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ABSTRACT

Finite element tearing and interconnecting (FETI) type domain decomposition

methods are �rst extended to solving incompressible Stokes equations. One-level,

two-level, and dual-primal FETI algorithms are proposed. Numerical experiments

show that these FETI type algorithms are scalable, i.e., the number of iterations is

independent of the number of subregions into which the given domain is subdivided.

A convergence analysis is then given for dual-primal FETI algorithms both in two

and three dimensions.

Extension to solving linearized nonsymmetric stationary Navier-Stokes equa-

tions is also discussed. The resulting linear system is no longer symmetric and a

GMRES method is used to solve the preconditioned linear system. Eigenvalue es-

timates show that, for small Reynolds number, the nonsymmetric preconditioned

linear system is a small perturbation of that in the symmetric case. Numerical ex-

periments also show that, for small Reynolds number, the convergence of GMRES

method is similar to the convergence of solving symmetric Stokes equations with

the conjugate gradient method. The convergence of GMRES method depends on

the Reynolds number; the larger the Reynolds number, the slower the convergence.

Dual-primal FETI algorithms are further extended to nonlinear stationary

Navier-Stokes equations, which are solved by using a Picard iteration. In each

iteration step, a linearized Navier-Stokes equation is solved by using a dual-primal

FETI algorithm. Numerical experiments indicate that convergence of the Picard

iteration depends on the Reynolds number, but is independent of both the number

of subdomains and the subdomain problem size.
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Chapter 1

Introduction

1.1 An overview

Solving partial di�erential equations numerically is often reduced to solving large

linear systems of equations. The size of a problem can often make the problem

impossible to be solved on a single machine. Solving large linear systems on parallel

computers is therefore imperative. The eÆciency of such an approach depends on

the degree of parallelism of the algorithm, i.e., the portion of the works that can

be implemented in parallel. Direct solvers of solving a linear system are robust,

but not eÆcient on parallel computers. Iterative methods are therefore often used

in parallel computing for solving large linear systems. A very important type of

iterative methods are the Krylov subspace methods. It is important that a Krylov

method incur a constant (or nearly a constant) number of iterations, when the size

of the problem (or correspondingly the number of processors) increases, in order

to make the algorithm scalable on a parallel computer.

When using a Krylov subspace method to solve a linear system Ax = b, we

just need to implement the multiplication of the matrix A times vectors. In each
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iteration step, we are looking for an approximation xn of x, which minimizes a

norm of the error, x� xn, or the residual, b� Axn, in a certain Krylov subspace.

The convergence of a Krylov subspace method, for a symmetric positive de�nite

problem, depends on the condition number of the matrix A. The condition number

of A often depends on the mesh. In order to make the convergence of a Krylov

subspace method independent of the mesh, we often solve a preconditioned linear

system M�1Ax = M�1b, where M�1 is called the preconditioner. We expect the

operator M�1A to be better conditioned and therefore faster convergence to be

achieved.

Domain decomposition methods are a type of preconditioned Krylov subspace

methods, where we use subdomain solvers (often coupled with a coarse level solver)

to construct the preconditioner for solving the original global problem. In each it-

eration step, we solve small subdomain problems in parallel, and we also solve a

coarse level problem. In most cases, a coarse level solver is crucial to make the par-

allel performance insensitive to the number of processors. A powerful framework

of analysis has been well established in the past two decades for the study of sym-

metric positive de�nite elliptic PDEs; see the proceedings of annual international

domain decomposition meetings, cf. [2], [14], [15], [38], [39], [40], [45], [46], [54],

[58], [67]. The book [74] and the references therein also give a good introduction

to this �eld.

There are two main di�erent types of domain decomposition methods: over-

lapping Schwarz methods and iterative substructuring methods. In an overlapping

Schwarz method, the domain is decomposed into overlapping subdomains. For a

two-level algorithm of this type, the preconditioner is assembled from subdomain
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solvers and a coarse level solver. In each iteration step, only subdomain prob-

lems and a coarse level problem are solved. It has been proved that the condition

number of a two-level overlapping Schwarz method, for symmetric positive de�nite

problems and with generous overlap between subdomains, is bounded from above

independently of the number of subdomains and the mesh size, cf. [18].

In an iterative substructuring method, the global problem is reduced to a prob-

lem for the subdomain interface variables, by using a Schur complement procedure.

This interface problem is then solved by a preconditioned Krylov subspace method.

The scalability of the nonoverlapping substructuring methods has also been estab-

lished, cf. [19] and [21].

The Finite Element Tearing and Interconnecting (FETI) methods form a spe-

cial family of domain decomposition methods. They are iterative substructuring

methods of dual type. The �rst FETI method was proposed in [29] for solving

positive de�nite elliptic partial di�erential equations. In this method, the spatial

domain is decomposed into nonoverlapping subdomains, and the interior subdo-

main variables are eliminated to form a Schur problem for the interface variables.

Lagrange multipliers are then introduced to enforce continuity across the interface,

and a symmetric positive semi-de�nite linear system for the Lagrange multipliers

is solved by using a preconditioned conjugate gradient (PCG) method.

There are extensive applications of domain decomposition methods to saddle

point problems, especially for incompressible Stokes problems. Previous domain

decomposition methods for incompressible Stokes equations have been based on

primal iterative substructuring methods, cf. [1], [7], [11], [12], [13], [35], [59], [60],

[61], [64], [66], [69], [76], on overlapping Schwarz methods, cf. [34], [36], [48], [70],
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and on block preconditioners, cf. [47], [49]. A discussion of overlapping Schwarz

methods and iterative substructuring methods for solving incompressible Stokes

problems is given in Chapter 2.

In this thesis, FETI type domain decomposition methods are extended to solv-

ing incompressible Stokes equations. In Chapter 3, one-level, two-level, and dual-

primal FETI algorithms are proposed to solve incompressible Stokes problems in

two dimensions. We only consider approximations with discontinuous pressure.

Therefore, only continuity of the velocity component is enforced across the sub-

domain interface by introducing Lagrange multipliers. The pressure component

is not required to be continuous either across the subdomain interface or inside

each subdomain. By a Schur complement procedure, the inde�nite Stokes prob-

lem is reduced to a symmetric positive de�nite problem for the dual variables, i.e.,

the Lagrange multipliers. A conjugate gradient method is used to solve this dual

problem. Numerical experiments show that these FETI algorithms are scalable.

Convergence analyses for the dual-primal FETI algorithms are given in Chapter

4, in both two and three dimensions. We prove that the condition number of the

preconditioned linear system is independent of the number of subdomains and

bounded from above by the product of the square of the logarithm of the number

of unknowns in each subdomain and a factor that depends on the inf-sup constants

of the discrete Stokes problems.

Extension to solving linearized nonsymmetric stationary Navier-Stokes equa-

tion is discussed in Chapter 5. The resulting linear system is no longer symmetric

and a GMRES method is used to solve the preconditioned linear system. Eigen-

value estimates show that, for small Reynolds number, the non-symmetric pre-
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conditioned linear system is a small perturbation of that in the symmetric case.

Numerical experiments also show that, for small Reynolds number, the conver-

gence of GMRES method is similar to that of the symmetric Stokes equation case.

The convergence of GMRES method depends on the Reynolds number; the larger

the Reynolds number, the slower the convergence.

A nonlinear Navier-Stokes equation solver, using Picard iteration, is also con-

sidered in Chapter 5. In each iteration step, a linearized Navier-Stokes equation

is solved by using a dual-primal FETI algorithm. Numerical experiments show

that the convergence of Picard iteration depends on the Reynolds number, but is

independent of either the number of subdomains or the subdomain problem size.

The following two sections give a review of some introductory material, in-

cluding Sobolev spaces and mixed �nite element methods for solving saddle point

problems.

1.2 Sobolev Spaces

Let 
 be a bounded Lipschitz domain in Rd , d = 2 or 3 . The space L2(
) is the

space of all real valued measurable functions u for which

kukL2(
) =
�Z




juj2dx
�1=2

<1:

L2
0(
) is the subspace of the functions u 2 L2(
), which satisfy

R


udx = 0. The

space H1(
) is the space of all locally integrable functions u, for whichZ



juj2dx <1; and

Z



ru � rudx <1:

The scaled H1-norm of u is given by

kuk2H1(
) =

Z



ru � rudx+ 1

H2



Z



juj2dx;

5



where H
 is the diameter of 
; this scaling factor is obtained by dilation from a

region of unit diameter. The H1-seminorm of u is de�ned by

juj2H1(
) =

Z



ru � rudx:

H1
0 (
) is the subspace of H

1(
) of functions vanishing on the boundary @
.

The trace space ofH1(
) isH1=2(@
), where for any � � @
, the corresponding

semi-norm and norm are given by

juj2H1=2(�) =

Z
�

Z
�

ju(x)� u(y)j2
jx� yjd dxdy; (1.1)

and

kuk2H1=2(�) = juj2H1=2(�) +
1

H�
kuk2L2(�); (1.2)

where H� is the diameter of �. The maximal subspace of H1=2(�), for which the

extension by zero to the complement of � is a bounded operator in the H1=2-norm,

is known as H1=2
00 (�), cf. [82]. This space can be de�ned in terms of a norm given

by

kuk2
H
1=2
00

(�)
= juj2H1=2(�) +

Z
�

u2(x)

d(x; @�)
dx; (1.3)

where d(x; @�) is the distance from x to the boundary @�.

The following two lemmas can be found in [27, Section 5.8.1] and in [16, The-

orem 6.1], respectively.

Lemma 1 (Poincar�e's inequality) Let

û =
1

volume(
)

Z



udx;

be the average of u over 
. Then there exits a constant C(
), which depends only

on the Lipschitz constant of @
, such that

ku� ûkL2(
) � C(
)H
jujH1(
); 8u 2 H1(
):
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Lemma 2 (Poincar�e-Friedrichs' inequality) Let @
D be an open subset of @


with positive measure. There exists a constant C(
; @
D), which depends only on

the Lipschitz constants of @
 and on the measure of @
D relative to @
, such that

kuk2L2(
) � C(
; @
D)H
2



 
juj2H1(
) +

1

H


�Z
@
D

udx

�2
!
; 8u 2 H1(
):

1.3 Mixed �nite element methods for saddle point

problems

Let W be a Hilbert space with the norm k � kW and inner product (�; �)W . We

consider a continuous bilinear form a(u; v) on W �W , i.e.,

ja(u; v)j � kakkukWkvkW :

This bilinear form de�nes a continuous linear operator A :W !W 0 given by

hAu; viW 0�W = a(u; v); 8v 2 W;u 2 W:

Let Q be another Hilbert space with the norm k � kQ and inner product (�; �)Q, and
let b(w; q) be a continuous bilinear form on W �Q, i.e.,

jb(w; q)j � kbkkwkWkqkQ:

Again, we can introduce a linear operator B : W ! Q0, and its transpose B0 :

Q!W 0 by

hBw; qiQ0�Q = hw;B0qiW�W 0 = b(w; q); 8w 2 W; q 2 Q:

We consider the solution of the following saddle point problem: for any f 2 W 0,

g 2 Q0, �nd u 2 W and p 2 Q, such that,8<:
a(u; v) + b(v; p) = hf; vi; 8v 2 W ,

b(u; q) = hg; qi; 8q 2 Q .
(1.4)
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We have the following theorem about the existence, uniqueness, and stability

of problem (1.4), cf. [10, Proposition 1.3],

Lemma 3 If there exit positive constants �0 and �0 such that

a(v; v) � �0kvk2W ; 8v 2 KerB; (1.5)

and

sup
v2W

b(v; q)

kvkW � �0kqkQ=KerB0; 8q 2 Q; (1.6)

then there exists a unique solution (u; p) to problem (1.4) for any f 2 W 0 and

g 2 ImB, and

kukW � 1
�0
kfkW 0 + 1

�0

�
1 + kak

�0

�
kgkQ0;

kpkQ=KerB0 � 1
�0

�
1 + kak

�0

�
kfkW 0 + kak

�2
0

�
1 + kak

�0

�
kgkQ0:

Let W h and Qh be �nite element subspaces of W and Q, respectively, where

h refers to the element size. The discrete variational problem is to �nd uh 2 W h

and ph 2 Qh such that8<:
a(uh; vh) + b(vh; ph) = hf; vhi; 8vh 2 W h ,

b(uh; qh) = hg; qhi; 8qh 2 Qh .
(1.7)

We have the following approximation result, cf. [37, Theorem 1.1, Chapter II],

Theorem 1 If there exit positive constants � and � such that

a(vh; vh) � �kvhk2W ; 8v 2 KerBh; (1.8)

and

sup
vh2Wh

b(vh; qh)

kvhkW � �kqhkQ=KerBh0 ; 8qh 2 Qh; (1.9)
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then there exists a unique solution (uh; ph) to problem (1.7), and

ku� uhkW + kp� phkQ � c

�
inf

vh2Wh
ku� vhkW + inf

qh2Qh
kp� qhkQ

�
; (1.10)

where c depends on �, but is independent of h. The solution (uh; ph) is bounded as

follows:

kuhkW � 1
�
kfkW 0 + 1

�

�
1 + kak

�

�
kgkQ0; (1.11)

kphkQ=KerB0 � 1
�

�
1 + kak

�

�
kfkW 0 + kak

�2

�
1 + kak

�

�
kgkQ0: (1.12)

Condition (1.9) is called the inf-sup condition and is often referred to in the

literature as the Ladyzhenskaya-Babu�ska-Brezzi (LBB) condition. It is a suÆcient

but not a necessary condition for the estimate (1.10).
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Chapter 2

Domain decomposition methods

for incompressible Stokes

equations

2.1 Krylov subspace methods and precondition-

ers

Krylov subspace methods are a very important type of iterative methods to solve

the linear system Ax = b. The idea is to project an m-dimensional problem into a

lower-dimensional Krylov subspace. Given a matrix A and a vector b, we denote

by Kn the Krylov subspace spanned by the vectors b, Ab, ..., An�1b. In the nth

iteration of a Krylov subspace method, we look for an approximate xn of x, which

minimizes a norm of the error, en = x�xn, or the residual, b�Axn, in the Krylov

subspace Kn.

A very important Krylov subspace method to solve Ax = b, when A is sym-

metric, positive de�nite, is the conjugate gradient method, cf. [43]. In the nth

iteration step of the conjugate gradient method, the approximate solution xn is

the unique element in the space x0 + Kn, which minimize kenkA. Here x0 is the

10



initial guess. We have the following theorem about the convergence rate of the

conjugate gradient method, cf. [78, Theorem 38.5],

Theorem 2 Let the CG method be applied to a symmetric, positive de�nite prob-

lem Ax = b. Let � be the 2-norm condition number of A, i.e., the ratio of the

largest eigenvalue to the smallest. Then the A-norm of the error satis�es

kenkA
ke0kA � 2

�p
�� 1p
�+ 1

�n

:

Thus, the convergence rate of a conjugate gradient method depends on the

condition number, i.e., the distribution of the eigenvalues of the matrix A.

When A is not symmetric, positive de�nite, the generalized minimal residuals

(GMRES) method can be used to solve Ax = b. In the nth step, we approximate

the solution x by a vector xn 2 x0 + Kn, for which the norm of the residual,

rn = b� Axn, is minimized, cf. [72]. The following theorem gives the convergence

rate of the GMRES method, cf. [78, Theorem 35.2],

Theorem 3 In step n of the GMRES iteration, the residual rn satis�es

krnk
kr0k � inf

pn2Pn
kpn(A)k � �(V ) inf

pn2Pn
kpnk�(A);

where �(A) is the set of eigenvalues of A, V is a nonsingular matrix of eigenvectors

(assuming A is diagonalizable), Pn is the set of polynomials p of degree � n with

p(0) = 1, and kpnk�(A) = supz2�(A) jpn(z)j.

From this theorem, we can see that, if A is not too far from normal in the sense

that �(V ) is not too large, and if a properly normalized degree n polynomial can be

found with rapidly decreasing values on the spectrum �(A) with increasing n, then

11



GMRES converges quickly. When the spectrum of A is tightly clustered away from

the imaginary axis, we can expect that infpn2Pn kpnk�(A) decreases quickly with n.
We can see that the distribution of the eigenvalues of A often determines the

rate of convergence of a Krylov subspace method. When the linear system Ax = b

comes from the discretization of a PDE, in most cases, the spectrum of A depends

on the mesh: the �ner the mesh, the more scattered the eigenvalues. In order to

make the convergence of a Krylov subspace method insensitive to the mesh, we

need to build a preconditioner of the matrix A, and instead of solving Ax = b, we

solve the preconditioned linear system

M�1Ax =M�1b; (2.1)

where M�1 is called the preconditioner. We expect that the spectrum of the

preconditioned operator M�1A be more tightly clustered than that of A, so that

faster convergence can be achieved by solving the preconditioned problem (2.1).

The choice of M�1 = A�1 makes the condition number of M�1A equal to one,

and the convergence is achieved in one step. However, we need to multiply M�1,

A�1 in this case, by a vector in each iteration step, and the computation of A�1

times a vector is just as expensive as to solve Ax = b. Therefore, not only is the

condition number of the preconditioned operator M�1A required to improve, but

it is also important to make the multiplication of M�1 times a vector inexpensive.
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2.2 Domain decomposition procedures for Stokes

equations

2.2.1 Discrete incompressible Stokes equations

We consider solving the following incompressible Stokes problem on a bounded,

polyhedral domain 
 in two or three dimensions with a Dirichlet boundary condi-

tion, 8>>>><>>>>:
��u +rp = f ; in 
 ,

�r � u = 0; in 
 ,

u = g; on @
 ,

(2.2)

where the boundary data g satis�es the compatibility condition
R
@

g � n = 0. For

the sake of simplicity, we choose g = 0 in our discussions.

The solution (u; p) of equation (2.2) satis�es the variational problem (1.4) with

the velocity space (H1
0 (
))

d and the pressure space Q = L2
0(
), and

a(u;v) =

Z



ru � rv =
dX

i;j=1

Z



@ui
@xj

@vi
@xj

; b(v; q) = �
Z



(r � v)q:

Later, the domain 
 will be decomposed into subdomains, and we will use ai(�; �)
and bi(�; �) to denote these bilinear forms restricted on each subdomain 
i.

Both bilinear forms, a(�; �) and b(�; �), are continuous:

ja(u;v)j � CkukH1kvkH1; 8u;v 2 (H1
0 (
))

d;

jb(v; q)j � CkvkH1kqkL2; 8v 2 (H1
0(
))

d , q 2 L2
0(
);

and the bilinear form a(�; �) is elliptic on (H1
0 (
))

d, i.e., there exists an �0 such

that

ja(v;v)j � �0kvk2H1; 8v 2 (H1
0 (
))

d:

13



We also know that there exists a positive constant � such that

sup
v2(H1

0
(
))d

b(v; q)

kvkH1

� �kqkL2; 8q 2 L2
0(
);

and therefore, we know, from Theorem 1, that there exists a unique solution

(u; p) 2 (H1
0 (
))

d � L2
0(
) to problem (2.2), for any f 2 �

(H1
0 (
))

d
�0
, cf. [10,

Section II.1.1].

We solve this variational problem (1.4), corresponding to the incompressible

Stokes equations (2.2), by using �nite element methods. We triangulate the domain


 into shape-regular elements of characteristic size h. From now on,W and Q are

used to denote �nite element subspaces of (H1
0 (
))

d and L2
0(
), respectively. The

discrete variational problem is: �nd u 2W and p 2 Q such that8<:
(ru;rv)� (p;r � v) = (f ;v); 8v 2W ,

�(r � u; q) = 0; 8q 2 Q .
(2.3)

We assume an inf-sup stability of the chosen mixed �nite element space W � Q,

i.e., there exists a positive constant �, independent of h, such that

sup
w2W

b(w; q)

kwkH1

� �kqkL2; 8q 2 Q: (2.4)

After discretizing the integrals in (2.3), we have the following matrix form:

K

�
u
p

�
=

�
A BT

B 0

��
u
p

�
=

�
f
0

�
. (2.5)

2.2.2 Finite element methods with discontinuous pressure

We assume that the domain 
 can be decomposed into quadrilateral (hexagonal

in three dimensions) subdomains and that each subdomain is further re�ned into

a �ne quadrilateral or hexagonal �nite element mesh. Among the many choices

14



of the inf-sup stable mixed �nite elements for incompressible Stokes equations, we

consider several. In each case, we use a discontinuous pressure approximation; this

is allowed because the pressure is the space of L2
0(
).

The �rst choice is the popular Q2 � P1 mixed �nite elements for the two-

dimensional case, where the velocity is a quadratic function and the pressure is a

linear function on each quadrilateral element; see Figure 2.1 for illustration. We

know that this choice satis�es the inf-sup stability condition (2.4), cf. [10].

Value of velocity

Value of pressure

Value of pressure and
its derivatives

O 

O O 

O O 

O O 

O 

X O 

O 

X 

X 

Figure 2.1: Q2-P1 mixed �nite element in two dimensions

The second choice for the two-dimensional case is illustrated in Figure 2.2,

where the velocity is linear on each triangle and the pressure is a common constant

on these four triangles. The inf-sup stability of this choice can be easily proved by

using the macroelement technique given in [75].

O O 

O O O 

O 

 
 X 

Figure 2.2: A mixed �nite element in two dimensions
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The �nite elements used in our three-dimensional numerical experiments are

illustrated in Figure 2.3, where the velocity is spanned by 1, x, y, z, zx, zy on

each prism, and the pressure is a constant on these eight prisms. It is also easy to

prove the inf-sup stability of this choice, by using the macroelement technique.

O O O 

O O O 

O O O 

O O O 

O 

O 

X 

Figure 2.3: A mixed �nite element in three dimensions

2.2.3 Decomposition of the solution space

The domain 
 is decomposed into Ns nonoverlapping polyhedral subdomains 
i,

i = 1; 2; :::; Ns, of characteristic sizeH. � = ([@
i)n@
 is the subdomain interface.

We decompose the discrete velocity space W and the pressure space Q into

W =WI �W�;

Q = QI �Q0;
(2.6)

where WI and QI are the direct sums of subdomain interior velocity space Wi
I ,

and of subdomain interior pressure space Qi
I , respectively, i.e.,

WI = �Ns
i=1W

i
I ; QI = �Ns

i=1Q
i
I :

Each subdomain interior velocity component wi
I 2Wi

I has its support inside the

subdomain 
i and equals zero on the subdomain interface �\@
i. Each subdomain

pressure component qiI 2 Qi
I has zero average on subdomain 
i and equals zero
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outside. q0 2 Q0 is the subdomain constant pressure part, which has a constant

value qi0 in the subdomain 
i. These qi0 satisfy

NsX
i

qi0 m(
i) = 0; (2.7)

to make the global Stokes problem have a unique solution. Here m(
i) is the

measure of the subdomain 
i. We can see that the space WI and the space QI

are direct sums of independent subdomain spaces, which means that there are no

direct communication between di�erent subdomain components. Therefore, these

parts can be easily processed on di�erent processors in parallel for the subdomain

solvers. The space Q0 is not subdomain independent, because each its component

has to satisfy a global condition in equation (2.7). Therefore, they cannot be

processed the same as the subdomain interior velocity and pressure. Instead,

these subdomain constant pressures appear in a coarse level problem. Solving

this coarse level problem in each iteration step makes the subdomain boundary

velocities satisfy the incompressibility condition on each subdomain, cf. [7], [48],

and [64].

W� is the subdomain interface velocity space, and it is decomposed di�er-

ently in di�erent algorithms. In the primal iterative substructuring methods, the

neighboring subdomains share degrees of freedom at each interface node. Each

function w� 2 W� is continuous across the subdomain interface �. In this case,

W� cannot be written as the direct sums of subdomain interface velocity space

Wi
�; however we useW

i
� to denote the component ofW� on @


i. In the one-level

and two-level FETI algorithms, the neighboring subdomains are completely torn

apart, which means, at each interface node, di�erent degrees of freedom are as-
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signed to the neighboring subdomains which share this node. In this way, jumps

across the subdomain interface are allowed for the interface velocity w� 2 W�,

and the space W� is the direct sum of independent subdomain interface velocity

space Wi
�. In the FETI-DP algorithm, the neighboring subdomains share degrees

of freedom only at a few interface nodes, for example at subdomain vertices, and

have di�erent degrees of freedom at all other common interface nodes. In this case,

W� is decomposed into

W� =W� �W� =W� �
��Ns

i=1W
i
�

�
, (2.8)

where each function w� 2 W� is continuous across �, and each function w� 2
W� allows jumps. We also use Wi

� to denote the component of W� on @
i.

See Figure 2.4 for illustration of the interface velocity in di�erent nonoverlapping

domain decomposition methods in two dimensions. In all cases, we use Wi to

denote the space of velocity on subdomain 
i, i.e., Wi =Wi
I [Wi

�.

Using the decomposition of the solution space given in (2.6), the linear sys-

tem (2.5) can be written as0BB@
AII BT

II AT
�I 0

BII 0 BI� 0
A�I BT

I� A�� BT
0

0 0 B0 0

1CCA
0BB@

uI
pI
u�
p0

1CCA =

0BB@
fI
0
f�
0

1CCA . (2.9)

We de�ne a Schur complement operator S� as

S� = A�� � (A�I BT
I�)

 
AII BT

II

BII 0

!�1 
AT
�I

BI�

!
: (2.10)

The linear system (2.9) can then be reduced to a problem for the interface velocity

u� and subdomain constant pressure p0:�
S� BT

0

B0 0

��
u�
p0

�
=

�
f��
0

�
, (2.11)
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Ωi Ωj Primal Iterative
Substructuring

→←
 wΓ

Ωi Ωj FETI w i
Γ  w j

Γ→ ←

Ωi Ωj FETI−DP w i
∆  w j

∆→ ←

 wΠ

 wΠ

Figure 2.4: Interface velocity of di�erent nonoverlapping methods

where

f�� = f� �
�
A�I BT

I�

� AII BT
II

BII 0

!�1 
fI

0

!
: (2.12)

2.2.4 Discrete Stokes extensions

The Schur complement operator S�, de�ned in (2.10), can be subassembled from

the subdomain Schur complement operators Si
�, where S

i
� is de�ned on the sub-

domain 
i by

Si
� = Ai

�� � (Ai
�I BiT

I�)

 
Ai
II BiT

II

Bi
II 0

!�1 
AiT

�I

Bi
I�

!
: (2.13)
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Si
� can be viewed in terms of an operator applied on the interface velocity vector

ui�, i.e., given any interface vector ui�, the vector S
i
�u

i
� satis�es0BB@

Ai
II BiT

II AiT

�I

Bi
II 0 Bi

I�

Ai
�I BiT

I� Ai
��

1CCA
0B@ uiI

piI

ui�

1CA =

0B@ 0

0

Si
�u

i
�

1CA : (2.14)

We know, from the de�nition (2.13), that the action of Si
� can be evaluated by

solving a Dirichlet problem on the subdomain 
i. From equation (2.14), we see

that to compute the action of Si�1

� , we need to solve a Neumann problem on the

subdomain 
i. In the following lemma, we show that the resulting subdomain

Schur complements Si
� are positive semi-de�nite.

Lemma 4 The subdomain Schur complements Si
� de�ned in (2.14) are symmet-

ric, positive semi-de�nite, and they are singular for any subdomain with a boundary

that does not intersect @
.

Proof: It is easy to see that Si
� is symmetric. Therefore we just need to show

that ui�
T
Si
�u

i
� � 0, for any nonzero vector ui�. For any given vector ui�, we can

always �nd a vector0@ uiI

piI

1A = �
0@ Ai

II BiT

II

Bi
II 0

1A�10@ AiT

�I

Bi
I�

1Aui�; (2.15)

by solving a subdomain incompressible Stokes problem with Dirichlet boundary

data ui�. Therefore,

ui
T

� S
i
�u

i
� =

0B@ uiI

piI

ui�

1CA
T
0BB@

Ai
II BiT

II AiT

�I

Bi
II 0 Bi

I�

Ai
�I BiT

I� Ai
��

1CCA
0B@ uiI

piI

ui�

1CA
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=

 
uiI

ui�

!T  
Ai
II AiT

�I

Ai
�I Ai

��

! 
uiI

ui�

!
+ 2pi

T

I

�
Bi
II Bi

I�

� uiI

ui�

!

=

 
uiI

ui�

!T  
Ai
II AiT

�I

Ai
�I Ai

��

! 
uiI

ui�

!
,

where the last equality results from Bi
IIu

i
I + Bi

I�u
i
� = 0, because the vector

(uiI ; p
i
I ;u

i
�) satis�es equation (2.14). Since the matrix 

Ai
II AiT

�I

Ai
�I Ai

��

!

is just the discretization of a direct sum of Laplace operators on the subdomain


i, it is symmetric positive semi-de�nite, and we �nd that ui�
T
Si
�u

i
� � 0, for any

nonzero vector ui�. The inequality is strict when the boundary of subdomain 
i

intersects @
.

�

Each subdomain Schur complement operator Si
� corresponds to the standard

discrete Stokes extension operator SHi: Wi
� ! Wi, de�ned by: given a velocity

ui� 2Wi
�, �nd SHiui� 2Wi and piI 2 Qi

I such that8><>:
ai(SHiui�;v

i) + bi(v
i; piI) = 0; 8vi 2Wi;

bi(SHiui�; q
i
I) = 0; 8qiI 2 Qi

I ;

SHiui� = ui�:

(2.16)

The Si
�-seminorm is de�ned on the �nite element function space Wi

� by

jui�j2Si
�

= ui
T

� S
i
�u

i
� = ai(SHiui�;SHiui�); 8ui� 2Wi

�:

A global discrete Stokes extension operator SH: W� ! W, is de�ned such

that SHi is its restriction to the subspace Wi
�. The S�-seminorm is de�ned on
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the �nite element function space W�, by

ju�j2S� = uT�S�u� = a(SHu�;SHu�); 8u� 2W�:

The interface problem (2.11) can be written in the following variational form:

�nd u� 2W� and p0 2 Q0, such that8<:
a(SHu�;SHv�) + b(SHv�; p0) = < f�;v� >; 8v� 2W�;

b(SHu�; q0) = 0; 8q0 2 Q0:
(2.17)

The discrete Stokes extension operators SHi and SH are the counterparts of

the discrete harmonic extension operators Hi and H, respectively. The subdomain
discrete harmonic extension operator Hi : Wi

� ! Wi, is de�ned by: given ui� 2
Wi

�, �nd Hiui� 2Wi such that(
ai(Hiui�;v

i) = 0; 8vi 2Wi;

Hiui� = ui�:
(2.18)

The global discrete harmonic extension operator H: W� ! W, is de�ned such

that Hi is its restriction on the subspace Wi
�.

The following lemma can be found in [3] for the case of piecewise linear elements

and two dimensions. The tools necessary to extend this result to more general �nite

elements are provided in [81].

Lemma 5 There exist positive constants C1 and C2, independent of H and h,

such that

C1jw�jH1=2(�) � a(Hw�;Hw�) � C2jw�jH1=2(�); 8w� 2W�;

C1jwi
�jH1=2(@
i) � ai(Hiwi

�;Hiwi
�) � C2jwi

�jH1=2(@
i); 8wi
� 2Wi

�:
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The following lemma gives a comparison of the energies of the discrete Stokes

and discrete harmonic extensions, cf. [7, Theorem 4.1]:

Lemma 6 There exist positive constants C1 and C2, independent of H and h,

such that

C1�
2a(SHw�;SHw�) � a(Hw�;Hw�) � C2a(SHw�;SHw�); 8w� 2W�;

C1�
2ai(SHiwi

�;SHiwi
�) � ai(Hiwi

�;Hiwi
�) � C2ai(SHiwi

�;SHiwi
�); 8wi

� 2Wi
�;

C1�
2a(SHw�;SHw�) � a(Hw�;Hw�) � C2a(SHw�;SHw�); 8w� 2W�;

i.e.,

C1�jw�jS� � jw�jH1=2(�) � C2jw�jS�; 8w� 2W�;

C1�jwi
�jSi

�
� jwi

�jH1=2(@
i) � C2jwi
�jSi

�
; 8wi

� 2Wi
�;

C1�jw�jS� � jw�jH1=2(�) � C2jw�jS�; 8w� 2W�;

where � is the inf-sup stability de�ned in (2.4).

2.3 Overlapping Schwarz methods

In this and the following sections, we will discuss some domain decomposition

methods that have previously been developed for the incompressible Stokes equa-

tions (2.2).

In [48], an overlapping Schwarz method was proposed for solving the linear sys-

tem (2.5). Each nonoverlapping subdomain 
i is extended to a larger subdomain


i0. The preconditioner M�1 for K is based on solutions of local saddle point

problems on the overlapping subdomains 
i0 and on solution of a coarse saddle
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point problem on the coarse subdomain mesh, i.e.,

M�1 =
NsX
i=1

RT
i K

�1
i Ri +RT

0K
�1
0 R0; (2.19)

where RT
i K

�1
i Ri represents a local problem solver and RT

0K
�1
0 R0 represents a

coarse problem solver. A GMRES method is used to solve the following pre-

conditioned linear system, 
NsX
i=1

RT
i K

�1
i RiK +RT

0K
�1
0 R0K

!�
u
p

�
=M�1

�
f
0

�
:

Thus, in each iteration step, we need to solve subdomain saddle point problems and

a coarse level problem. Numerical experiments show that the convergence of the

GMRES method is independent of the mesh size h and the number of subdomains

Ns, cf. [48]. Theoretical analysis of this method is still missing.

2.4 Primal iterative substructuring methods

Iterative substructuring is the other major type of domain decomposition meth-

ods. We recall that, when an iterative substructuring method is used to solve a

partial di�erential equation, we �rst decompose the domain 
 into nonoverlapping

subdomains and set up subdomain sti�ness matrices. We then eliminate subdo-

main interior variables and form an interface problem. This interface problem is

solved by a preconditioned Krylov subspace method to obtain the solution on the

interface. A back solve is then applied to obtain the interior part of the solution.

A balancing Neumann-Neumann method was proposed in [64] to solve the inter-

face linear system (2.11). The intuition is that solving the inde�nite problem (2.11)

is equivalent to solving the following symmetric positive de�nite problem: �nd
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u� 2W�;B such that

S�u� = f��; (2.20)

where S� and f
�
� are de�ned in (2.10) and (2.12), respectively. W�;B is the subspace

of benign velocities de�ned by

W�;B = KerB0 = fw� 2W� j B0w� = 0g;

The preconditioner used in the balancing Neumann-Neumann method is of the

form:

QH +

�
I �QH

�
S� BT

0

B0 0

�� NsX
i=1

Qi

�
I �

�
S� BT

0

B0 0

�
QH

�
;

where QH is a coarse level saddle point problem solver and Qi requires solving

subdomain saddle point problems.

By utilizing this coarse level operator QH , we can keep the interface velocity u�

in the benign subspace W�;B throughout the computation, and therefore reduce

the inde�nite saddle point interface problem (2.11) to the positive de�nite prob-

lem (2.20). A conjugate gradient method is used to solve the preconditioned linear

system, and it was proved in [64] that the condition number of the preconditioned

operator is bounded from above by

C

�
1 +

1

�0

�
1

�2

�
1 + log

H

h

�2

;

where � is the inf-sup constant of the original discrete Stokes problem, �0 is the

inf-sup constant of the coarse level saddle point problem, and C is a positive

constant independent of the mesh size H and h. Further applications of balancing

Neumann-Neumann methods to linear elasticity problems can be found in [41] and

[42].
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2.5 Some other methods

In [7], a nonoverlapping domain decomposition approach was directly applied to

solving the discrete system (2.5). The algorithm only requires the solutions of

smaller discrete Stokes systems on the subdomains and another reduced system.

This reduced system is a saddle problem which involves the subdomain interface

velocity and the mean value of the pressure on each subdomain. This reduced

system is solved by an iterative method. We note that Lemma 6 �rst appeared

in [7].

In [76], a nonoverlapping domain decomposition method was applied to solv-

ing incompressible Stokes equations modeled by the hp version of �nite element

methods. In this approach, the original inde�nite problem is reduced to a positive

de�nite interface problem by the introduction of a discrete divergence-free har-

monic extension map. A preconditioned conjugate gradient strategy is then used

for solving this interface problem. Two preconditioners were introduced there. It

was proved that the condition number is bounded from above by

C
H

h

�
1 +

1

�

�2�
1 + log

Hk

h

�
(1 + log k) ;

when a hierarchical hp preconditioner was used, cf. [76, Theorem 4], and by

C(k)

�
1 +

1

�

��
1 + log

H

h

�2

;

when a Neumann-Neumann preconditioner was used, cf. [76, Theorem 5]. Here �

is the inf-sup constant of the original discrete Stokes problem and k is the local

degree of the �nite elements.

Block-diagonal and block-triangular preconditioners, are considered in [47] and

[49] for solving saddle point problems. with diagonal blocks approximated by an
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overlapping Schwarz technique with positive de�nite local and coarse problems.

It was proved that the condition number of the block-diagonal preconditioned

operator is bounded from above by C(1 + H
Æ
), where Æ is the width of the overlap,

cf. [49, Theorem 4.2]. When a block-triangular preconditioner was used, it was

proved that the spectrum of the preconditioned system is contained in a real,

positive interval, which is independent of the discretization, cf. [47].

In [11], an iterative substructuring method of dual type was used to solve the

incompressible Stokes equations. There the pressure is continuous inside each

subdomain, but jumps are allowed across subdomain interfaces. A preconditioned

conjugate gradient method is used to solve a linear system of Lagrange multipliers,

which constrain the continuity of velocity on the subdomain interface. Since no

coarse level solver is implemented in each iteration step, the convergence of CG

depends on the number of subdomains.

Some other domain decomposition methods for incompressible Stokes equations

can be found in [1], [12], [13], [34], [35], [36], [59], [60], [61], [66], [69], [70].

Other approaches for the iterative solution of saddle point problems are Uzawa's

algorithm, cf. [6], [22], [55]; multigrid methods, cf. [4], [5], [9], [79], [83]; precondi-

tioned conjugate gradient methods for a positive de�nite equivalent problem, cf. [8];

block-diagonal preconditioners, cf. [50], [62], [71], [73], [80]; and block-triangular

preconditioners, cf. [24], [26], [47], [63].
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Chapter 3

FETI type algorithms for

incompressible Stokes equations

3.1 Introduction

The Finite Element Tearing and Interconnecting (FETI) methods were �rst pro-

posed in [29] for positive de�nite elliptic partial di�erential equations. In this

method, the spatial domain is decomposed into nonoverlapping subdomains, and

the interior subdomain variables are eliminated to form a Schur problem for the

interface variables. Lagrange multipliers are then introduced to enforce continuity

across the interface, and a symmetric positive semi-de�nite linear system for the

Lagrange multipliers is solved by using a preconditioned conjugate gradient (PCG)

method. This method has been shown to be numerically scalable for second or-

der elliptic problems. For fourth-order problems, a two-level FETI method was

developed in [28]. The main idea in this variant is that an extra set of Lagrange

multipliers are used to enforce the continuity at the subdomain corners in every

step of the PCG iterations. A similar idea was used in [31] and [65], to introduce

the Dual-Primal FETI (FETI-DP) methods in which the continuity of the iterates
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are enforced directly at the corners, i.e., the degrees of freedom at the subdo-

main corners are shared by neighboring subdomains. The FETI-DP methods were

further re�ned to solve three-dimensional problems by introducing Lagrange multi-

pliers to enforce continuity constraints for the averages of the solution on interface

edges or faces. This set of Lagrange multipliers, together with the corner variables,

form the coarse problem of this FETI-DP method. This richer, primal problem

is necessary to obtain satisfactory convergence rates in three dimensions. It was

proved in [57] that the condition number of a FETI-DP algorithm grows at most as

C(1+ log(H=h))2 for two-dimensional second order and fourth order positive de�-

nite elliptic equations. New preconditioners were proposed in [51] and it was proved

that the condition numbers can be bounded from above by C(1 + log(H=h))2 for

three-dimensional problems; these bounds are also independent of possible jumps

of the coeÆcients of the elliptic problem.

In this chapter, we extend the FETI algorithms to solving incompressible Stokes

problems. In our FETI algorithms, we only consider �nite elements with discon-

tinuous pressure component. This makes it possible to only enforce continuity of

the velocity component across the subdomain interface using Lagrange multipli-

ers. The pressure component is not required to be continuous either across the

subdomain interface or inside each subdomain. By reducing the original problem

to a dual problem on the Lagrange multiplier variables, the solution of the original

inde�nite saddle point problem is reduced to solving a positive de�nite problem for

the Lagrange multiplier variables, and therefore a preconditioned conjugate gradi-

ent method can be applied. In each iteration step, we solve inde�nite subdomain

saddle point problems and coarse level problems directly. In one-level FETI and
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two-level FETI algorithms, the coarse level problems are positive de�nite, while

in the FETI-DP algorithm, the coarse level problem is a saddle point problem.

In the following sections, we develop these three di�erent FETI algorithms for

two dimensional incompressible Stokes equations. In the next chapter, we prove

the condition number bounds for our FETI-DP algorithms, both in two and three

dimensions.

3.2 One-level FETI algorithms

In this section, we develop a FETI algorithm for solving the incompressible Stokes

equations (2.2). Let us recall that the problem has been reduced to solving the

interface problem (2.11), where the solution u� 2 W� and p0 2 Q0. For each

interface grid point, we assign di�erent degrees of freedom to the neighboring sub-

domains. Therefore, the velocity �eld allows jumps across the subdomain interface.

The continuity constraint on the interface velocity u� is enforced by

B�u� = 0 (3.1)

where B� is a matrix constructed from f0; 1;�1g such that the values of u� coincide
across the subdomain interface � when B�u� = 0.

We know from section 2.2.4 that the global Schur complement operator S� is

positive semi-de�nite. Therefore, the problem (2.11) and (3.1) can now be written

as a saddle point problem subject to the continuity constraints: �nd the stationary

point of

L(w�; q0) = inf
w�2W�

sup
q02Q0

1

2
wT
�S�w� + qT0 B0w� � f�

T

� w�;
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subject to

B�w� = 0:

By introducing a vector of Lagrange multipliers � to enforce all the constraints

B�w� = 0, we obtain the following linear system:0@ S� BT
0 BT

�

B0 0 0
B� 0 0

1A0@ u�
p0
�

1A =

0@ f��
0
0

1A , (3.2)

which can be written as�
S� BT

B 0

��
u�
�

�
=

�
f��
0

�
, (3.3)

if we use � to incorporate both � and p0, and use B to denote the block matrix

built from B0 and B�.

To guarantee the solvability of equation (3.3), we require that

f�� � BT� ? Ker(S�); (3.4)

where Ker(S�) is the kernel of S�. The solution u� of equation (3.3) then has the

form

u� = Sy�(f
�
� � BT�)� R�; (3.5)

where Sy� is a pseudoinverse of S�, and the range of R is the null space of the

operator S�. Notice that Bu� = 0 and RT
�
f�� � BT�

�
= 0, and we have�

F G
GT 0

��
�
�

�
=

�
d
e

�
, (3.6)

where F = BSy�B
T , G = BR, d = BSy�f

�
�, and e = RT f��.

Solving this FETI interface problem is equivalent to solving the following con-

strained optimization problem

Minimize 1
2
�TF�� �Td;

subject to GT� = e:
(3.7)
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When we use a conjugate gradient method to solve this optimization problem, we

need to make � satisfy the constraint GT� = e, in each iteration. We choose the

initial guess �0 as �0 = G
�
GTG

��1
e, which satis�es this constraint. And then we

apply a conjugate gradient method to solve

PF� = Pd; � 2 �0 +Range(P ): (3.8)

where the projection operator P is de�ned by

P = I �G
�
GTG

��1
GT :

We can see that the � always satis�es the constraint GT� = e.

Two di�erent type preconditioners have been proposed in the literature for

the FETI methods for positive de�nite elliptic problems: the computationally eco-

nomical lumped preconditioners, cf. [32], and the mathematically optimal Dirichlet

preconditioners, cf. [30] and [33]. A condition number bound, C(1 + log(H=h))3,

has been proved in [56] for the FETI method with Dirichlet preconditioner, both

in two and three dimensions. A scaled Dirichlet preconditioner is proposed in [53],

and a condition number bound C(1 + log(H=h))2 is proved. This bound is also

independent of possible jumps of the coeÆcients of the elliptic problem.

In our numerical experiments in section 3.5, no preconditioner is used to solve

the FETI system (3.8) of the incompressible Stokes equations. We have tested

Dirichlet preconditioners in this FETI algorithm for solving Stokes problems, and

found no improvement in the convergence.
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3.3 Two-level FETI algorithms

In the two-level FETI methods, we are solving

Minimize 1
2
�TF�� �Td;

subject to GT� = e and CTP (F�� d) = 0;
(3.9)

where C is a chosen matrix. We can see that

CTP (F�� d) = CT
�
I �G

�
GTG

��1
GT
�
(F�� d)

= CT
�
F�� d�G

�
GTG

��1
GT (F�� d)

�
= CT (F�� d�G�)

= �CTBu�:

Notice that Bu� is the jump of the velocity components across the subdomain

interface. By requiring CTP (F� � d) = 0, we make this jump orthogonal to the

columns of the matrix C. If we choose a matrix C such that each column corre-

sponds to a subdomain corner mode, then the velocity will always be continuous at

the subdomain corners when we solve problem (3.9) by using a conjugate gradient

method.

3.4 Dual-primal FETI algorithms

In this section, we develop a dual-primal FETI algorithm for solving the incom-

pressible Stokes equations in two dimensions. Our algorithms for three-dimensional

problems will be discussed in the next chapter.

We start by considering equation (2.9), where we need to �nd (uI ; pI;u�; p0) 2
(WI; QI ;W�; Q0) such that the equation (2.9) is satis�ed.
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We decompose W� into a subdomain corner velocity subspace WC and the

remaining interface velocity subspace W�, i.e.,

W� =WC �W� . (3.10)

The continuity of each function in WC is enforced directly, i.e., the degrees of

freedom at a cornerpoint are common to all subdomains sharing this corner. The

continuity constraint for any function w� 2W� is of the form

B�w� = 0; (3.11)

where the matrix B� is constructed from f0,1,-1g such that the values of w�

coincide across the subdomain interface � when B�w� = 0. We also introduce

redundant continuity constraints of the form

QT
�B�w� = 0; (3.12)

for all w� 2 W�. This continuity condition is enforced in each iteration step of

our algorithm, while all the continuity constraints of (3.11) are not satis�ed until

convergence. The matrix Q�, in equation (3.12), is constructed such that, for any

function w� 2W�, Q
T
�B�w� = 0 implies that,Z

�ij
(wi

� �wj
�) = 0; 8�ij: (3.13)

By introducing Lagrange multipliers � and � to enforce the continuity constraints
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(3.11) and (3.12) for the functions in W�, equation (2.9) can be written as0BBBBBBBB@

AII BT
II AT

�I AT
CI 0 0 0

BII 0 BI� BIC 0 0 0
A�I BT

I� A�� AT
C� BT

�0 BT
�Q� BT

�

ACI BT
IC AC� ACC BT

C0 0 0
0 0 B�0 BC0 0 0
0 0 QT

�B� 0 0 0 0
0 0 B� 0 0 0 0

1CCCCCCCCA

0BBBBBBBB@

uI
pI
u�
uC
p0
�
�

1CCCCCCCCA
=

0BBBBBBBB@

fI
0
f�
fC
0
0
0

1CCCCCCCCA
.

(3.14)

We notice that two sets of Lagrange multipliers � and � are introduced to

enforce the continuity constraints of the velocity across the interface � given by

equations (3.11) and (3.12). In fact, � is redundant because B�u� = 0 implies

QT
�B�u� = 0: But in our algorithm, � and � are treated di�erently. We iterate on

the dual variable �, and the continuity condition B�u� = 0 is not satis�ed until

convergence. However, by solving an augmented coarse problem exactly in each

iteration step, QT
�B�u� = 0 is satis�ed throughout. This extra set of Lagrange

multipliers � is in fact grouped together with the primal variables and it augments

the corner velocities to form the coarse level velocity component. This coarse level

velocity component forms the coarse level saddle point problem together with the

subdomain constant pressures. We will prove the inf-sup stability of this coarse

level problem in section 4.3. Without this extra set of Lagrange multiplier � to

augment the subdomain corner velocities, the coarse level saddle point problem is

very similar to the Q1� P0 mixed �nite element, which is not inf-sup stable.

By using the notations

~ur =

0@ uI
pI
u�

1A , ~uc =

0@ uC
p0
�

1A ; (3.15)
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equation (3.14) can be written as,0@ Krr Krc BT
r

KT
rc Kcc 0

Br 0 0

1A0@ ~ur
~uc
�

1A =

0@ ~fr
~fc
0

1A , (3.16)

where Krr; Krc; Kcc; Br;~fr, and ~fc, are the corresponding block matrices and block

vectors.

Our algorithm results from two consecutive elimination procedures applied to

equation (3.16). We �rst eliminate the subdomain independent variables ~ur and

obtain �
~Kcc

~Kcl

~KT
cl

~Kll

��
~uc
�

�
=

�
~f�c
dl

�
, (3.17)

where

~Kcc = Kcc �KT
rcK

�1
rr Krc , ~Kll = �BrK

�1
rr B

T
r , ~Kcl = �KT

rcK
�1
rr B

T
r ,

and

~f�c =
~fc �KT

rcK
�1
rr
~fr , dl = �BrK

�1
rr
~fr .

We then eliminate ~uc from equation (3.17), and obtain a linear system for the

Lagrange multipliers �,

( ~Kll � ~KT
cl
~K�1
cc

~Kcl)� = dl � ~KT
cl
~K�1
cc
~f�c . (3.18)

This is the dual problem in our nonpreconditioned FETI-DP algorithm for Stokes

equations. We will show in section 4.1 that this dual problem is symmetric, positive

de�nite, and therefore a conjugate gradient method can be used to solve (3.18).

After obtaining �, we solve equations (3.17) and (3.16) to obtain ~uc and ~ur,

respectively.
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The preconditioner used in our FETI-DP algorithm, is the standard Dirichlet

preconditioner, which is given by B�S�B
T
�, where S� is de�ned in (2.10). The

preconditioner involves solving subdomain incompressible Stokes problems with

Dirichlet boundary conditions. We will show in section 4.4 that this preconditioned

linear system can also be solved by a conjugate gradient method.

3.5 Numerical experiments

One-level FETI, two-level FETI, nonpreconditioned FETI-DP, and preconditioned

FETI-DP algorithms were tested by solving the two-dimensional incompressible

Stokes equation (2.2) with 
 = [0; 1] � [0; 1], f = 0, the boundary conditions

g = (1; 0) on the upper side y = 1, and g = 0 on the three other sides.

We choose the initial guess � to satisfy the constraints in (3.7) and (3.9), for

the one-level and two-level FETI algorithms, respectively. We use a zero initial

guess � = 0, for the FETI-DP algorithms. In each case, the conjugate gradient

method is stopped when the residual satis�es krkk2=kr0k2 � 10�6, where rk is the

residual of the Lagrange multiplier equation in the kth iteration.

In Figure 3.1, we give the CG iterations counts, to achieve convergence in

each algorithm, for di�erent mesh sizes. We see, from the left �gure, that the

convergence of each algorithm is insensitive to the number of subdomains, and that

the preconditioned and nonpreconditioned FETI-DP algorithms converge faster

than the one-level and two-level FETI algorithms. The right �gure shows that

the convergence of CG iteration, for each algorithm, depends on the subdomain

problem size. The growth of the CG iteration count for the preconditioned FETI-

DP algorithm is the slowest. It is interesting to see that for smaller problem, the
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nonpreconditioned FETI-DP algorithm behaves better, but for bigger problem the

preconditioned FETI-DP becomes advantageous. The reason is that the condition

number of the preconditioned algorithm is bounded from above by the square of the

logarithm of H=h, while the condition number of the nonpreconditioned algorithm

is most likely bounded by a linear function of H=h.

Figure 3.2 plots the approximate velocity and pressure of this lid driven cavity

problem, solved by using the preconditioned FETI-DP algorithm in the case of

10� 10 subdomains and H=h = 12.

0 50 100 150 200

10

20

30

40

50

60

N
u

m
. 

o
f 

C
G

 i
te

ra
ti
o

n
s

Num. of subdomains, for H/h=8

one−level FETI

two−level FETI

Precond. FETI−DP

Nonpre. FETI−DP

0 10 20 30 40

10

20

30

40

50

60
N

u
m

. 
o

f 
C

G
 i
te

ra
ti
o

n
s

H/h, for 16 subdomains

one−level FETI

two−level FETI

Precond. FETI−DP

Nonpre. FETI−DP

Figure 3.1: Scalability of FETI type algorithms
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Chapter 4

Convergence analysis for

FETI-DP algorithms for Stokes

equations

In this chapter, we will give a convergence analysis of our dual-primal FETI algo-

rithms for solving incompressible Stokes equations in both two and three dimen-

sions.

4.1 Dual-primal FETI algorithms in general form

In section 3.4, we have developed a dual-primal FETI algorithm for solving two-

dimensional incompressible Stokes equations. In this section, we give a general

description of our dual-primal FETI algorithms, including the three-dimensional

case.

We start by solving the global linear system (2.9), where we need to �nd a

vector (uI ; pI;u�; p0) 2 (WI; QI ;W�; Q0) such that equation (2.9) is satis�ed.

For convenience, we make no distinction between the symbols of a vector and its

corresponding �nite element function, and the same rule also applies to a vector
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space and its corresponding �nite element function space. For example, w� can

denote either a vector in the vector space W�, or a �nite element function in the

�nite element function space W�.

Let us recall that, the domain 
 is decomposed into Ns non-overlapping poly-

hedral subdomains 
i, i = 1; 2; :::; Ns, of characteristic size H. � = ([@
i)n@

is the subdomain interface, �ij = @
i \ @
j is the interface of two neighboring

subdomains 
i and 
j. Each subdomain 
i is triangulated into shape-regular el-

ements of characteristic size h, with the �nite element nodes on the boundaries of

the neighboring subdomains matching across the interface �. �h and �ijh are used

to denote the grid points on � and �ij, respectively.

In three dimensions, each subdomain interface �ij is decomposed into a subdo-

main face F ij, regarded as an open set, which is shared by two subdomains, edges

E ik, which are shared by more than two subdomains, and vertices V il, which are

endpoints of edges. We use F ij
h and E ikh to denote the grid points on F ij and E ik,

respectively. �F ij , �Eik , and �Vil are the standard �nite element cuto� functions.

The �rst two are the discrete harmonic functions which equal 1 on F ij
h and E ikh ,

respectively, and vanish on the rest of �h; �Vil denotes the piecewise discrete har-

monic extension of the standard nodal basis function associated with the vertex

V il. In two dimensions, we only have edges and vertices, with each edge shared by

two neighboring subdomains and the vertices being the end points of edges.

When we were developing a dual-primal FETI algorithm in section 3.4 for

the two-dimensional case, we introduced an extra set of Lagrange multipliers �

to enforce the redundant continuity constraint (3.12). In each iteration step of

our algorithm, a coarse level problem is solved, which includes � as one of its
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variables, and therefore the dual velocity part w� always satis�es the continuity

condition (3.13) throughout the computation. The Lagrange multipliers � there-

fore play a role as a coarse level velocity component, which is spanned by the cuto�

functions of the subdomain interface edges. By viewing � as a coarse level primal

velocity variable, we can decompose the interface velocity space W� as

W� =W� � fW� , (4.1)

where, in the two-dimensional case, the primal subspace W� is spanned by the

subdomain vertex nodal �nite element basis functions �Vil and the cuto� functions

�Eik associated with all the edges of the interface �. fW� is the dual part of the

velocity space, and it is the direct sum of local subspaces fWi
�, which are de�ned

by fWi
� = fwi

� 2Wi
� : w

i
�(V il) = 0;wi

�;Eik = 0; 8V il; E ik � @
ig;

with wi
�;Eik de�ned by

wi
�;Eik =

R
Eik
wi
�dxR

Eik
dx

:

In three dimensions, we can similarly introduce Lagrange multipliers to enforce

continuity constraints for each subdomain edge and face such that the dual ve-

locities have the same edge and face integrals across the interface. In this way,

the primal velocity subspace W� is spanned by the subdomain vertex nodal �nite

element basis functions �Vil and the cuto� functions �Eik and �F ij associated with

all the edges and faces of the subdomain interface �. fW� is the dual part of the

velocity space, and it is the direct sum of local subspaces fWi
�, which are de�ned

by

fWi
� = fwi

� 2Wi
� : w

i
�(V il) = 0;wi

�;Eik = 0;wi
�;F ij = 0; 8V il; E ik;F ij � @
ig;
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with wi
�;Eik and w

i
�;F ij de�ned by

wi
�;Eik =

R
Eik
wi
�dxR

Eik
dx

; and wi
�;F ij =

R
F ij w

i
�dxR

F ij dx
:

Using these notations, the discrete velocity and pressure spaces are decomposed

as follows:

W =WI �W� � fW�;

Q = QI �Q0;

and we need to solve the following problem: �nd a vector (uI ; pI;u�;u�; p0) 2
(WI; QI ;W�;fW�; Q0) such that0BBBB@

AII BT
II AT

�I AT
�I 0

BII 0 BI� BI� 0
A�I BT

I� A�� AT
�� BT

0�

A�I BT
I� A�� A�� BT

0�

0 0 B0� B0� 0

1CCCCA
0BBBB@

uI
pI
u�
u�
p0

1CCCCA =

0BBBB@
fI
0
f�
f�
0

1CCCCA ; (4.2)

where the dual velocity part u� is required to be continuous across the subdomain

interface �.

A Lagrange multiplier space � is introduced to enforce the continuity of the

velocities across �. We obtain the following discrete problem: �nd a vector

(uI ; pI ;u�; p0;u�; �) 2 (WI; QI ;W�; Q0;fW�;�) such that0BBBBBB@
AII BT

II AT
�I 0 AT

�I 0
BII 0 BI� 0 BI� 0
A�I BT

I� A�� BT
0� AT

�� 0
0 0 B0� 0 B0� 0

A�I BT
I� A�� BI

0� A�� BT
�

0 0 0 0 B� 0

1CCCCCCA

0BBBBBB@
uI
pI
u�
p0
u�
�

1CCCCCCA =

0BBBBBB@
fI
0
f�
0
f�
0

1CCCCCCA ; (4.3)

where the matrix B� is constructed from f0; 1;�1g such that the values of u�

coincide across subdomain interface � when B�u� = 0. Here, we will exclusively
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work with fully redundant sets of Lagrange multipliers, i.e., all possible constraints

are used for each node on �. The matrix BT
� then has a null space and to as-

sure uniqueness it is appropriate to restrict the choice of Lagrange multipliers to

Range(B�), i.e., � = B�
fW�. Also note that we are not requiring the pressure

to be continuous across the subdomain interfaces in our algorithm, since we only

consider �nite elements with discontinuous pressure component.

By de�ning a Schur complement operator ~S by0BBBB@
AII BT

II AT
�I 0 AT

�I

BII 0 BI� 0 BI�

A�I BT
I� A�� BT

0� AT
��

0 0 B0� 0 B0�

A�I BT
I� A�� BT

0� A��

1CCCCA
0BBBB@

uI
pI
u�
p0
u�

1CCCCA =

0BBBB@
0
0
0
0
~Su�

1CCCCA ; (4.4)

solving linear system (4.3) is reduced to solving the following linear system�
~S BT

�

B� 0

��
u�
�

�
=

�
f��
0

�
.

By using an additional Schur complement procedure, the problem is �nally reduced

to solving the following linear system with the Lagrange multipliers � as variables:

B�
~S�1BT

�� = B�
~S�1f��: (4.5)

This is the dual-primal FETI algorithm without preconditioning, equivalent to

the linear system (3.18), for solving incompressible Stokes problems. The precon-

ditioned algorithm and its convergence analysis will be discussed in section 4.4 for

two dimensions and in section 4.5 for three dimensions. Here we show that ~S is

symmetric, positive de�nite on the space fW�, and that we therefore can de�ne an

~S-norm.

Lemma 7 ~S is symmetric, positive de�nite on the space fW�.
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Proof: It is easy to see, from its de�nition (4.4), that ~S is symmetric. We next

just need to show that ( ~Su�;u�) > 0, for any nonzero function u� 2 fW�. For

any given function u� 2 fW�, since the coarse-level saddle point problem is inf-

sup stable, we can always �nd a vector (uI ; pI ;u�; p0) such that equation (4.4) is

satis�ed. Therefore,

( ~Su�;u�) = uT� ~Su�

=

0BBBB@
uI
pI
u�
p0
u�

1CCCCA
T 0BBBB@

AII BT
II AT

�I 0 AT
�I

BII 0 BI� 0 BI�

A�I BT
I� A�� BT

0� AT
��

0 0 B0� 0 B0�

A�I BT
I� A�� BT

0� A��

1CCCCA
0BBBB@

uI
pI
u�
p0
u�

1CCCCA
=

0@ uI
u�
u�

1AT 0@ AII AT
�I AT

�I

A�I A�� AT
��

A�I A�� A��

1A0@ uI
u�
u�

1A
+2

�
pI
p0

�T �
BII BI� BI�

0 B0� B0�

�0@ uI
u�
u�

1A +

�
pI
p0

�T �
0 0
0 0

��
pI
p0

�

=

0@ uI
u�
u�

1AT 0@ AII AT
�I AT

�I

A�I A�� AT
��

A�I A�� A��

1A0@ uI
u�
u�

1A ,

where the last equality results from BIIuI + BI�u� + BI�u� = 0 and B0�u� +

B0�u� = 0, because the vector (uI ; pI ;u�; p0;u�) satis�es equation (4.4). Since

the matrix 0@ AII AT
�I AT

�I

A�I A�� AT
��

A�I A�� A��

1A
is just the symmetric, positive de�nite discretization of a direct sum of Laplace

operators with Dirichlet boundary conditions, we �nd that ( ~Su�;u�) > 0, for any

nonzero function u� 2 fW�.
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�

Since ~S is symmetric, positive de�nite on the space fW�, we can de�ne an

~S-norm on fW�, i.e.,

jw�j ~S =
q
( ~Su�;u�); 8w� 2 fW�:

We know, from the proof of Lemma 7, that for any given w� 2 fW�, jw�j ~S =

jw�jS�, where w� = w� +w�, with w� determined by equation (4.4). We have

jw�j ~S = inf
w�2W�

n
jw� +w�jS�

��� Z

i
r � (w� +w�)

i = 0; 8
i
o
: (4.6)

4.2 Technical tools

In this section, we give some lemmas which are necessary in our convergence anal-

ysis.

Lemma 8 can be found in [51, Lemma 7].

Lemma 8 De�ne an interpolation operator I�� :W� !W� by:

I��w�(x) =
X
Vil

w�(V il)�Vil(x) +
X
Eik

wEik�Eik(x) +
X
F ij

wF ij�F ij (x); in 3D,

and

I��w�(x) =
X
Vil

w�(V il)�Vil(x) +
X
Eik

wEik�Eik(x); in 2D.

We then have

jI��w�j2H1=2(�) � C(1 + log(H=h))jw�j2H1=2(�); 8w� 2W�;

and

kw� � I��w�k2L2(�) � CHjw�j2H1=2(�); 8w� 2W�;

where C is a constant independent of H and h.
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Lemma 9 can be found in [17, Lemma 4.5].

Lemma 9 Let �F ij (x) be the cut-o� function of the open face F ij, and let Ih

denote the interpolation operator onto the �nite element space Wi. Then,

kIh(�F ijwi
�)k2H1=2

00
(F ij )

� C(1+log(H=h))2(jwi
�j2H1=2(F ij)+

1

H
kwi

�k2L2(F ij)); 8wi
� 2Wi

�:

Lemma 10 can be found in [20, Lemma 3.3].

Lemma 10 Let E ik be any edge of 
i which forms part of the boundary of a face

F ij � @
i. Then,

kwi
�k2L2(Eik) � C(1 + log(H=h))(jwi

�j2H1=2(F ij) +
1

H
kwi

�k2L2(F ij )) , 8wi
� 2Wi

� .

For the next lemma, see [17, Lemma 4.7].

Lemma 11 Let �Eik be the cuto� function associated with the edge E ik. Then,

jIh(�Eikwi
�)j2H1=2(@
i) � Ckwi

�k2L2(Eik) , 8wi
� 2Wi

� .

The following lemma is for the two-dimensional case and can be found in [82,

Lemma 3.3],

Lemma 12 Let w� 2 W�. IHw� is the linear interpolant from the values at

subdomain vertices. Then

X
Eik2@
i

jw� � IHw�j21=2;2;Eik � C(1 + log(H=h))2jw�j21=2;2;@
i .

47



4.3 Inf-sup stability of the coarse saddle point

problem

In this section, we give an estimate of the inf-sup stability of the following coarse

level saddle point problem,8<:
a(SHu�;SHv�) + b(SHv�; p0) = < f�;v� >; 8v� 2W�;

b(SHu�; q0) = 0; 8q0 2 �0:
(4.7)

The method we are using here is the macroelement technique, introduced

in [75]. This technique was also used in [64] to prove the inf-sup stability for a

coarse level saddle point problem, introduced in the Balancing Neumann-Neumann

method.

Theorem 4 For the coarse level saddle point problem (4.7), we have

sup
w�2W�

b(SHw�; q0)
2

a(SHw�;SHw�)
� C�2(1 + log(H=h))�1jjq0jj2L2 = �20 jjq0jj2L2; 8q0 2 �0;

where � is the inf-sup stability constant of the original Stokes problem, de�ned

in (2.4). �20 = C�2(1 + log(H=h))�1 is thus the inf-sup stability constant of the

coarse level saddle point problem.

Proof: We know, from Lemma 6, that

C1�
2a(SHu�;SHu�) � a(Hu�;Hu�); (4.8)

and we know that

b(SHw�; q0) = b(Hw�; q0): (4.9)

Therefore, we just need to estimate

inf
q02Q0

sup
w�2W�

b(Hw�; q0)
2

a(Hw�;Hw�)
;
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which will provide the inf-sup stability estimate of the incompressible Stokes equa-

tion on the mixed �nite element space W� �Q0.

A macroelement technique is used to establish the inf-sup stability of the space

W��Q0. A marcoelementM in this case consists of two neighboring subdomains,

which share an edge in two dimensions and share a face in three dimensions; see

Figure 4.1 for the two-dimensional case.

Value of velocity

Value of pressure

Ωi Ωj

O 

X 

O 

O O 

O 

O 

O 

O O 

O O 

O O 

X X O 

Figure 4.1: A marcoelement M being the union of two neighboring subdomains

It is easy to see that pi0 = pj0, if
R
M
(r �v)p0 = 0 for any �nite element function

v which vanishes on the boundary of M . The only thing we need to show is a

result similar to [75, Lemma 2], i.e., we need to establish that

sup
w�2W�

b(Hw�; q0)p
a(Hw�;Hw�)

� C1kq0kL2 � C2kq0kh; 8q0 2 Q0;

where

kq0k2h = H
NsX
i=1

Z
@
i

[q0]
2ds;

with [q0] the jump of q0 across @

i.

We follow the procedure in the proof of [75, Lemma 2]. From the inf-sup

stability of the corresponding continuous problem, we know that for any q0 2 Q0,

there exists a function w� 2 H1=2(�) such that

b(Hw�; q0) � C3kq0k2L2 ; (4.10)
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and p
a(Hw�;Hw�) � kq0kL2 : (4.11)

We choose w� as the interpolant of w�, i.e., w� = I��w�. We then know, from

Lemma 8, that

kw� �w�kL2(�) � CH1=2jw�jH1=2(�); (4.12)

and

jw�jH1=2(�) � C(1 + log(H=h))1=2jw�jH1=2(�): (4.13)

Then, we have, from (4.10), (4.11), and (4.12),

b(Hw�; q0) = b(H(w� �w�); q0) + b(Hw�; q0)

� b(H(w� �w�); q0) + C3kq0k2L2

=
NsX
i=1

(Hi(w� �w�);rq0)
i +
NsX
i=1

Z
@
i

[q0](w� �w�) � nds

+C3kq0k2L2

� �H�1=2kw� �w�kL2(�)kq0kh + C3kq0k2L2

� �C4jw�jH1=2(�)kq0kh + C3kq0k2L2

� �C4kq0kL2kq0kh + C3kq0k2L2

= (C3kq0kL2 � C4kq0kh) kq0kL2 ;

and, from (4.13) and (4.11), we havep
a(Hw�;Hw�) � C5 (1 + log(H=h))1=2

p
a(Hw�;Hw�)

� C5 (1 + log(H=h))1=2 kq0kL2 :
Therefore,

sup
w�2W�

b(Hw�; q0)p
a(Hw�;Hw�)

� (1 + log(H=h))�1=2 (C1kq0kL2 � C2kq0kh);
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where C1 and C2 are constants independent of the mesh size H and h. This is

just the conclusion of [75, Lemma 2], except for the (1 + log(H=h))�1=2 factor. We

�nd, using the result of [75], that

inf
q02Q0

sup
w�2W�

b(Hw�; q0)
2

a(Hw�;Hw�)
� C (1 + log(H=h))�1 jjq0jj2L2 ;

and therefore, from (4.8) and (4.9), we have

inf
q02Q0

sup
w�2W�

b(SHw�; q0)
2

a(SHw�;SHw�)
� C�2 (1 + log(H=h))�1 jjq0jj2L2:

�

4.4 Condition number bounds in two dimensions

Our preconditioner in two dimensions is B�S�B
T
�, and the preconditioned linear

system is

B�S�B
T
�B�

~S�1BT
�� = B�S�B

T
�B�

~S�1f�� . (4.14)

When we use a Krylov subspace iterative method to solve equation (4.14),

both S� and ~S�1 are applied to vectors in range(BT
�). In order to use a conjugate

gradient method to solve the linear system (4.14), we have to show that both S� and

~S�1 are symmetric, positive de�nite on range(BT
�). From Lemma 4, we know that

S� is symmetric, positive semi-de�nite on the space W� and it is singular because

of the interior oating subdomains. Now on the range of BT
�, each interior oating

subdomain becomes �xed, because the velocity equals zero at each subdomain

vertex. Therefore S� is nonsingular on the space range(B
T
�) and therefore becomes

positive de�nite. We also know, from Lemma 7, that ~S�1 is symmetric, positive

de�nite. Therefore we can use a conjugate gradient method to solve (4.14). In the
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remainder of this section, we give a condition number bound for the preconditioned

operator B�S�B
T
�B�

~S�1BT
�.

Lemma 13 For any w� 2 fW�, B
T
�B�w� 2 fW�.

Proof: Given w� 2 fW�, we need to show that, on each subdomain interface

edge E ij, Z
Eij
(BT

�B�w�)
i = 0; and

Z
Eij
(BT

�B�w�)
j = 0:

This is easily veri�ed by noticing that,

(BT
�B�w�)

i jEij=
�
wi
� �wj

�

� jEij ; and (BT
�B�w�)

j jEij=
�
wj
� �wi

�

� jEij ;
and that Z

Eij
wi
� =

Z
Eij
wj
� = 0;

because w� 2 fW�.

�

Lemma 14 For any w� 2 fW�, jw�j ~S � 2jw�jS�.

Proof: Given w� 2 fW�, in order to compute its ~S-norm, we need to determine

the element w� = w� + w� 2 W�, such that (4.4) is satis�ed, and we have

jw�j ~S = jw�jS�. Therefore,

jw�j ~S = jw�jS� � jw�jS� + jw�jS�:

In the following, we bound jw�jS� by jw�jS�.
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We know that, given a w�, to �nd a w� is equivalent to solving the following

coarse level saddle point problem: �nd w� 2W� and p0 2 Q0 such that8<:
a(SH(w� +w�);SHv�) + b(SHv�; p0) = 0; 8v� 2W�;

b(SH(w� +w�); q0) = 0; 8q0 2 �0:
(4.15)

We know, from the inf-sup stability of this coarse level problem and Theorem 1,

that

jw�jS� � sup
v�2W�

a(SHw�;SHv�)
jv�jS�

+
2

�0
sup
q02Q0

b(SHw�; q0)

kq0kL2 :

Since w� 2 fW�, we have b(SHw�; q0) = 0. Therefore, we have, from the conti-

nuity of the bilinear form a(�; �),

jw�jS� � jw�jS�:

Therefore

jw�j ~S � jw�jS� + jw�jS� � 2jw�jS�:

�

Lemma 15 For any w� 2 fW�, we have,

jBT
�B�w�j2S� � C

1

�2
(1 + log(H=h))2jw�j2~S;

where C > 0 is independent of h and H.

Proof: We consider an arbitrary w� 2 fW�. In order to compute its ~S�norm,
we need to determine the element w� = w� +w� 2 W� with w� 2 W�, which

satis�es equation (4.4). Then, we know that jw�j ~S = jw�jS�. We next note that

we can subtract any continuous function from w� without changing the values of
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BT
�B�w�; thus, B

T
�B�w� = BT

�B�(w�+w�� IHw�), where I
Hw� is the linear

interpolant on the subdomain boundary, from the values of w� at the subdomain

vertices.

We introduce the notation

(vi�)i=1;:::;N := BT
�B�(w� +w� � IHw�) = BT

�B�(w� � IHw�):

We then have to estimate

jBT
�B�w�j2S� = jBT

�B�(w� � IHw�)j2S� =
NsX
i=1

jvi�j2Si
�

:

We can therefore focus on the estimate of a single subdomain contribution. Notic-

ing that vi� vanishes at the subdomain corners, we can split vi� as

vi� =
X

Eik�@
i

vi�;Eik :

On each edge E ik, we know that

vi�;Eik =
�
BT
�B�(w� � IHw�)

�i
Eik

=
�
w� � IHw�

�i
Eik
� �w� � IHw�

�k
Eik

:

We have to estimate its Si
��norm. We have, from Lemma 6,

jvi�;Eik j2Si
�

= j �w� � IHw�

�i
Eik
� �w� � IHw�

�k
Eik
j2Si
�

� 1

�2
j �w� � IHw�

�i � �w� � IHw�

�k j2H1=2(Eik)

� 2

�2
j �w� � IHw�

�i j2H1=2(Eik)

+
2

�2
j �w� � IHw�

�k j2H1=2(Eik);

where the two terms on the right can be bounded by C 1
�2
(1+log(H=h))2jwi

�j2H1=2(@
i)

and C 1
�2
(1 + log(H=h))2jwk

�j2H1=2(@
k)
, respectively, by using Lemma 12. Then, by
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using Lemma 6 again, we have

jvi�j2Si
�

� C
1

�2
(1 + log(H=h))2

 
jwi

�j2Si
�

+
X
k2N i

jwk
�j2Sk

�

!
,

where N i is the set of indices of all the neighboring subdomains of 
i.

�

Theorem 5 The condition number of the preconditioned linear system (4.14) is

bounded from above by C 1
�2
(1 + log(H=h))2, where C is independent of h and H.

Proof: We will show that

�TM� � �TF� � C
1

�2
(1 + log(H=h))2�TM�; 8� 2 � , (4.16)

where M�1 = B�S�B
T
�; F = B�

~S�1BT
�, and C is independent of h and H.

Lower bound: We have, cf. [51] and [57],

�TF� = max
06=w�2fW�

j(�;B�w�)j2
jw�j2~S

.

From Lemma 13, we know that BT
�B�

fW� � fW�. We also know from Lemma 14

that jw�j ~S � 2jw�jS� for all w� 2 BT
�B�

fW�. Therefore, we have

�TF� � max
06=w�2fW�

j(�;B�B
T
�B�w�)j2

jBT
�B�w�j2~S

� max
06=w�2fW�

j(�;B�w�)j2
jBT

�B�w�j2S�
;

where we have used that fact that B�B
T
� = 2I.

Since for any � 2 � there is a w� 2 fW� such that � = B�w�, we have

�TF� � j(�; �)j2
jBT

��j2S�
=

j(�; �)j2
(M�1�; �)

.

We �nd that

�TM� � �TF�;
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by choosing � =M�.

Upper bound: Using Lemma 15, we have

�TF� = max
06=w�2fW�

(�;B�w�)
2

jw�j2~S
� C

1

�2
(1 + log(H=h))2 max

06=w�2fW�

(�;B�w�)
2

jBT
�B�w�j2S�

= C
1

�2
(1 + log(H=h))2 max

06=w�2fW�

(�;B�w�)
2

(M�1B�w�; B�w�)

= C
1

�2
(1 + log(H=h))2max

�2�

(�; �)2

(M�1�; �)

= C
1

�2
(1 + log(H=h))2(M�; �) :

�

4.5 Condition number bounds in three dimen-

sions

The preconditioner used for three-dimensional problem is DB�S�B
T
�D, where D is

a diagonal scaling matrix. Each of its entries corresponds to a Lagrange multiplier

and is given by �y(x) at each interface point x. �y(x) is the pseudoinverse of the

counting functions �(x): at each interface node x 2 �h, �(x) equals the number

of subdomains shared by that node, and �y(x) = 1=�(x).

The preconditioned linear system is

DB�S�B
T
�DB�

~S�1BT
�� = DB�S�B

T
�DB�

~S�1f�� , (4.17)

which de�nes our FETI-DP algorithm for solving three-dimensional incompressible

Stokes equations.
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We introduce two operators P� and E�: for any w� 2 fW�,

P�w� = BT
�DB�w�;

and

E�w� = w� � P�w�:

We know, from [51], that at any interface point x 2 �h \ @
i
h,

(P�w�)
i(x) =

X
j2N i

x

�y(x)
�
wi
�(x)�wj

�(x)
�
;

and

(E�w�)
i(x) = �y(x)

0@wi
�(x) +

X
j2N i

x

wj
�(x)

1A :

where N i
x
is the set of indices of all the subdomains which share the interface point

x with subdomain 
i. We note that E�w�(x) is the interface average of w�(x)

and is continuous. P�w�(x) represents the jump of w�(x) across � and is not

continuous in general.

Since � = B�
fW�, we know that, for any Lagrange multiplier � 2 �, there

exists a function w� 2 fW�, such that � = B�w�. The following lemma shows

that we can choose a special w� 2 fW�, such that its average E�w� 2 W� and

� = B�w�.

Lemma 16 For any Lagrange multiplier � 2 �, there exists a function w� 2 fW�,

such that � = B�w� and the average of w�, E�w�, is in the primal space W�.

Proof: Let us denote the number of grid points on the face F ij
h , by #F ij

h , and

the number of grid points on the edge E ikh , by #E ikh . We note that each face is
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shared by two neighboring subdomains, and each edge is shared by more than two

neighboring subdomains. We use mEik to denote the number of subdomains which

share E ik.
In order to �nd a w� 2 fW�, such that � = B�w� and E�w� 2W�, we need

to solve a linear system to determine the interface velocity values w�(x), 8x 2 �h,

such that w� has zero integrals on each subdomain face and edge, � = B�w�,

and E�w� is spanned by the face and edge cuto� functions �F ij and �Eik . The

faces contribute 6
P

F ij #F ij
h unknowns, and the edges 3

P
Eik mEik#E ikh , since the

velocity w� is a vector valued function with three components.

Let us now check the number of linearly independent constraints in this linear

system. The number of constraints, for the zero face and edge integrals, is
P

F ij 6+

3
P

Eik mEik . In order that E�w� is spanned by �F ij and �Eik , we need to have

the same average value E�w� at di�erent grid points, for each face and each

edge. This will add 3
P

F ij (#F ij
h � 1) + 3

P
Eik(#E ikh � 1) linearly independent

constraints, where we have eliminated one grid point on each face and each edge

to make these constraints independent, because we have already restricted w� to

have zero integrals on each subdomain face and edge. The condition � = B�w�

will introduce another 3
P

F ij (#F ij
h � 1) + 3

P
Eik(mEik � 1)(#E ikh � 1) linearly

independent constraints, where we have used the fact that, at each edge point,

there are mEik � 1 independent Lagrange multiplier constraints. We can see that

we have in total

6
X
F ij

#F ij
h + 3

X
Eik

mEik#E ikh

linearly independent constraints in the linear system to determine the same number

of unknowns. Therefore, we can always �nd the w� 2 fW�, such that � = B�w�
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and E�w� 2W�.

As an extra check that these constraints are indeed linearly independent, we

note that, if � = 0, then w� is continuous and E�w� = w�. Since E�w� 2W�

and w� 2 fW�, we know that w� is a constant on each face and edge, and the

face and edge integrals equal zero. Therefore w� = 0.

�

Lemma 17 For any w� 2 fW�, if E�w� 2 W�, then there exists a positive

constant C, independent of h and H, such that jw�j ~S � C(1 + 1
�0
)jP�w�jS�.

Proof: Given w� 2 fW�, we know from (4.6) that

jw�j ~S = inf
w�2W�

n
jw� +w�jS�

��� Z

i
r � (w� +w�)

i = 0; 8 
i
o

= inf
w�2W�

n
jP�w� + E�w� +w�jS�

��� Z

i
r � (P�w� + E�w� +w�)

i = 0
o

= inf
w�2W�

n
jP�w� +w�jS�

��� Z

i
r � (P�w� +w�)

i = 0
o
;

where we have used the fact that E�w� 2W�.

Therefore,

jw�j ~S � jP�w�jS� + jw�jS�;

where w� is determined by solving the following coarse level saddle point problem:

given P�w�, �nd w� 2W� and p0 2 Q0 such that8<:
a(SH(w� + P�w�);SHv�) + b(SHv�; p0) = 0; 8v� 2W�;

b(SH(w� + P�w�); q0) = 0; 8q0 2 �0:
(4.18)

We know, from the inf-sup stability of this coarse level problem and Theorem 1,

that

jw�jS� � sup
v�2W�

a(SH(P�w�);SHv�)
jv�jS�

+
2

�0
sup
q02Q0

b(SH(P�w�); q0)

kq0kL2 :
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Hence, from the continuity of the bilinear forms,

jw�jS� � C

�
1 +

1

�0

�
jP�w�jS�;

where C is a positive constant independent of h and H. Therefore, we have

jw�j ~S � C(1 +
1

�0
)jP�w�jS�:

�

The following lemma is the three-dimensional version of Lemma 15. Our proof

is very similar to that of [51, Lemma 9].

Lemma 18 For all w� 2 fW�, we have,

jP�w�j2S� � C
1

�2
(1 + log(H=h))2jw�j2~S;

where C > 0 is independent of h and H.

Proof: We consider an arbitrary w� 2 fW�. In order to compute its ~S�norm,
we need to determine the element w� = w� + w� 2 W�, which satis�es the

de�nition of ~S in equation (4.4). We know that jw�j ~S = jw�jS�. We next note

that we can subtract any continuous function fromw� without changing the values

of BT
�DB�w�; thus, B

T
�DB�w� = BT

�DB�w�.

We introduce the notation (vi�)i=1;:::;N := BT
�DB�w�. Then, we have to esti-

mate

jBT
�DB�w�j2S� = jBT

�DB�w�j2S� =
NsX
i=1

jvi�j2Si
�

:

We will focus on the estimate of the contribution from a single subdomain 
i. By

noticing that vi� vanishes at the subdomain vertices, we can split the function vi�
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by using the cuto� functions �F ij and �Eik ,

vi� =
X

F ij�@
i

Ih(�F ijvi�) +
X

Eik�@
i

Ih(�Eikv
i
�): (4.19)

We need to estimate the Si
�-norm of the function vi�. From Lemma 6, we know

that

jvi�j2Si
�

� 1

�2
jvi�j2H1=2(@
i);

therefore, we just need to estimate jvi�j2H1=2(@
i)
. We have, from (4.19),

jvi�j2H1=2(@
i) � C
X

F ij�@
i

kIh(�F ijvi�)k2H1=2
00

(F ij)
+ C

X
Eik�@
i

jIh(�Eikvi�)j2H1=2(@
i):

(4.20)

We �rst estimate jjIh(�F ijvi�)jjH1=2
00

(F ij)
. We note that vi� = �yF ij(wi

� �wj
�) on F ij

h

and there �yF ij is constant, we have, by using Lemma 9,

jjIh(�F ijvi�)jjH1=2
00

(F ij)
= kIh(�F ij�yF ij (w

i
� �wj

�))k2H1=2
00

(F ij)

= kIh(�F ij�yF ij((w
i
� �wi

F ij )� (wj
� �wj

F ij )))k2H1=2
00

(F ij)

� C (1 + log(H=h))2
�
jwi

� �wj
�j2H1=2(F ij)+

+
1

Hi
k(wi

� �wi
F ij )� (wj

� �wj
F ij )k2L2(F ij)

�
:

Using Poincar�e's inequality, we have

jjIh(�F ijvi�)jjH1=2
00

(F ij)
� C(1 + log(H=h))2

�
jwi

�j2H1=2(F ij) + jwj
�j2H1=2(F ij)

�
:

Let us now evaluate jIh(�Eikvi�)j2H1=2(@
i)
, where E ik is an edge on the subdomain

boundary @
i. Let the edge E ik, e.g., be shared by the subdomains 
i, 
j, 
k,

and 
l, where 
i shares a face with each of 
j and 
l, but only an edge with 
k:
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From Lemma 11, we know that we just need to evaluate jIh(�Eikvi�)j2L2(Eik). Notice
that on edge E ik,

vi� = �y
Eik
(wi

� �wj
�) + �y

Eik
(wi

� �wk
�) + �y

Eik
(wi

� �wl
�);

and that �y
Eik

is constant, therefore we just need to estimate

kIh ��Eik(wi
� �wj

�)
� k2

L2(Eik) + kIh ��Eik(wi
� �wk

�)
� k2

L2(Eik)

+ kIh ��Eik(wi
� �wl

�)
� k2L2(Eik):

The estimates for the �rst and the third terms can be reduced to face estimate,

because 
i and 
j; as well as 
i and 
l; have a face in common. We just give the

estimate for the �rst term here; the same procedure works for estimating the third

term. We have, by using Lemma 10 and Poincar�e's inequality

jjIh ��Eik(wi
� �wj

�)
� k2

L2(Eik)

= jjIh ��Eik(wi
� �wi

F ij )
�� Ih

�
�Eik(w

j
� �wj

F ij )
� k2L2(Eik)

� kIh ��Eik �wi
� �wi

F ij

�� k2L2(Eik) + kIh ��Eik �wj
� �wj

F ij

�� k2L2(Eik)
� C(1 + log(H=h))

��
jwi

�j2H1=2(F ij)
+ 1

H
kwi

� �wi
F ijk2L2(F ij)

�
+
�
jwj

�j2H1=2(Fkj)
+ 1

H
kwj

� �wj
F ijk2L2(F ij)

��
� C(1 + log(H=h))

�
jwi

�j2H1=2(F ij)
+ jwj

�j2H1=2(F ij)

�
:

Let us now estimate the second term. Here, we use jwi
Eik j2 � 1=Hkwi

�k2L2(Eik)
and k�Eikk2L2(Eik) � CH. Using Lemma 10, and thatw� has common edge averages,

i.e., wi
Eik = wk

Eik , we have

jjIh ��Eik(wi
� �wk

�)
� k2L2(Eik)

= jjIh ��Eik(wi
� �wi

Eik)
�� Ih

�
�Eik(w

k
� �wk

Eik)
� k2L2(Eik)

� kIh ��Eik �wi
� �wi

Eik

�� k2L2(Eik) + kIh ��Eik �wk
� �wk

Eik

�� k2L2(Eik)
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� C
�
kwi

�k2L2(Eik) + kwk
�k2L2(Eik)

�
� C(1 + log(H=h))

��
jwi

�j2H1=2(F ij ) +
1

H
kwi

�k2L2(F ij)

�
+

�
jwk

�j2H1=2(Fkj) +
1

H
kwk

�k2L2(Fkj)

��
� C(1 + log(H=h))

�
jwi

�j2H1=2(F ij) + jwk
�j2H1=2(Fkj)

�
;

with F ij a face of 
i and Fkj a face of 
k; which have the edge E ik in common.

The last inequality follows from the shift invariance of the expressions on the third

line, i.e., we can add constants to wi
� and wk

� without changing the value of the

expressions and then use Poincar�e's inequality. We have now bounded each term

on the right side of (4.20), and we have

jvi�j2H1=2(@
i) � C(1 + log(H=h))2

0@jwi
�j2H1=2(@
i) +

X
j2N i

jwj
�j2H1=2(@
j)

1A ;

and therefore

jvi�j2Si
�

� C
1

�2
(1 + log(H=h))2

0@jwi
�j2H1=2(@
i) +

X
j2N i

jwj
�j2H1=2(@
j)

1A ,

where N i is the set of indices of all the subdomains which surround the subdomain


i. Then, by using Lemma 7, we have

jvi�j2Si
�

� C
1

�2
(1 + log(H=h))2

0@jwi
�j2Si

�

+
X
j2N i

jwj
�j2Sj

�

1A :

�

Theorem 6 The condition number of the preconditioned linear system (4.17), in

three dimensions, is bounded from above by C
�
1 + 1

�0

�2
1
�2
(1 + log(H=h))2, where

C is independent of h and H.
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Proof: We will show that

C1

�
1 +

1

�0

��2
�TM� � �TF� � C2

1

�2
(1 + log(H=h))2�TM�; 8� 2 � ,

(4.21)

where M�1 = DB�S�B
T
�D;F = B�

~S�1BT
�, and C1, C2 are positive constants

independent of h and H.

The upper bound can be shown in the same way as in the proof of Theorem 5.

Here we just give the proof of the lower bound.

We have, cf. [51] and [57],

�TF� = max
06=w�2fW�

j(�;B�w�)j2
jw�j2~S

.

Let � 2 � be arbitrary. It then follows from Lemma 16 that there exists a w� 2fW�, such that � = B�w� and E�w� 2 W�. We also know from Lemma 17

that, for this w�, jw�j ~S � C(1 + 1
�0
)jP�w�jS�. Therefore, we have, by using the

de�nitions of P� and M�1, that

�TF� � j(�;B�w�)j2
jw�j2~S

� C(1 +
1

�0
)�2

j(�;B�w�)j2
jP�w�j2S�

= C(1 +
1

�0
)�2

j(�; �)j2
(M�1�; �)

:

It follows that

C1

�
1 +

1

�0

��2
�TM� � �TF�;

by choosing � =M�, and C1 is independent of h and H.

�

4.6 A second three-dimensional FETI-DP algo-

rithm

A decomposition of velocity space was given for the three-dimensional case in sec-

tion 4.1. There the coarse level primal velocity space is spanned by the subdomain
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vertex nodal �nite element basis functions �Vil and the cuto� functions �Eik and

�F ij associated with all the edges and faces of the interface �. A preconditioner is

given in section 4.5, based on this decomposition, and the condition number bound

is given in Theorem 6.

In this section, we propose a FETI-DP algorithm based on a di�erent decom-

position of the velocity space in three dimensions and prove the same condition

number bound as in Theorem 6. The advantage of this second algorithm is that

the size of coarse level problem is smaller and therefore the coarse level solver is

less expensive.

We follow the procedure of section 4.1. The primal velocity space W� is now

spanned by the subdomain vertex nodal �nite element basis functions �Vil, and

the pseudoinverse functions �yF ij , corresponding to each subdomain face F ij. The

counting function �F ij(x) equals 0 at the interface grid points outside the sets of

F ij
h [
�[Eik�@F ijE ikh

�
, while its value at any node on F ij

h and its edges E ikh equals the

number of subdomains shared by that node. �yF ij (x) = 1=�F ij (x) for all interface

nodes where �F ij(x) 6= 0, and it vanishes at all other points. Also note that both

�F ij and �yF ij vanish at the subdomain corners. fW� is the dual part of the velocity

space, which is the direct sum of the local subspaces fWi
�. In this three-dimensional

case,

fWi
� := fwi

� 2Wi
� : w

i
�(V il) = 0;wi

�;F ij = 0; 8V il;F ij � @
ig: (4.22)

We can see, from the de�nition of the dual velocity space fW�, that we only require

the face integrals across each subdomain interface �ij to be zero, while there is no

constraint on the edge integrals. Therefore the edge cuto� functions disappear
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from our coarse level primal velocity space W�, and the size of the coarse level

saddle point problem is reduced.

Before we give a condition number bound for this new FETI-DP algorithm,

we need to discuss the inf-sup stability of the coarse level saddle point problem

�rst. In section 4.3, we have given an inf-sup stability estimate for a pair of mixed

�nite element spaces, W� � Q0, both in two and in three dimensions. There, in

three-dimensional case, the coarse level velocity spaceW� is spanned by �Vil, �Eik ,

and �F ij , corresponding to each subdomain vertex, edge, and face. Now in this

new FETI-DP algorithm, the space W� is reduced and it is spanned only by �Vil

and �yF ij , while the coarse level pressure space Q0 remains the same. The inf-sup

stability of this new mixed �nite elements is also proved by using a macroelement

methods, like in the proof of Theorem 4. The only thing di�erent is that, instead

of using Lemma 8 in the proof, we use the following lemma, which can be found

in a somewhat di�erent form in [21].

Lemma 19 De�ne an interpolation operator I�� :W� !W� by:

I��w�(x) =
X
Vil

w�(V il)�Vil(x) +
X
F ik

wF ik�yF ij(x); 8w� 2W�:

We then have

jI��w�j2H1=2(�) � C(1 + log(H=h))jw�j2H1=2(�);

and

kw� � I��w�k2L2(�) � CHjw�j2H1=2(�);

where C is a positive constant independent of H and h.
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By using this lemma, we can choose w� = I��w� in the proof of Theorem 4,

and have the same estimates as in (4.12) and (4.13). Everything else is the same,

and the inf-sup stability estimate in Theorem 4 is therefore proved for this new

pair of coarse level spaces W� �Q0.

In order to obtain a condition number bound as in Theorem 6, we need to prove

the counterparts of Lemmas 16 and 18 for the space fW� de�ned in (4.22). The

proof of the counterpart of Lemma 16 is similar to the proof of Lemma 16 in sec-

tion 4.5. The only di�erence is that no edge cuto� function is included in the primal

velocity space W�, and therefore there is no zero edge integral constraint in the

dual velocity space fW�. We can check that the number of unknowns and the num-

ber of linearly independent constraints are both 6
P

F ij #F ij
h + 3

P
Eik mEik#E ikh .

For the proof of the counterpart of Lemma 18, we follow the procedure in sec-

tion 4.5 and need to bound the two terms on the right side of the inequality (4.20).

The estimate of the �rst term, jjIh(�F ijvi�)jjH1=2
00

(F ij)
, is the same as in section 4.5.

The estimate of the second term, jIh(�Eikvi�)j2H1=2(@
i)
, needs to be changed. In the

estimate in section 4.5, we used the fact that each function in the space fW� has

common edge integrals. This constraint is not satis�ed now, and here we use a

technique from [52] to reduce the edge estimate to a face estimate.

As in section 4.5, we need to estimate

kIh ��Eik(wi
� �wj

�)
� k2L2(Eik) + kIh ��Eik(wi

� �wk
�)
� k2L2(Eik)

+ kIh ��Eik(wi
� �wl

�)
� k2L2(Eik):

The estimates for the �rst and the third terms can be reduced to face estimates,

in the same way as in section 4.5. The only di�erence is for the second term

kIh ��Eik(wi
� �wk

�)
� k2L2(Eik), where the edge E ik is shared by the subdomains 
i,
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j, 
k, and 
l, and 
i shares a face with each of 
j and 
l, but only an edge with


k. We �nd

jjIh ��Eik(wi
� �wk

�)
� jj2L2(Eik)

� jjIh ��Eik(wi
� �wi

F ij)
�� Ih

�
�Eik(w

j
� �wj

F ij )
�

+Ih
�
�Eik(w

j
� �wj

Fjk)
�� Ih

�
�Eik(w

k
� �wk

Fjk)
� jj2L2(Eik)

� C
�
jjIh ��Eik(wi

� �wi
F ij )
� jj2L2(Eik) + Ih

�
�Eik(w

j
� �wj

F ij )
� jj2L2(Eik)+

jjIh ��Eik(wj
� �wj

Fjk)
� jj2L2(Eik) + Ih

�
�Eik(w

k
� �wk

Fjk)
� jj2L2(Eik)� :

It is suÆcient to estimate the �rst term, the remaining three terms can be treated

similarly. Using Lemma 10 and the Poincar�e inequality, we have

kIh ��Eik �wi
� �wi

F ij

�� k2L2(Eik)
� C(1 + log(H=h))

�
jwi

�j2H1=2(F ij)
+ 1

H
kwi

� �wi
F ijk2L2(F ij)

�
� C(1 + log(H=h))jwi

�j2H1=2(F ij)
:

Using these estimate, we have

jjIh ��Eik(wi
� �wk

�)
� jj2L2(Eik) � C(1 + log(H=h))

�
jwi

�j2H1=2(F ij)
+ jwj

�j2H1=2(F ij )

+jwk
�j2H1=2(F ij )

�
:

We have now obtained the same bounds on the right two term of the inequal-

ity (4.20) as in section 4.5. Therefore the counterpart of Lemma 18 is proved for

the space fW�, de�ned in (4.22), and we therefore obtain the same condition num-

ber bound as in Theorem 6 for this three-dimensional FETI-DP algorithm without

edge constraints.
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4.7 Three-dimensional numerical experiments

We use this second FETI-DP algorithm, developed in section 4.6, to solve a three-

dimensional lid driven cavity problem, described by the incompressible Stokes

equations (2.2), with 
 = [0; 1] � [0; 1] � [0; 1], f = 0, g = (1; 0; 0) on the up-

per face z = 1, and g = 0 elsewhere on the boundary. A conjugate gradient

method is used to solve the preconditioned linear system (4.17), as well as the

non-preconditioned linear system (4.5). The initial guess is � = 0 and the stop-

ping criterion is jjrkjj2=jjr0jj2 � 10�6.

Figure 4.2 gives the number of CG iterations for di�erent number of subdo-

mains with a �xed subdomain problem size H=h = 4, and for di�erent subdomain

problem size H=h with 27 subdomains. We see, from the left �gure, that the con-

vergence of this FETI-DP method is independent of the number of subdomains,

when the preconditioner is used. The right �gure shows that the CG iteration count

increases, in both the preconditioned and the non-preconditioned cases, with an

increase of the subdomain problem size, but the growth is much slower with the

Dirichlet preconditioner than without.

69



0 100 200 300 400 500
20

22

24

26

28

30

32

N
u

m
. 
o

f 
C

G
 i
te

ra
ti
o

n
s

Num. of subdomains, for H/h=4

Preconditioned

Nonpreconditioned

2 4 6 8 10 12

20

25

30

35

N
u

m
. 
o

f 
C

G
 i
te

ra
ti
o

n
s

H/h, for 27 subdomains

Preconditioned

Nonpreconditioned

Figure 4.2: CG iteration counts for the 3D Stokes solver vs. number of subdomains
for H=h = 4 (left) and vs. H=h for 4� 4� 4 subdomains (right)
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Chapter 5

FETI-DP algorithms for

stationary Navier-Stokes

equations

5.1 Introduction

In this chapter, dual-primal FETI algorithms are extended to solving stationary

incompressible Navier-Stokes equations in two dimensions. For a linearized Navier-

Stokes equation, the same procedure as in section 3.4 can be used to derive the

FETI-DP algorithm, except that a stabilization term is added for problems with

high Reynolds numbers. The preconditioned linear system is not symmetric, pos-

itive de�nite, and therefore a GMRES method is used to solve the preconditioned

linear system for the Lagrange multipliers. We can show that, for small Reynolds

number, the eigenvalues of the preconditioned operator are located in the right

half plan and are bounded away from the imaginary axis. Numerical experiments

show that the degree of clustering of these eigenvalues depends on the Reynolds

number and the subdomain problem size, but is insensitive to the number of subdo-

mains. For nonlinear Navier-Stokes equations, a Picard iteration is used. In each
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Picard iteration, a linearized problem is solved by using the FETI-DP algorithm.

Numerical experiments show that the convergence of Picard iteration depends on

the Reynolds number, but is insensitive to the number of subdomains and the

subdomain problem size.

5.2 A FETI-DP algorithm for linearized

Navier-Stokes equations

In this section, we develop a FETI-DP algorithm for solving the following linearized

incompressible Navier-Stokes equations on a bounded, polyhedral domain 
 in two

dimensions, 8>>>><>>>>:
���u + (a � r)u+rp = f ; in 
 ,

�r � u = 0; in 
 ,

uj@
 = g; on @
 ,

(5.1)

where � is the viscosity, r � a = 0, and the boundary data g satis�es the compati-

bility condition
R
@

g � n = 0.

The solution of equation (5.1) satis�es the following variational problem: �nd

u 2 fu 2 (H1(
))2 j u = g on @
g and p 2 L2
0(
) such that,8<:

(ru;rv)
 + 1
�
((a � r)u;v)
 � (p;r � v)
 = (f ;v)
 ; 8v 2 (H1

0 (
))
2;

� (r � u; q)
 = 0; 8q 2 L2
0(
) ,

(5.2)

where (�; �)
 denotes the inner product in L2(
), and the pressure variable p and

the right side vector f have now been scaled by a factor of 1=�. The reason that

we put � to the denominator is that we want to show that the nonsymmetric

linearized Navier-Stokes problem (5.2) is a small perturbation of the symmetric

incompressible Stokes problem (2.3), when � is large.
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Notice that since r � a = 0 and v 2 (H1
0 (
))

2, we can write the nonsymmetric

bilinear term ((a � r)u;v)
 as a skew-symmetric term:

((a � r)u;v)
 =

Z



(a � r)u � v

=
1

2

�Z



(a � r)u � v�
Z



(a � r)v � u
�
� 1

2

Z



(r � a)u � v + 1

2

Z
@


(a � n)u � v

=
1

2

�Z



(a � r)u � v�
Z



(a � r)v � u
�

=
1

2
(((a � r)u;v)
 � ((a � r)v;u)
) :

Then the variational equation (5.2) can be written as8<:
(ru;rv)
 + 1

2�
(((a � r)u;v)
 � ((a � r)v;u)
)� (p;r � v)
 = (f ;v)
 ;

� (r � u; q)
 = 0:
(5.3)

We solve the variational problem (5.3) by using mixed �nite element methods.

The domain 
 is triangulated into shape-regular elements of characteristic size h.

Again,W and Q are �nite element subspaces of (H1(
))2 and L2
0(
), respectively.

We have the following discrete variational problem: �nd the velocity u 2W, which

equals g on @
, and the pressure p 2 Q such that,8<:
(ru;rv) + 1

2�
(((a � r)u;v)� ((a � r)v;u))� (p;r � v) = (f ;v) ; 8v 2W;

� (r � u; q) = 0; 8q 2 Q:
(5.4)

A stabilization procedure is necessary to achieve better convergence for solving

problems with large Reynolds number. We introduce an operator L to represent

the di�erential operator for the velocity component:

Lu = ��u +
1

�
(a � r)u = Lsu+ Lssu;
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where Lsu and Lssu are the symmetric and skew-symmetric parts, respectively.

A stabilized version of the discrete variational problem (5.4) is:8>>>>>>>><>>>>>>>>:

(ru;rv) + 1
2�
(((a � r)u;v)� ((a � r)v;u))

+
P

K2�h
Æ
�
Lu; hK

jaj
(Lss + �Ls)v

�
K
� (p;r � v)

= (f ;v) +
P

K2�h
Æ
�
f ; hKjaj (Lss + �Ls)v

�
K
; 8v 2W;

� (r � u; q) = 0; 8q 2 Q;

(5.5)

where Æ > 0 and � 2 R need to be chosen, cf. [68]. In our numerical experiments,

we choose � = 1, which gives the Garlerkin/Least-Squares method originally de-

veloped in [44] for advection-di�usion problems. Æ is chosen such that, on each

element K, with diameter hK,

Æ =

8><>:
�hK
2jaj

; if PeK � 1;

�h2K
4�

; if PeK < 1;

where PeK = hK jaj
2�

, jaj = jaxj+jayj. We choose � = 1 in our numerical experiments,

cf. [77].

The same procedures as those used in Chapters 3 and 4 can now be used

to solve the discrete variational problem (5.4) for small Reynolds number, and

the stabilized discrete variational problem (5.5) for large Reynolds number. The

preconditioned linear system, a nonsymmetric version of (4.14), is of the form:

B�S
N
� B

T
�B�

~SN�1

BT
�� = B�S

N
� B

T
�B�

~SN�1

f�� , (5.6)

where SN
� and ~SN are de�ned by0BB@
AII +

1
�
NII BT

II AT
�I +

1
�
NI�

BII 0 BI�

A�I +
1
�
N�I BT

I� A�� + 1
�
N��

1CCA
0B@ uNI

pNI

u�

1CA =

0B@ 0

0

SN
� u�

1CA ; (5.7)
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and 0BBBBBBB@

AII +
1
�
NII BT

II AT
�I +

1
�
NI� 0 AT

�I +
1
�
N�I

BII 0 BI� 0 BI�

A�I +
1
�
N�I BT

I� A�� +
1
�
N�� BT

0� AT
�� +

1
�
N��

0 0 B0� 0 B0�

A�I +
1
�
N�I BT

I� A�� +
1
�
N�� BT

0� A�� + 1
�
N��

1CCCCCCCA

0BBBBBBB@

uNI

pNI

uN�

pN0

u�

1CCCCCCCA

=

0BBBB@
0
0
0
0
~SNu�

1CCCCA :

(5.8)

Here the N matrices correspond to the discretization of the skew-symmetric term

1
2

�R


(a � r)u � v � R



(a � r)v � u�. The stabilization terms are not included here.

The conjugate gradient method cannot be used to solve the preconditioned

linear system (5.6), because this problem is no longer symmetric, positive de�nite;

instead we use GMRES.

5.3 Numerical experiments

In this section, we give some numerical experiments for solving the linearized

incompressible Navier-Stokes Stokes equation (5.1) in a two-dimensional domain


 = [0; 1] � [0; 1], where f = 0, the boundary condition g = (1; 0) on the upper

side y = 1, and g = 0 on the three other sides. The convection coeÆcient is chosen

as

a =

0@ 2(2y � 1)(1� (2x� 1)2)

�2(2x� 1)(1� (2y � 1)2)

1A ;

cf. [25].
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We use GMRES method to solve the preconditioned linear system (5.6), with

an initial guess � = 0. The stopping criterion is jjrkjj2=jjr0jj2 � 10�6, where rk

is the residual of the Lagrange multipliers at the kth iteration. A stabilization

procedure is used as in section 5.2.

Figure 5.1 shows the convergence of GMRES method for solving the precondi-

tioned linear system (5.6), on two di�erent meshes with di�erent Reynolds num-

bers. The left one is for 8�8 subdomains and H=h = 10; the right one is for 10�10
subdomains and H=h = 16. We can see that, on both meshes, the convergence

of GMRES method depends on the Reynolds number: the larger the Reynolds

number, the slower the convergence.

Figure 5.2 concerns the scalability of GMRES. The left one shows the change

of GMRES iteration count with the number of subdomains, for di�erent cases.

We see that for small Reynolds number, the convergence is independent of the

number of subdomains. For large Reynolds number the convergence becomes even

better when we increase the number of subdomain. The right one shows that the

convergence of the GMRES method depends on the subdomain problem size. The

number of GMRES iterations appears to grow like a logarithmic function of H=h.

5.4 Eigenvalue estimates of the preconditioned

linear system

We know, from Theorem 3, that the convergence of the GMRES iteration for

solving a linear system, Ax = b, depends on �(V ) and infpn2Pn kpnk�(A). Here V
is a nonsingular matrix of eigenvectors (assuming A is diagonalizable), �(A) is the

set of eigenvalues of A, Pn is the set of polynomials p of degree � n with p(0) = 1,
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Figure 5.1: Dependence of the convergence of GMRES on the Reynolds number

and kpnk�(A) = supz2�(A) jpn(z)j.
In the linearized Navier-Stokes case, we can see that �(V ) depends on the

Reynolds number. When the Reynolds number is large, the preconditioned opera-

tor B�S
N
� B

T
�B�

~SN�1

BT
� is very far from normal, and therefore �(V ) is large, and

we have slow convergence. When the Reynolds number is not large, the precon-

ditioned operator is not too far from normal, and therefore �(V ) is small, and we

will have fast convergence.

The value of infpn2Pn kpnk�(A) depends on the distribution of the eigenvalues

of the preconditioned operator. When the spectrum is tightly clustered away from

the imaginary axis, we expect that infpn2Pn kpnk�(A) will decrease quickly with n

increasing.

In this section, we will show that the spectrum of the preconditioned operator

B�S
N
� B

T
�B�

~SN�1

BT
�, without stabilization, is a perturbation of the spectrum of

B�S�B
T
�B�

~S�1BT
� in the Stokes case, when the Reynolds number is not large;
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Figure 5.2: Scalability of our FETI-DP algorithm

this work has been inspired by [26].

It should be pointed out that, this section only explains the convergence be-

havior of the GMRES iterations for solving equation (5.6), but does not give a

complete estimate of the rate of convergence.

In section 4.4, we have proved that for two-dimensional Stokes problems, the

condition number of the preconditioned operator B�S�B
T
�B�

~S�1BT
� is bounded

from above by C 1
�2
(1 + logH

h
)2. We now have the following lemma:

Lemma 20 For any w� 2 BT
�B�

fW�, we have

 � wT
�B

T
�B�S�B

T
�B�w�

wT
�
~Sw�

� �;

where  = 1 and � = C 1
�2
(1 + logH

h
)2.

Proof: We know, from the inequality (4.21), that

�T� � �TB�S�B
T
�B�

~S�1BT
�� � C

1

�2
(1 + log

H

h
)2�T�; 8� 2 � .
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Noticing that B�B
T
� = 2I, we have

�TB�B
T
�� � �TB�B

T
�B�S�B

T
�B�

~S�1BT
��

� C
1

�2
(1 + log

H

h
)2�TB�B

T
��:

For any w� 2 BT
�B�

fW�, there is always a � 2 �, such thatw� = BT
��. Therefore

wT
�w� � wT

�B
T
�B�S�B

T
�B�

~S�1w� � C
1

�2
(1 + log

H

h
)2wT

�w�;

and we therefore know that the eigenvalues of the operator BT
�B�S�B

T
�B�

~S�1 are

located in the interval [;�].

�

In the remainder of this section, we prove the following theorem, which gives

a bound on the Rayleigh quotient corresponding to the nonsymmetric operator

BT
�B�S

N
� B

T
�B�

~SN�1

.

Theorem 7 For any w� 2 BT
�B�

fW�, we have

�
1 +O(��1)

�
 � wT

�B
T
�B�S

N
� B

T
�B�w�

wT
�
~SNw�

� �1 +O(��1)
�
�;

where  and � are given in Lemma 20.

Let u� = BT
�B�w�, and we have

wT
�B

T
�B�S

N
� B

T
�B�w�

wT
�
~SNw�

=
uT�S

N
� u�

wT
�
~SNw�

=

uT
�
SN
�
u�

uT
�
S�u�

� uT�S�u�
wT
�
~Sw�

wT
�
~SNw�

wT
�
~Sw�

:

We know, from Lemma 20, that

 � uT�S�u�

wT
�
~Sw�

� �;
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therefore we just need to show that both
u
T
�
SN
�
u�

uT
�
S�u�

and
w
T
�
~SNw�

wT
�
~Sw�

are of the order

1 +O(��1). Here we just give the estimate of
u
T
�
SN
�
u�

uT
�
S�u�

. The same argument works

for
wT
�
~SNw�

wT
�
~Sw�

.

Recall, from the de�nition of SN
� in equation (5.7), that

uT�S
N
� u� = (uN

T

I uT�)

 
AII +

1
�
NII AT

�I +
1
�
NI�

A�I +
1
�
N�I A�� + 1

�
N��

!�
uNI
u�

�

= (uN
T

I uT�)

 
AII AT

�I

A�I A��

!�
uNI
u�

�
+ 1

�
(uN

T

I uT�)

 
NII NI�

N�I N��

!�
uNI
u�

�

= (uN
T

I uT�)

 
AII AT

�I

A�I A��

!�
uNI
u�

�

+ 1
�
(uN

T

I uT�)

 
AII AT

�I

A�I A��

!1=2

~NI;�

 
AII AT

�I

A�I A��

!1=2 �
uNI
u�

�
;

where

~NI;� =

 
AII AT

�I

A�I A��

!�1=2 
NII NI�

N�I N��

! 
AII AT

�I

A�I A��

!�1=2

:

We know from [23] that the spectral radius �( ~NI;�) = O(1), therefore

uT�S
N
� u� =

�
1 +O(��1)

�
(uN

T

I uT�)

 
AII AI�

A�I A��

!�
uNI
u�

�
:

At the same time, we know that

uT�S�u� = (uTI uT�)

�
AII AT

�I

A�I A��

��
uI
u�

�
:

Therefore, in order to show that uT�S
N
� u� = (1 +O(��1))uT�S�u�, we just need

to show

(uN
T

I uT�)

 
AII AT

�I

A�I A��

! 
uNI

u�

!

= (1 +O(��1)) (uTI uT�)

 
AII AT

�I

A�I A��

! 
uI

u�

!
;

(5.9)
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where uNI satis�es the following linear system, cf. (5.7), 
AII +

1
�
NII BT

II

BII 0

! 
uNI

pNI

!
= �

 
AT
�I +

1
�
NI�

BI�

!
u�; (5.10)

and uI satis�es the following linear system, cf. (2.14), 
AII BT

II

BII 0

!�
uI
pI

�
= �

 
AT
�I

BI�

!
u�: (5.11)

We know, from equations (5.10) and (5.11), that 
AII +

1
�
NII BT

II

BII 0

!�
uNI
pNI

�
=

 
AII BT

II

BII 0

!�
uI
pI

�
�
 

1
�
NI�u�

0

!
;

which can be written as 
AII +

1
�
NII BT

II

BII 0

! 
uNI

pNI � pI

!
=

 
AII BT

II

BII 0

!�
uI
0

�
�
 

1
�
NI�u�

0

!
:

(5.12)

We know, from (5.12), that

pNI � p�I =

� �BII(AII +
1
�
NII)

�1BT
II

��1 �
BIIuI � BII(AII +

1
�
NII)

�1(AIIuI � 1
�
NI�u�)

�
:

We use the next lemma, cf. [26], to compute
�
AII +

1
�
NII

��1
.

Lemma 21�
AII +

1
�
NII

��1
= A

�1=2
II

�
I � 1

�
N̂II +

1
�2
E
�
A
�1=2
II

=
�
A�1
II � 1

�
A
�1=2
II N̂IIA

�1=2
II + 1

�2
A
�1=2
II EA

�1=2
II

�
;

where N̂II = A�1=2
II NIIA

�1=2
II , E = N̂2

II

�
I + 1

�
N̂II

��1
, and the spectral radii �(N̂II)

and �(E) are of the order of O(1).
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Using Lemma 21, we have

pNI � pI = �
�
BII

�
A�1
II � 1

�
A
�1=2
II N̂IIA

�1=2
II + 1

�2
A
�1=2
II EA

�1=2
II

�
BT
II

��1
�
BIIuI � BII

�
A�1
II � 1

�
A
�1=2
II N̂IIA

�1=2
II + 1

�2
A
�1=2
II EA

�1=2
II

� �
AIIuI � 1

�
NI�u�

��
:

After dropping the O( 1
�2
) term, we have

pNI � pI = �
�
BII

�
A�1
II � 1

�
A
�1=2
II N̂IIA

�1=2
II

�
BT
II

��1
�
BIIuI � BII

�
A�1
II � 1

�
A
�1=2
II N̂IIA

�1=2
II

� �
AIIuI � 1

�
NI�u�

��
:

Then use Lemma 21 again and drop the terms of order O( 1
�2
). We have

pNI � pI = � 1
�

�
S�11 + 1

�
S
�1=2
1 M̂IIS

�1=2
1

�
BII

�
A�1
II NI�u� + A

�1=2
II N̂IIA

1=2
II uI

�
;

where S1 = BIIA
�1
II B

T
II , and M̂II is a matrix with spectral radius of O(1).

From equation (5.12), we know that

uNI =
�
AII +

1
�
NII

��1 �
AIIuI � 1

�
NI�u� � BT

II(p
N
I � pI)

�
=

�
A�1
II � 1

�
A
�1=2
II N̂IIA

�1=2
II

��
AIIuI � 1

�
NI�u�

+ 1
�
BT
II

�
S�11 + 1

�
S
�1=2
1 M̂IIS

�1=2
1

�
BII

�
A�1
II NI�u� + A

�1=2
II N̂IIA

1=2
II uI

��
=

�
A�1
II � 1

�
A
�1=2
II N̂IIA

�1=2
II

��
AIIuI � 1

�
NI�u�

+ 1
�
BT
IIS

�1
1 BII

�
A�1
II NI�u� + A

�1=2
II N̂IIA

1=2
II uI

��
= uI � 1

�

�
A�1
II � A�1

II B
T
IIS

�1
1 BIIA

�1
II

�
(NI�u� +NIIuI) :

We have the following lemma:

Lemma 22 The function uNI and uI in equation (5.9) satisfy

uNI = uI � ~uI ; (5.13)

where

~uI = �1

�
A
�1=2
II

�
I � A

�1=2
II BT

IIS
�1
1 BIIA

�1=2
II

�
A
�1=2
II (NI�u� +NIIuI) : (5.14)
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By using Lemma 22, Equation (5.9) can be easily proved, and so is the Theo-

rem 7.

In the following, we describe some numerical experiments concerning the eigen-

values of the operator B�S
N
�B

T
�B�

~SN�1

BT
�.

In Figure 5.3, we plot the eigenvalues of the preconditioned operator for dif-

ferent number of subdomains, with H=h = 8 and � = 1=80. We can see that the

regions of eigenvalues are almost the same in the di�erent cases. In Figure 5.4, we

plot the eigenvalues of this preconditioned operator for di�erent H=h, with 4 � 4

subdomains and � = 1=80. We see that the eigenvalue region expands when H=h

increases. In Figure 5.5, we plot the eigenvalues of this preconditioned operator

for di�erent Reynolds number, with 4� 4 subdomains and H=h = 8. We see that

with an increase of the Reynolds number, the eigenvalues become more scattered,

which is consistent with the estimate in Theorem 7. This explains the fact that

the convergence of the GMRES method to solve (5.6) slows when the Reynolds

number is increased.

5.5 Picard iterations for Navier-Stokes equations

In this section, we give some numerical results for the following incompressible

Navier-Stokes equations solved by using Picard iteration.

We solve the nonlinear lid-driven-cavity problem:8>>>><>>>>:
���u + (u � r)u+rp = f ; in 
 ,

�r � u = 0; in 
 ,

u = g; on @
 ,

(5.15)

where 
 = [0; 1]� [0; 1], f = 0, the boundary condition g = (1; 0) on the upper side
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Figure 5.3: Plots of eigenvalues for di�erent number of subdomains

y = 1, and g = 0 on the three other sides. In each Picard iteration, a linearized

Navier-Stokes problem:8>>>><>>>>:
���un+1 + (un � r)un+1 +rpn+1 = f ;

�r � un+1 = 0;

un+1j@
 = g:

(5.16)

is solved by using the dual-primal FETI algorithm developed in section 5.2.

In our experiments, we start from a zero initial guess u0 = 0, and the Picard

iteration is stopped when the nonlinear residual is reduced by 10�6. The residual of

the Lagrange multipliers is reduced by 10�4, in the GMRES solver, in each Picard

iteration step when solving the linear equation (5.16).

Figure 5.6 shows that the convergence of the Picard iteration depends on the

Reynolds number: the larger the Reynolds number, the slower the convergence. We
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Figure 5.4: Plots of eigenvalues for di�erent subdomain problem sizes

used two di�erent mesh sizes: one is for 8�8 subdomains and H=h = 10; the other

is for 10�10 subdomains and H=h = 16. Figure 5.7 indicates that the convergence

of the Picard iteration is independent of the mesh size. From the left �gure, we can

see that the convergence is independent of the number of subdomains; from the

right one, we can see that the convergence in also independent of the subdomain

problem size, where for large Reynolds number, the mesh has to be �ne enough to

make the Picard iteration counts comparable.

We also check the dependence of GMRES convergence on the Reynolds num-

ber and on the mesh size, in each Picard iteration step. From the left graph in

Figure 5.8, we can see that the convergence of GMRES iterations depends on the

Reynolds number; from the right graph, we can see that the convergence of GM-

RES iterations is independent of the number of subdomains. Figure 5.9 shows that
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Figure 5.5: Plots of eigenvalues for di�erent Reynolds numbers

the GMRES convergence depends on the subdomain problem size. In Figure 5.8

and Figure 5.9, the Y-axis is the average GMRES iteration count to reduce the

residual by 10�4 in each Picard iteration.

Figure 5.10 gives plots of the numerical solutions of the nonlinear lid-driven-

cavity problem (5.15) for viscosity � = 1
5000

, for these two mesh sizes. Figure

5.11 gives plots of the numerical solutions of the nonlinear lid-driven-cavity prob-

lem (5.15) when the viscosity � = 1
10000

, for 10� 10 subdomains and H=h = 16.
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