frac{3}{x}}}{3} - 3 \ln x + C$$

2. The cost of maintaining a home generally increases as the home becomes older. Suppose that the rate of cost (dollars per year) for a home that is x years old is $200e^{0.4x}$. Find a formula for the total maintenance cost during the first x years. (Maintenance should be zero at x = 0.)

maintenance cost during the first
$$x$$
 years. (Maintenance should be zero at $x = 0$.)

Given $r(t) = 200e^{it}$. So, $M(t) = maintenance$
 $cost = \int r(t) dt = 500e^{it}$. Mow, in the cost $= \int r(t) dt = 500e^{it}$. Mow, in the $= 0$.

Defining, when $x = 0$, $= 0$, $= 0$, $= 0$.

Thus, $= 0$, $= 0$, $= 0$, $= 0$.

Thus, $= 0$, $= 0$, $= 0$, $= 0$, $= 0$.

Thus, $= 0$,

NAME.....

Intuitive Calculus 11012 Quiz B April 8, 2010 Richard M. Aron

1. Find each indefinite integral:

(a).
$$\int 10u^9 du = u^{10} + C$$

(b).
$$\int (x-1)(x+2)dx = \int (x^2 + x - 2) dx$$

= $\frac{x^3}{3} + \frac{x^2}{2} - 2x + C$

(c).
$$\int (e^{2x} - \frac{2}{x}) dx = \frac{2}{2} - 2 \ln x + C$$

2. An ice cube tray filled with tap water is placed in the freezer, and the temperature of the water is changing at the rate of $-12e^{-0.2t}$ degrees per hour after t hours. The original temperature of the tap water was 70 degrees. Find a formula for the temperature of water that has been in the freezer for t hours.

70 degrees. Find a formula for the temperature of the tap water was
70 degrees. Find a formula for the temperature of water that has been
in the freezer for t hours.

Given:
$$\Gamma(t) = -12e$$
. Temperature $T(t) = 12e$.

 $\Gamma(t) dt = 60e^{-1} + C$. Now, at time $t = 0$,

 $\Gamma(t) dt = 60e^{-1} + C$. Now, at time $t = 0$,

 $\Gamma(t) = 0$ original temperature $t = 0$ and $t = 0$.

 $\Gamma(t) = 0$ original temperature $t = 0$ and $t = 0$.

 $\Gamma(t) = 0$ original temperature $t = 0$ and $t = 0$.

 $\Gamma(t) = 0$ original temperature $t = 0$ and $t = 0$.

 $\Gamma(t) = 0$ original temperature $t = 0$ or $t = 0$.

 $\Gamma(t) = 0$ original temperature $t = 0$ or $t = 0$.