
Lecture 12
Math 50051, Topics in Probability Theory and Stochastic Processes

Doob-Meyer Decomposition

Suppose a trader observes the price of a financial asset St at times ti

t0 < t1 < t2 < · · · < tk�1 < tk = T

If the intervals between the times ti�1 and ti are very small, and if the market is liquid, the price
of the asset is likely to exhibit at most one uptick or one downtick during a tipical interval ti�1

to ti. We formalize this by saying that at each instant ti there are only two possibilities for St
i

to
change:

�St
i

= 1 with probability p

or
�St

i

= �1 with probability 1� p

It is assumed that these changes are independent of each other. Also observe that if p = 1
2 than

E(�St
i

) = 0, otherwise it is not zero.

We already looked at this example. Is St
i

a martingale? What about Zt
i

= St
i

+ (1� 2p)(k + 1)?
What sort of process is St

i

?

In general:

Theorem:If Xt is a right continuous submartingale with respect to the family Ft and if E(Xt) < 1
for all t then Xt admits the decompostion

Xt = Mt +At

where Mt is a right continuous martingale with respect to the probability P and filtration Ft and
At is an increasing process adapted to Ft.

Homework: Please read Section 8.2.2 from Neftci for a possible use of Doob Decomposition Theorem
in Finance.

Brownian motion

Most markets for financial assets and derivative products may, from time to time, exhibit “extreme”
behavior. These events are exactly when we have the greatest need for accurate pricing. What
makes an event “extreme” or “rare”? Is turbulence in financial markets the same as rare events?
What di↵erence between normal events and rare events is the way their size and their probability of
occurrence changes (or does not change) with the observation interval. As the interval of observation
�t gets smaller the size of normal events gets smaller. This is what makes them ordinary. In one
month several large price changes might be observed. In a week, fewer. Observing a number of
large price jumps during a period of a few minutes is even less likely. Often the events that occur
during an ordinary minute are not given much attention. But because they are ordinary even in
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a very small time interval, there is always a nonzero probability that some nonnoticible news will
arrive. A rare event is di↵erent. By definition, it is suppose to occur infrequently. In continuous
time, this means that as �t ! 0 its probability of occurrence goes to 0. BUT its size might not
shrink. A market crash such as the one this year is rare. On a given day, during a very short
period, there is negligible probability that one will observe such a crash. But when it occurs its
size is not di↵erent if one looks at an interval of 5 min or a whole trading day.

There are two basic building blocks in modeling continuous time asset prices. One is the Wiener
process, or Brownian motion. This is a continuous stochastic process and can be used if markets are
dominated by ordinary events while extremes occur only infrequently, according to the probabilities
in the tail areas of the normal distribution. The second is the Poisson process which can be used
for modeling systematic jumps caused by rare events. The Poisson process is discontinuous. By
combining these two building blocks, one can generate a model that is suitable for a particular
application.

Brownian motion(or Wiener process)

The name (Brownian) comes from the botanist R.Brown that observed the erratic behavior of a
pollen particle in water.
We will study mainly the one-dimensional B.m. that could be seen as the projection of the position
as the pollen particle onto one of the axes of the coordinate system. B.m. is a stochastic process
that models random continuous motion. In order to model these motions we start by writing down
the physical assumptions that we will make.
(1) LetWt represent the position of a particle at time t. In this case t takes values on the nonnegative
real numbers while Wt takes values on the real line (or perhaps the plane of space). Hence Wt is a
continuous time-continuous space s.p.
(2) W0 = 0 (for ease)
(3) The motion is completely random. We do not mean Ws and Wt are independent but rather the
motion after time s, Wt �Ws is independent of Ws.
(4)The distribution of the random movement should not change with time. Hence the distribution
of Wt �Ws depends only on t� s.
(5)For the time being we assume there is no drift (no general direction), i.e. E(Wt) = 0.
These assumptions are not enough to describe Wt because, if Yt is a Poisson process then Xt = Yt�t

satisfies them. Hence we need
(6) The function Wt is a continuous function of t.

Remarks:

a) The above assumption uniquely describe the process at least up to a scaling constant.
b) The Wiener process could be (and it is) widely used to describe models in valuing various noisy
random systems. In particular, it is used to model asset prices.
c) If the noise in the system is determined by various independent sources then the CLT(central
limit theorem) predicts that the net result will have a normal distribution. Indeed, our process
verifies that.

Definition

A Brownian motion or a Wiener process is a stochastic process Wt with values in R, defined for
t 2 [0,1), s.t.
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i) W (0) = 0 a.s.
ii) For any s1  t1  s2  t2  ...  sn  tn the r.v. Wt1 � Ws1 , ...,Wt

n

� Ws
n

are independent
(increments over nonoverlapping intervals are independent).
iii) For any s < t, the r.v. Wt �Ws is distributed N(0, t� s).
iv) The path are continuous, i.e. t ! Wt is a continuous function of t.

Remarks:

1) B.m. is a s.p. with independent increments and stationary increments.
2) If Wt is a B.m. (starting at 0) then Yt = Wt + x is viewed as a B.m. starting at x.

Properties:

I) Wt is a martingale with respect to the filtration Ft = �(Wr, 0  r  t).
II) |Wt|2 � t is a martingale with respect to the above filtration.
III) Vt =

1
CW (C2

t) is a B.m. if W (t) is.
IV) Vt = W (t+ T )�W (T ) is a Wiener process if W (t) is.

Levy’s martingale characterization

Let W (t),t � 0 be a s.p. and F = �(Ws, s  t). Then W (t) is a B.m. i↵:
1) W (0) = 0 a.s.
2) t ! W (t) are continuous.
3) W (t) is a martingale with respect to Ft.
4) |W (t)|2 � t is a martingale w.r.t. Ft.

Markov property

We saw that E(Wt|Fs) = E(Ws|Fs) + E(Wt �Ws|Fs) = Ws,
similarly E(Wt|Ws) = E(Ws|Ws) + E(Wt �Ws|Ws) = Ws.
Hence E(Wt|Fs) = E(Wt|Ws)
This illustrates the Markov property of B.m.,i.e. in order to predict Wt given all information up
through time s, it su�ces to consider only the value of the B.m.at time s.
Let pt(x, y) (or p(t, x, y)) denote the transition densities, i.e., the density of Wt for B.m. starting
at x. Since Wt �W0 is normal, mean 0, variance t

pt(x, y) =
1p
2⇡t

e

� (y�x)2

2t
, �1 < y < 1

(Wt is normally distributed with mean x and variance t) Then the Chapman-Kolmogorov equation
is

ps+t(x, y) =

Z 1

�1
ps(x, y)pt(z, y)dz

Remark

I) The above property states that Yt = Ws+t�Ws is a B.m. independent of Ws. This is equivalent
to saying that zt = Ws+t is a B.m. starting at the random starting point Ws. The Chapman-
Kolmogorov equation just averages the density pt(z, y) (or p(t, z, y)) over all possible starting points
z.
II) in order to do many useful computations about B.m. a more general Markov property is needed.
This is referred to as strong Markov property
Let T be a stopping time taking values in [0,1) (i.e. the event {T  t} 2 Ft: knowing if the
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process has stopped before time t one only needs to look at the information up to time t.) and let
FT be the information contained in the B.m. up to the stopping time T (one gets to view the path
up through time T but not beyond) , Then if we denote

Yt = Wt+T �WT

the strong Markov property states that Yt is a B.m. independent of FT .

Remarks on the Fractal Nature of B.m.

Remark 1 After we decide that Bm exhibits Markov property, the first question that one asks
himself is if Xt is recurrent. In other words are there arbitrarily large times t with Xt = 0 ? To
answer this question we need to look at the set

Z = {t : Xt = 0}

and observe its properties. It turns out this set is a “fractal” subset of the real line.

Remark 2 Using the “Reflection Principle” on Bm we can show that eventually the B.m. returns
to the origin. Once returned to the origin, because of the strong Markov property, it will forget
what it did and will start like a new B.m.. Applying the same reasoning as above this new B.m.
will return, eventually, to the origin. We can continue the cycle and conclude that the B.m. returns
to the origin infinitely often. in particular, B.m. is recurrent.

Remark 2 We can have the same discussion about any state (not only 0).

Remark 3 In any interval about 0 the B.m.takes both positive and negative values, again using
the reflexion principle.

Doob’s maximal L

2
inequality

E(maxstW
2(s))  4E(W (t)2) = 4t

Brownian motion in several dimensions.

Let X1
t , X

2
t , ..., X

d
t be independent B.m.. The vector-valued stochastic process Xt = (X1

t , ..., X
d
t ) is

called d-dimensional B.m..

Properties:

The d-dimensional B.m. has the same properties from the definition of B.m. except that now
the increment Xt � Xs (a d-dimensional r.v.) has a joint normal distribution with mean 0 and
covariance (t� s)T , i.e. has density

f(x1, ..., xd) =
1p
2⇡r

e

� (x1)
2

2r · ... · 1p
2⇡r

e

� (x
d

)2

2r =
1

(2⇡r)d/2
e

� |x|2
2r

with r = t� s.

Remark

As in 1-dimensional case, the transition probability density of Xt assuming X0 = x,is given by

pt(x, y) =
1

(2⇡t)d/2
e

� |y�x|2
2t
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which satisfies the Chapman-Kolmogorov equation

ps+t(x, y) =

Z

Rd

ps(x, z)pt(z, y)dz1, ..., dzd
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