p-group Camina pairs

Mark L. Lewis

Kent State University

November 5, 2011

The Southwestern Group Theory Day 2011

Mark L. Lewis *p*-group Camina pairs Kent State University

• Throughout this note G is a finite group.

Mark L. Lewis *p*-group Camina pairs Kent State University

・ロン ・日子・ ・ ヨン

- Throughout this note *G* is a finite group.
- Assume 1 < N < G is a normal subgroup of G. The following are equivalent:

* ロ > * 部 > * 注 >

Kent State University

- Throughout this note *G* is a finite group.
- Assume 1 < N < G is a normal subgroup of G. The following are equivalent:
 - For every element g ∈ G \ N, the element g is conjugate to all of gN.

- Throughout this note *G* is a finite group.
- Assume 1 < N < G is a normal subgroup of G. The following are equivalent:
 - For every element g ∈ G \ N, the element g is conjugate to all of gN.
 - **②** For every element g ∈ G ∧ N and for every element n ∈ N, there exists an element y ∈ G so that [y,g] = n.

- Throughout this note *G* is a finite group.
- Assume 1 < N < G is a normal subgroup of G. The following are equivalent:
 - For every element g ∈ G \ N, the element g is conjugate to all of gN.
 - **②** For every element g ∈ G ∧ N and for every element n ∈ N, there exists an element y ∈ G so that [y,g] = n.
 - Solution \mathbb{S} Every character in $\operatorname{Irr}(G \mid N)$ vanishes on $G \setminus N$.

- Throughout this note *G* is a finite group.
- Assume 1 < N < G is a normal subgroup of G. The following are equivalent:
 - For every element g ∈ G \ N, the element g is conjugate to all of gN.
 - **②** For every element $g ∈ G \setminus N$ and for every element n ∈ N, there exists an element y ∈ G so that [y, g] = n.
 - Solution Sector $G \mid N$ is $G \mid N$.

- Throughout this note G is a finite group.
- Assume 1 < N < G is a normal subgroup of G. The following are equivalent:
 - For every element g ∈ G \ N, the element g is conjugate to all of gN.
 - **②** For every element g ∈ G ∧ N and for every element n ∈ N, there exists an element y ∈ G so that [y,g] = n.
 - Solution Sector $G \mid N$ and $G \mid N$ and $G \mid N$.
- A pair (G, N) is a Camina pair if it satisfies the above conditions.

If (G, N) is a Camina pair, then $Z(G) \leq N \leq G'$.

・ロト・西ト・ヨト・ヨー うくぐ

Mark L. Lewis *p*-group Camina pairs Kent State University

If (G, N) is a Camina pair, then $Z(G) \leq N \leq G'$.

Extreme cases are when N = G' and when N = Z(G).

Mark L. Lewis *p*-group Camina pairs Kent State University

イロト イヨト イヨト

If (G, N) is a Camina pair, then $Z(G) \leq N \leq G'$.

Extreme cases are when N = G' and when N = Z(G).

When N = G', the group G is a Camina group.

Mark L. Lewis *p*-group Camina pairs Kent State University

メロト メロト メヨト

If (G, N) is a Camina pair, then $Z(G) \leq N \leq G'$.

Extreme cases are when N = G' and when N = Z(G).

When N = G', the group G is a Camina group.

Camina groups have been studied in a number of papers.

If (G, N) is a Camina pair, then $Z(G) \leq N \leq G'$.

Extreme cases are when N = G' and when N = Z(G).

When N = G', the group G is a Camina group.

Camina groups have been studied in a number of papers.

Today, we consider the case where N = Z(G).

Lemma

If (G, Z(G)) is a Camina pair, then G is a p-group for some prime p.

Mark L. Lewis *p*-group Camina pairs Kent State University

Lemma

If (G, Z(G)) is a Camina pair, then G is a p-group for some prime p.

イロト イヨト イヨト

Kent State University

Goal: If (G, Z(G)) is a Camina pair, then bound |Z(G)| in terms of |G : Z(G)|.

Mark L. Lewis *p*-group Camina pairs

Lemma

If (G, Z(G)) is a Camina pair, then G is a p-group for some prime p.

Goal:

If (G, Z(G)) is a Camina pair, then bound |Z(G)| in terms of |G: Z(G)|.

Motivation:

Theorem (Macdonald)

Let G be a Camina group of nilpotence class 2. Then $|Z(G)|^2 \leq |G : Z(G)|$.

Mark L. Lewis

Kent State University

Lemma

Let (G, Z(G)) be a Camina pair. Every character in Irr(G | Z(G)) is fully ramified with respect to G/Z(G). In particular, |G : Z(G)| is a square.

Mark L. Lewis *p*-group Camina pairs Kent State University

• • • • • • • •

∃ >

Our first result:

Theorem

Let (G, Z(G)) be a Camina pair where G is a p-group. If G/Z(G) has exponent p^n with $n \ge 1$, then $|Z(G)|^n p^n \le |G : Z(G)|$. In particular, $|Z(G)|^n < |G : Z(G)|$.

Mark L. Lewis *p*-group Camina pairs Kent State University

Our first result:

Theorem

Let (G, Z(G)) be a Camina pair where G is a p-group. If G/Z(G) has exponent p^n with $n \ge 1$, then $|Z(G)|^n p^n \le |G : Z(G)|$. In particular, $|Z(G)|^n < |G : Z(G)|$.

When p = 2, this yields:

Kent State University

Our first result:

Theorem

Let (G, Z(G)) be a Camina pair where G is a p-group. If G/Z(G) has exponent p^n with $n \ge 1$, then $|Z(G)|^n p^n \le |G : Z(G)|$. In particular, $|Z(G)|^n < |G : Z(G)|$.

When p = 2, this yields:

Corollary

Let (G, Z(G)) be a Camina pair where G is a 2-group. Then $|Z(G)|^2 \leq |G : Z(G)|$. Furthermore, if equality holds, then G is a Camina group.

Mark L. Lewis *p*-group Camina<u>pairs</u> Kent State University

If (G, Z(G)) is a Camina pair where |G : Z(G)| = 16 and G is not a Camina group, then this implies |Z(G)| = 2.

イロト イヨト イヨト

Mark L. Lewis *p*-group Camina pairs

If (G, Z(G)) is a Camina pair where |G : Z(G)| = 16 and G is not a Camina group, then this implies |Z(G)| = 2.

メロト スピア メヨア メ

Kent State University

Hence, |G| = 32.

Mark L. Lewis *p*-group Camina pairs

If (G, Z(G)) is a Camina pair where |G : Z(G)| = 16 and G is not a Camina group, then this implies |Z(G)| = 2.

Hence, |G| = 32.

Looking through the small groups library in Magma, we have found that there are 5 such groups.

If (G, Z(G)) is a Camina pair where |G : Z(G)| = 16 and G is not a Camina group, then this implies |Z(G)| = 2.

Hence, |G| = 32.

Looking through the small groups library in Magma, we have found that there are 5 such groups.

メロト スピア メヨア メ

Kent State University

Henceforth, we may assume that p is odd.

We also obtain another corollary:

・ロト ・母 ト ・目 ト ・目 ・ つへぐ

Mark L. Lewis *p*-group Camina pairs Kent State University

We also obtain another corollary:

Corollary

Let (G, Z(G)) be a Camina pair. If G is a p-group and the exponent of G/Z(G) is not p, then $|Z(G)| < |G : Z(G)|^{1/2}$.

Mark L. Lewis *p*-group Camina pairs Kent State University

<ロ> <同> <同> <同> < 同>

We also obtain another corollary:

Corollary

Let (G, Z(G)) be a Camina pair. If G is a p-group and the exponent of G/Z(G) is not p, then $|Z(G)| < |G : Z(G)|^{1/2}$.

From now on, we assume that G/Z(G) has exponent p.

・ロト ・回ト ・ヨト

Kent State University

Mark L. Lewis *p*-group Camina pairs

Theorem

Let (G, Z(G)) be a Camina pair. Then $|Z(G)| \leq |G : G'|$.

Mark L. Lewis *p*-group Camina pairs Kent State University

メロト メロト メヨト メ

Theorem

Let (G, Z(G)) be a Camina pair. Then $|Z(G)| \leq |G : G'|$.

When (G, Z(G)) is a Camina pair and Z(G) < G', then we also obtain a bound for |Z(G)| in terms of |G' : Z(G)|.

・ロト ・日下・ ・ ヨト・

Kent State University

Mark L. Lewis *p*-group Camina pairs

Theorem

Let (G, Z(G)) be a Camina pair. Then $|Z(G)| \leq |G : G'|$.

When (G, Z(G)) is a Camina pair and Z(G) < G', then we also obtain a bound for |Z(G)| in terms of |G' : Z(G)|.

Theorem

Let (G, Z(G)) be a Camina pair with Z(G) < G'. Then $|Z(G)| < |G' : Z(G)|^3$.

Mark L. Lewis *p*-group Camina pairs Kent State University

・ロト ・回ト ・ 回ト ・

This leads to our most general result:

Mark L. Lewis *p*-group Camina pairs

Kent State University

・ロト ・日下・ ・ ヨト

This leads to our most general result:

Theorem

Let (G, Z(G)) be a Camina pair. Then $|Z(G)| < |G : Z(G)|^{3/4}$.

Mark L. Lewis *p*-group Camina pairs Kent State University

メロト メロト メヨト メ

When |G: Z(G)| is small, we can prove a better bound.

・ロ・・聞・・声・・声・ うらぐ

Mark L. Lewis *p*-group Camina pairs Kent State University

When |G: Z(G)| is small, we can prove a better bound.

By small, we mean that $|G : Z(G)| \le p^8$.

Mark L. Lewis *p*-group Camina pairs Kent State University

・ロト ・ 日 ・ ・ ヨ ・ ・

When |G: Z(G)| is small, we can prove a better bound.

By small, we mean that $|G:Z(G)| \le p^8$.

Theorem

Let (G, Z(G)) be a Camina pair with Z(G) < G'. Then either $|Z(G)| \le |G : Z(G)|^{1/2}$ or $|Z(G)|p^4 \le |G : Z(G)|$.

メロト メロト メヨト メ

Kent State University

Mark L. Lewis

p-group Camina pairs

When |G: Z(G)| is small, we can prove a better bound.

By small, we mean that $|G : Z(G)| \le p^8$.

Theorem

Let (G, Z(G)) be a Camina pair with Z(G) < G'. Then either $|Z(G)| \le |G : Z(G)|^{1/2}$ or $|Z(G)|p^4 \le |G : Z(G)|$. In particular, if $|G : Z(G)| \le p^8$, then $|Z(G)| \le |G : Z(G)|^{1/2}$.

Mark L. Lewis

p-group Camina pairs

Kent State University

・ロト ・回ト ・ 回ト ・

The following are some properties of a possible family of groups which if the family exists would be a counterexample to the conjecture:

< □ > < 同 >

p-group Camina pairs

The following are some properties of a possible family of groups which if the family exists would be a counterexample to the conjecture:

< 17 >

Kent State University

• p is an odd prime and k is an (odd) integer.

The following are some properties of a possible family of groups which if the family exists would be a counterexample to the conjecture:

- p is an odd prime and k is an (odd) integer.
- G is a class 3 group of order p^{5k+1} .

< □ > < 同 >

The following are some properties of a possible family of groups which if the family exists would be a counterexample to the conjecture:

- p is an odd prime and k is an (odd) integer.
- G is a class 3 group of order p^{5k+1} .
- Both G/Z(G) and Z(G) have exponent p.

Image: A math a math

The following are some properties of a possible family of groups which if the family exists would be a counterexample to the conjecture:

- p is an odd prime and k is an (odd) integer.
- G is a class 3 group of order p^{5k+1} .
- Both G/Z(G) and Z(G) have exponent p.
- Z(G) has order p^{2k} .

Image: A math a math

The following are some properties of a possible family of groups which if the family exists would be a counterexample to the conjecture:

- p is an odd prime and k is an (odd) integer.
- G is a class 3 group of order p^{5k+1} .
- Both G/Z(G) and Z(G) have exponent p.
- Z(G) has order p^{2k} .
- Z(G) = [G', G].

Image: A math a math

Kent State University

The following are some properties of a possible family of groups which if the family exists would be a counterexample to the conjecture:

- p is an odd prime and k is an (odd) integer.
- G is a class 3 group of order p^{5k+1} .
- Both G/Z(G) and Z(G) have exponent p.
- Z(G) has order p^{2k} .
- Z(G) = [G', G].
- $Z_2(G)$ is an abelian group of order p^{3k+1} . Note: $Z_2(G)/Z(G) = Z(G/Z(G))$.

• $Z_2(G)/Z(G)$ is an elementary abelian group of order p^{k+1} .

Kent State University

Mark L. Lewis *p*-group Camina pairs

- $Z_2(G)/Z(G)$ is an elementary abelian group of order p^{k+1} .
- If $g \in Z_2(G) \setminus Z(G)$, then $C_G(g) = Z_2(G)$.

Mark L. Lewis *p*-group Camina pairs Kent State University

メロト メロト メヨト メ

- $Z_2(G)/Z(G)$ is an elementary abelian group of order p^{k+1} .
- If $g \in Z_2(G) \setminus Z(G)$, then $C_G(g) = Z_2(G)$.
- $G/Z_2(G)$ is abelian.

Mark L. Lewis *p*-group Camina pairs Kent State University

* ロ > * 御 > * 注 > * 注

• $Z_2(G)/Z(G)$ is an elementary abelian group of order p^{k+1} .

(日) (四) (日) (日) (日)

э

Kent State University

- If $g \in Z_2(G) \setminus Z(G)$, then $C_G(g) = Z_2(G)$.
- $G/Z_2(G)$ is abelian.
- $|Z_2(G): G'| \le p.$

- $Z_2(G)/Z(G)$ is an elementary abelian group of order p^{k+1} .
- If $g \in Z_2(G) \setminus Z(G)$, then $C_G(g) = Z_2(G)$.
- $G/Z_2(G)$ is abelian.
- $|Z_2(G): G'| \le p$.
- Either $Z_2(G) = G'$ or $|Z_2(G) : G'| = p$.

メロト メロト メヨト メヨ

- $Z_2(G)/Z(G)$ is an elementary abelian group of order p^{k+1} .
- If $g \in Z_2(G) \setminus Z(G)$, then $C_G(g) = Z_2(G)$.
- $G/Z_2(G)$ is abelian.
- $|Z_2(G): G'| \le p$.
- Either $Z_2(G) = G'$ or $|Z_2(G) : G'| = p$.
- If $g \in G \setminus Z_2(G)$, then $C_G(g) = \langle g, Z(G) \rangle$.

(日) (四) (日) (日) (日)

When $g \in G \setminus Z(G)$, define $D(g) = \{x \in G \mid [g, x] \in Z(G)\}$.

<ロ> <四> <四> <三> <三> <三> <三</p>

Mark L. Lewis *p*-group Camina pairs Kent State University

When
$$g \in G \setminus Z(G)$$
, define $D(g) = \{x \in G \mid [g, x] \in Z(G)\}$.

•
$$|G:D(g)| = p^k$$
, so $|D(g): Z_2(G)| = p^k$.

Kent State University

・ロン ・日子・ ・ ヨン

p-group Camina pairs

When $g \in G \setminus Z(G)$, define $D(g) = \{x \in G \mid [g, x] \in Z(G)\}$.

メロト メロト メヨト

Kent State University

•
$$|G: D(g)| = p^k$$
, so $|D(g): Z_2(G)| = p^k$.

•
$$D(g)' = Z(G).$$

Mark L. Lewis *p*-group Camina pairs

When $g \in G \setminus Z(G)$, define $D(g) = \{x \in G \mid [g, x] \in Z(G)\}$.

•
$$|G:D(g)| = p^k$$
, so $|D(g): Z_2(G)| = p^k$.

•
$$D(g)' = Z(G)$$
.

• If
$$h \in D(g) \setminus Z_2(G)$$
, then $D(g) = D(h)$.

メロト メロト メヨト

When $g \in G \setminus Z(G)$, define $D(g) = \{x \in G \mid [g, x] \in Z(G)\}$.

- $|G:D(g)| = p^k$, so $|D(g): Z_2(G)| = p^k$.
- D(g)' = Z(G).
- If $h \in D(g) \setminus Z_2(G)$, then D(g) = D(h).
- G \ Z₂(G) is partitioned by the sets D(g) \ Z₂(G) as g runs over the elements in G \ Z₂(G).

・ロト ・回ト ・ヨト ・ヨト

 G/Z(G) is a class 2 group with exponent p whose center has order p^{k+1} and index p^{2k}. The centralizer of every noncentral element is abelian and has order p^{2k+1}.

< 17 >

p-group Camina pairs

- G/Z(G) is a class 2 group with exponent p whose center has order p^{k+1} and index p^{2k}. The centralizer of every noncentral element is abelian and has order p^{2k+1}.
- If $g \in G \setminus Z_2(G)$, then D(g) has class 2.

Image: A math a math

- G/Z(G) is a class 2 group with exponent p whose center has order p^{k+1} and index p^{2k}. The centralizer of every noncentral element is abelian and has order p^{2k+1}.
- If $g \in G \setminus Z_2(G)$, then D(g) has class 2.
- Z₂(G) is an abelian, characteristic subgroup of D(g) with index p^k and order p^{3k+1}.

- G/Z(G) is a class 2 group with exponent p whose center has order p^{k+1} and index p^{2k}. The centralizer of every noncentral element is abelian and has order p^{2k+1}.
- If $g \in G \setminus Z_2(G)$, then D(g) has class 2.
- Z₂(G) is an abelian, characteristic subgroup of D(g) with index p^k and order p^{3k+1}.
- If $h \in D(g) \setminus Z_2(G)$, then $C_{D(g)}(h) = \langle h, Z(G) \rangle$, and so $|D(g) : C_{D(g)}(h)| = p^{2k} = |D(g)'|$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

p-group Camina pairs

- G/Z(G) is a class 2 group with exponent p whose center has order p^{k+1} and index p^{2k}. The centralizer of every noncentral element is abelian and has order p^{2k+1}.
- If $g \in G \setminus Z_2(G)$, then D(g) has class 2.
- Z₂(G) is an abelian, characteristic subgroup of D(g) with index p^k and order p^{3k+1}.
- If $h \in D(g) \setminus Z_2(G)$, then $C_{D(g)}(h) = \langle h, Z(G) \rangle$, and so $|D(g) : C_{D(g)}(h)| = p^{2k} = |D(g)'|$.
- This implies that $\operatorname{cl}_{D(g)}(h) = hZ(G)$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- G/Z(G) is a class 2 group with exponent p whose center has order p^{k+1} and index p^{2k}. The centralizer of every noncentral element is abelian and has order p^{2k+1}.
- If $g \in G \setminus Z_2(G)$, then D(g) has class 2.
- Z₂(G) is an abelian, characteristic subgroup of D(g) with index p^k and order p^{3k+1}.
- If $h \in D(g) \setminus Z_2(G)$, then $C_{D(g)}(h) = \langle h, Z(G) \rangle$, and so $|D(g) : C_{D(g)}(h)| = p^{2k} = |D(g)'|$.
- This implies that $\operatorname{cl}_{D(g)}(h) = hZ(G)$.
- D(g) is special, and in fact, Z(D(g)) = Z(G).

The key to our work:

Mark L. Lewis *p*-group Camina pairs Kent State University

The key to our work:

Lemma

Let (G, Z(G)) be a Camina pair where G is a p-group. If $g \in G \setminus Z(G)$, then $D(g)/C(g) \cong Z(G)$. In particular, $D(g)' \leq C(g)$.

Kent State University

• • • • • • • •

∃ >

p-group Camina pairs

The key to our work:

Lemma

Let (G, Z(G)) be a Camina pair where G is a p-group. If $g \in G \setminus Z(G)$, then $D(g)/C(g) \cong Z(G)$. In particular, $D(g)' \leq C(g)$.

Lemma

Let (G, Z(G)) be a Camina pair. If $a \in G \setminus Z(G)$ satisfies $C(a) \cap G' = Z(G)$, then D(a)/Z(G) is abelian.

Mark L. Lewis

p-group Camina pairs

Kent State University

Image: A math a math

The key to our work:

Lemma

Let (G, Z(G)) be a Camina pair where G is a p-group. If $g \in G \setminus Z(G)$, then $D(g)/C(g) \cong Z(G)$. In particular, $D(g)' \leq C(g)$.

Lemma

Let (G, Z(G)) be a Camina pair. If $a \in G \setminus Z(G)$ satisfies $C(a) \cap G' = Z(G)$, then D(a)/Z(G) is abelian.

Mark L. Lewis

p-group Camina pairs

Kent State University

Image: A math a math