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Abstract. Let X be a separable Banach space. We provide an explicit
construction of a sequence in X that tends to ∞ in norm but which is
weakly dense.

Our interest in the result stated in the Abstract was motivated by two
theorems. First, in their work on hypercyclic operators, K. Chan and R.
Sanders proved the following:

Theorem 1. (Chan and Sanders [3]) For any p, 2 ≤ p < ∞, there is a
bounded linear operator T : `p(Z) → `p(Z) that is weakly hypercyclic but is
not hypercyclic.

That is, there is a vector xp ∈ `p(Z) such that {xp, T (xp), · · · , T n(xp), · · · }
is a weakly dense set and such that for no vector x ∈ `p(Z) is it true that
{x, T (x), · · · , T n(x), · · · } is norm dense. In fact, the proof in [3] shows the
existence of a vector xp such that ‖T n(xp)‖ → ∞ while {T n(xp) | n ∈ N} is
dense in `p(Z) with the weak topology. Moreover, Chan and Sanders remark
that, in fact, one can construct a weakly dense sequence (xn) ⊂ `2(Z) such
that ‖xn‖ → ∞ ([3, page 49]).

Second, V. Kadets has proved the following result (see also [6]):

Theorem 2. (Kadets [7]) For any Banach space X, for any sequence (cn)
of positive real numbers such that

∑∞
n=1 c−2

n = ∞, there is a sequence (xn) ⊂
X, ‖xn‖ = cn for all n, such that 0 is in the weak closure of the sequence
{xn | n ∈ N}.

The proof of this theorem uses Dvoretzky’s theorem [4] and consequently
is non-constructive. In fact, S. Shkarin [8] recently rediscovered the Kadets
result; his proof also makes use of Dvoretzky’s theorem.

In this note, we show that Kadets’ result yields, as a simple consequence,
that for any separable Banach space X, there is a sequence (xn) ⊂ X such
that ‖xn‖ → ∞ while {xn | n ∈ N} is weakly dense in X.

Moreover, we give a version of Theorem 2 whose proof provides a rather
simple, explicit sequence of vectors and which uses the pigeon hole principle
instead of Dvoretzky’s theorem.
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To begin, we show that the conclusion of Theorem 2 can be strengthened.

Theorem 3. Let X be a separable Banach space. Suppose that there is a
sequence (xn) ⊂ X with the following two properties:

(1) ‖xn‖ → ∞ as n →∞,
(2) 0 is in the weak closure of {xn | n ∈ N}.

Then there is a sequence (yn) ∈ X such that the following hold:

(1) ‖yn‖ → ∞ as n →∞,

(2) {yn | n ∈ N} is weakly dense in X.

Proof. Consider any sequence (zr) that is norm dense in X. Let (xn) be a
sequence in X \ {0} such that (‖xn‖) diverges to ∞ and 0 belongs to the
weak closure of (xn). Let x∗n ∈ X∗ of norm 1 such that x∗n(xn) = ‖xn‖. Let
γn,r defined by

γn,r =

{
x∗n(zr)
|x∗n(xr)| if x∗n(zr) 6= 0

1 if x∗n(zr) = 0.

Then

‖zr + γn,rxn‖ ≥ |x∗n(zr + γn,rxn)| = |x∗n(xr)|+ ‖xn‖ ≥ ‖xn‖,

for all r ≤ n ∈ N. We apply the square ordering to

z1 + γ1,1x1 → z1 + γ2,1x2 z1 + γ3,1x3 →
↙ ↗ ↙

z2 + γ2,2x2 z2 + γ3,2x3 z2 + γ4,2x4

↓ ↗ ↙
z3 + γ1,3x3 z3 + γ4,3x4 z3 + γ5,3x5 · · ·

· · · · · · · · · · · ·
obtaining a sequence (ys). Since (‖xn‖) diverges to ∞, then (‖ys‖) diverges
to ∞ too. Moreover,

zr ∈ {ys : s ∈ N}
w(X,X∗)

,

for all r ∈ N and hence {ys : s ∈ N}
w(X,X∗)

= X. �

The rest of this note is devoted to providing an explicit construction of
a sequence (xn) satisfying the conclusion of Theorem 2, for any separable
Banach space X. We begin with X = `1, considered as a real Banach space.
Our argument uses the pigeon hole principle.

Proposition 4. Consider the sequence (xn) in `1 obtained by any ordering

of the set ∪∞k=1{
√

k(em1 − em2) : 1 ≤ m1 < m2 ≤ (2k)k+1}. We have that
(‖xn‖) diverges to ∞ and 0 belongs to the weak closure of (xn).
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Proof. Consider a natural number k and ϕ1, . . . , ϕk in the unit sphere of
`∞. We denote K0 = {1, . . . , (2k)k+1}. If

ϕj = (αj
m)∞m=1

we put

J1
p = {m ≤ (2k)k+1 : α1

m ∈ [
p

k
,
p + 1

k
]}

for −k ≤ p ≤ k − 1, then

{1, . . . , (2k)k+1} =
k−1⋃

p=−k

J1
p .

Thus there exists a p1, −k ≤ p1 ≤ k − 1, such that

Card(J1
p1

) ≥ (2k)k.

Choose a subset K1 ⊂ J1
p1

such that Card(K1) = (2k)k. Now we define

J2
p = {m ∈ K1 : α2

m ∈ [
p

k
,
p + 1

k
]}

for −k ≤ p ≤ k − 1, then

K1 =
k−1⋃

p=−k

J2
p

and Card(K1) = (2k)k. Thus there exists a p2, −k ≤ p2 ≤ k − 1, such that
Card(J2

p2
) ≥ (2k)k−1, and as before we let K2 ⊂ J2

p2
such that Card(K2) =

(2k)k−1. We continue by induction. For l < k, we assume that (Kj)
l
j=1 and

(pj)
l
j=1 have been found so that Kl ⊂ Kl−1 ⊂ . . . ⊂ K2 ⊂ K1, −k ≤ pj ≤

k − 1,

Kj ⊂ {m ∈ Kj−1 : αj
m ∈ [

pj

k
,
pj + 1

k
]}

and Card(Kj) = (2k)k−j+1, for j = 1, . . . , l. Since

k − l + 1 ≥ 2

if we define again

J l+1
p = {m ∈ Kl : αl+1

m ∈ [
p

k
,
p + 1

k
]}

for −k ≤ p ≤ k − 1, then Kl =
⋃k−1

p=−k J l+1
p and Card(Kl) = (2k)k−l+1 ≥

(2k)2. Thus there exists a pl+1, −k ≤ pl+1 ≤ k− 1, such that Card(J l+1
pl+1

) ≥
(2k)k−l. Again we consider Kl+1 ⊂ J l+1

pl+1
such that Card(Kl+1) = (2k)k−l.

By taking l = k − 1, we obtain finally the existence of a Kk with

Kk ⊂ Kk−1 ⊂ . . . ⊂ K2 ⊂ K1 ⊂ {1, . . . , (2k)k+1},

Card(Kk) = 2k,
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and

|αj
m − αj

r| ≤
1

k
for all j = 1, . . . , k and all m, r ∈ Kk. Since Card(Kk) = 2k ≥ 2, we can
take m1 < m2, such that

{m1, m2} ⊂ Kk.

Consider

x =
√

k(em1 − em2).

We have that

(0.1) |ϕj(x)| = |
√

k(αj
m1
− αj

m2
)| ≤

√
k

k
=

1√
k
,

for all j = 1, . . . , k and

‖x‖1 = 2
√

k.

Let

Ik = {
√

k(em1 − em2) : 1 ≤ m1 < m2 ≤ (2k)k+1}
for k = 1, 2, . . .. We take

(xn)∞n=1 =
∞⋃

k=1

Ik

where (e.g.) we first order the elements of I1, then of I2 and so on. Clearly
(‖xn‖) diverges to ∞. We claim that 0 belongs to the weak closure of (xn).
Indeed, given φ1, . . . , φh in `∞ \ {0} and ε > 0, we consider k ≥ h such that

sup{‖φ1‖, . . . , ‖φh‖}√
k

< ε,

and we define

(0.2) ϕj =

{
φj

‖φj‖ if 1 ≤ j ≤ h
φh

‖φh‖
if h ≤ j ≤ k.

By (0.1) we can find an xn =
√

k(em1−em2) for a certain pair {m1, m2}, 1 ≤
m1 < m2 ≤ (2k)k+1 such that

| φj

‖φj‖
(xn)| ≤ 1√

k
.

for all j = 1, . . . , h. Hence

|φj(xn)| ≤ ‖φj‖√
k

< ε,

for all j = 1, . . . , h, and we have obtained

0 ∈ {xn : n ∈ N}
w(`1,`∞)

.

�
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Note that the sequence (xn) that was constructed in the above proof is
particularly simple; namely each xn is of the form C(ei− ej). We now show
how the previous proposition yields the general result. Note that given
a dense sequence in a separable Banach space, the sequence (zn) in the
following Corollary can be explicitly described.

Corollary 5. Given a separable Banach space X, there is a sequence (zn) ⊂
X such that ‖zn‖ → ∞ and X = {zn | n ∈ N}

w(X,X∗)
.

Proof. By Theorem 3, it is enough to prove that there exists a sequence (zn)
in X \{0} such that (‖zn‖) diverges to ∞ and 0 belongs to the weak closure
of (zn). Let BX be the open unit ball of X. Since X is infinite dimensional,
the Riesz lemma allows us to construct a sequence (yn) in BX such that
‖yn − ym‖ ≥ 1

2
for all n 6= m.

Now we define T : `1 −→ X by

T (αn) =
∞∑

n=1

αnyn.

Since T (B`1) ⊂ BX , T is continuous. Let (xn) ⊂ `1 be the sequence obtained
in Proposition 4. We are going to check that zn = T (xn) defines the sequence

that we are looking for. If A = {xn : n ∈ N}, we know that 0 ∈ A
w(`1,`∞)

.
Since T is weak-weak continuous, we get

0 = T (0) ∈ T (A
w(`1,`∞)

) ⊂ T (A)
w(X,X∗)

.

Moreover, we know that for each n there exist unique k(n), m1(n), m2(n) ∈
N with m1(n) 6= m2(n) such that xn =

√
k(n)(em1(n) − em2(n)) and k(n) →

∞ whenever n grows to ∞. Hence ‖xn‖1 =
√

2k(n) diverges to ∞. But

‖T (xn)‖ =
√

k(n)‖T (em1(n))− T (em2(n))‖

=
√

k(n)‖ym1(n) − ym2(n)‖ ≥
1

2

√
k(n) ,

for all n ∈ N and we have obtained that ‖(zn)‖ diverges to ∞ too. �

Comments.

(1) Proposition 4 can be adapted to the complex `1 case. As a conse-
quence, Corollary 5 holds for R and C.

(2) The above argument shows that for every infinite dimensional Ba-
nach space (separable or not) one can construct a sequence (xn) in
X \ {0} such that (‖xn‖) diverges to ∞ and such that 0 belongs to
the weak closure of (xn).
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(3) Corollary 5 is much weaker than Theorem 1. Indeed, the result of
[3] produces an operator T : `p(Z) → `p(Z), p ≥ 2 which, in turn,
produces the sequence (xn). Shkarin notes there is no bilateral shift
on `p(Z) for 1 ≤ p < 2 that is weakly, but not norm, hypercyclic [8].
Although this does not rule out the possibility of finding a bounded
operator T on such spaces and a weakly dense sequence (xn) such
that T (xn) = xn+1 for all n, it at least gives an indication that, if
they exist, such operators are difficult to come by. (See also related
work of S. Grivaux [5].)

(4) Using a result of Ball [1, Theorem 7], Shkarin ([8, Proposition 5.4])
shows that if the norms of the sequence (xn) tend “too rapidly” to

infinity (e.g. if
∑

n ‖xn‖−1 < ∞), then 0 /∈ {xn | n ∈ N}
w(X,X∗)

.
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