
Lecture 18
Math 50051, Topics in Probability Theory and Stochastic Processes

Sample path of B.m.

When we defined the Riemann integral, we defined it as a limit of Riemann sums, i.e. sums of
rectangles with width a and subinterval of the integration range and length the value of the function
at one of the points in the interval.

PICTURE

So, it looks like it is important, in defining the integral, to evaluate f(ti)− f(ti−1) where (ti−1, ti)
is a small interval of my interval (a, b).

Let’s 0 = tn0 < tn1 < ... < tnn = T be a partition of the interval [0, T ] into n equal parts. Hence

tni =
iT

n
= i · T

n

We denote by
∆n
iW = W (tni+1)−W (tni )

the increment of the B.m. over the interval (ti, ti+1)

PICTURE

Proposition

lim
n→∞

n−1∑
i=0

(∆n
iW )2 = T, in L2

Definition

The variation of a function f : [0, T ]→ R is defined to be

limsup∆t→0

n−1∑
i=0

|f(ti+1)− f(ti)|

where t = (t0, t1, ..., tn) is a partition of [0, T ] and where

∆t = maxi=0,1,...,n−1|ti+1 − ti|

Theorem

The variation of the path of W (t) is infinite a.s.

Remark:

What this means is that if we are to look at the details of B.m., it varies, wiggles, a lot, even in a
short interval. Its variation is ∞.
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This is important because we will not be able to define an integral with respect to B.m. in the
same way as a Riemann integral, for each W (i.e. pathwise). We will need to have a probabilistic
approach to it.

Brownian motion and stochastic integral

Let’s look at a simple binomial model. Let Sn be the stock price at time n ∈ N, be defined be:

S0 = 1

Sn+1 = SnZn

where Zn are iid r.v. defined by:

Zn =

{
u with prob. Pu

d with prob. Pd
with Pu + Pd = 1

And assume E[Zn] = µ, V ar[Zn] = σ2. Let’s write Zn = σVn + µ, E[Vn] = 0, V ar[Vn] = 1.
Notice that Sn+1 − Sn = SnZn − Sn = Sn(Zn − 1) = Sn(σVn + µ− 1),
that is, Sn+1 − Sn = σSnVn + Sn(µ− 1)

More generally, let’s look at a model that uses time instants 0,∆t, 2∆t, 3∆t, ..., n∆t, ... with ∆t a
small interval of time. Let’s fix t to be one of the n∆t’s.

S(t+ ∆t)− S(t) = σS(t)W (∆t at time t) + S(t)∆t(µ− 1)

Let’s write this in a more general form

(∗) S(t+ ∆t)− S(t) = σ(S(t))∆W + µ(S(t))∆t

where ∆W = W (∆t at time t) by notation.

Q: What is the magnitude of this process ∆W?
A: Choose ∆W to be a Gaussian process, distributed N(0,∆t) (by a Gaussian process we mean a
process whose rv are normally distributed and whose joint distributions are normal).

Therefore it is natural to choose W (t) to be Bm and then ∆W will be ∆W (t) = W (t+∆t)−W (t).

Q: What happens to ∆W as ∆t→ 0?

Proposition: W (t) is a nowhere differentiable function of t.

I have the complete proof of this statement on the class web-page.

Therefore when I look at

S(t+ ∆t)− S(t)

∆t
= σS(t)

∆W

∆t
+ µS(t),
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and when ∆t → 0 we obtain something that does not make sense. Therefore, here we let ∆t be
small, infinitesimally small, denoted t., but we would need to look at the equation

dS(t) = σS(t)dW + µS(t)dt

This is called the diffusion equation. What is the precise mathematical meaning of this equation?
Formally it resembles a differential equation, but as we saw above, we can not use the normal method
of solving it because of the fact that Bm path is nowhere differentiable. A way around this was
found by Ito in 1940s. In his theory of stochastic integral he gave a rigorous meaning to the
equations such as above, by writing them as integral equations involving a new kind of integral:

S(t)− S(0) = σ

∫ t

0
S(s)dW (s) + µ

∫ t

0
S(s)ds

where the integral with respect to W (t) is called the Ito integral. Does it differ from a regular
integral? Yes, by the way the “Riemann sums” converge.

Example: One of the first applications of the Wiener process was proposed by Bachelier, who
around 1900 wrote a paper on modeling of asset prices at the Paris Stock Exchanges. He used
W (t) as a description of the market fluctuations affecting the price X(t) of the asset. Namely, he
assumed that infinitesimal price increments dX(t) are proportional to the increment dW (t) of the
Wiener process: dX(t) = σdW (t) where σ is a positive constant. Therefore, an asset with initial
price X(0) = x would be worth

X(t) = x+ σW (t)

But this assumption has a serious flaw in the fact that implies that the stock prices are negative.
So what is to do? To remedy the flaw it was observed that investors work in term of their potential
gain or loss dX(t) in proportion to the invested sumX(t). Therefore, it is in fact the relative price
of an asset that reacts to the market, hence should be proportional to dW (t):

dX(t) = σX(t)dW (t).

If this would be just an ODE and
∫ t

0 X(t)dW (t) would be just a regular integral, the solution to

this DE should be xeW (t). But, in fact, it turns out to be

X(t) = xeW (t)e−
t
2 .

The factor e−
t
2 is due to the non-differentiability of the path of the Wiener process. So, we see this

does not work exactly like in calculus, or ODE. But how does it work?

Precise definition of the stochastic integral

We saw last time when we tried to generalize the binomial model that the only way we could make
sense of equation (*) if we were to write it as

(1) dS(t) = µ(S(t))dt+ σ(S(t))dW (t) with W (t) being Brownian motion. In general, the function
µ is called the drift while the function σ is called the diffusion.
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It is natural to interpret (1) as:

S(t) = S(0) +

∫ t

0
µ(S(s))ds+

∫ t

0
σ(S(s))dW (s)

(*) The first integral is just a Riemann integral.
The second integral is what we call a “stochastic integral”. In fact this looks very much like a
Riemann sum (Riemann-Stieltjes integral) only that the convergence type is different. What do we
mean by this ?

Definition

A stochastic process {g(s) : s ≥ 0} is said to belong to the class L2[a, b], and is said to be Ito-square
integrable w.r.t.W in [a, b], if:

* g is adapted to FW (g(t) ∈ FWt for all t)

*
∫ b
a E[g(s)2]ds <∞

Proposition

If g ∈ L2[0, t], then

In :=
n−1∑
k=0

g(
kt

n
)[W (

(k + 1)t

n
)−W (

kt

n
)] −→ at a random variable I

as n→∞, L2(Ω). i.e. E[(In − I)2]→ 0
We call this r.v. I the stochastic integral of g w.r.t. W on [0,t], and we denote it by I =

∫ t
0 g(s)dW (s)

Remark:

1) In the definition of In the term W (tk+1
n ) − W (t kn) is the increment of W over the interval

[ tkn ,
t(k+1)
n ] exactly like in a Riemann-Stieltjes integral.

2) The convergence can’t hold in a stronger sense (in particular we can not say that limn In ex-
ists)because W is not differentiable anywhere (keep in mind the picture of W )
In particular, W is not of bounded variation, i.e.

n−1∑
k=0

|W (t
k + 1

n
)−W (

tk

n
)|n→∞ −→∞

with probability 1.(If W were differentiable, this sum→
∫ t

0 |
dW (s)
ds (s)|)

3) For the proof of proposition 1) (for those that want more mathematical rigorousness) usually
what one tries when proving convergence is to ease the limit. But here we don’t know the limit.
We just call it “the stochastic integral”. But since L2(Ω) is a Complete space (meaning that any
Cauchy sequence is convergent), we just need to show that our sequence is Cauchy, i.e. ∀ε > 0,
∃N ∈ N such that ∀m,m ≥ N, E[(In − Im)2] < ε.
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In general we will not use the definition of the stochastic integral, but rather its properties, that is
why it is essential to known them:

Properties:

1) E[
∫ t

0 g(s)dW (s)] = 0

2) E[
∫ t

0 g(s)dW (s)2] =
∫ t

0 E[g(s)2]ds

3) For each t ≥ 0, let Yt =
∫ t

0 g(s)dW (s). Then Y is adapted to FW .

Exercise: prove (3) by using the fact that FW is right continuous, i.e.
⋂
s≥tFWs = FWt .

Theorem:

let Xt =
∫ t

0 g(s)dW (s). Then X is a FW -martingale.

Remark:

1) We saw in last lecture that (X)-the stochastic integral, was an adapted process to FW .

2) To show that E[Xt|FWs ] = Xs, it is enough to show that E[Xt − Xs|FWs ] = 0 (since Xs =
E[Xs|FWs ]), or equivalently E[

∫ t
s g(Z)dW (Z)|FWs ] = 0

This property is not hard to prove, but it is a little tricky. We will show it just for simple function g,
i.e. functions that are constant over intervals.(* The general case for g is proved by approximating
g with such simple functions)

Exercise: Show directly that a B.m. W is a martingale w.r.t. its own FW .

Theorem:

Let M be a martingale such that for any t ≥ 0, E[(Mt)
2] <∞ (i.e. square integrable martingale)

The quantity
∑n−1

k=0 [M( (k+1)t
n )−M(ktn )]2 converges in L2(Ω) to a r.v. A(t) that is called quadratic variation of M,

and it is denoted by A(t) =< M > (t).

Properties:

1) A is a stochastic process that is adapted to FM , i.e. A(t) ∈ FMt .

2) A(t) is non-decreasing a.s.

Remark:

For B.m. we have

E[

n−1∑
k=0

[B(
(k + 1)t

n
)−B(

kt

n
)]2]
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=

n−1∑
k=0

E[[B(
(k + 1)t

n
)−B(

kt

n
)]2] =

n−1∑
k=0

t

n
= t

Exercise: Show that < B > (t) = t, < W > (t) = t, if B is a B.m.

Remark:

The converse is also true (Poul Levy): If M is a square integral martingale that is a.s. continuous,
and if < M > (t) = t, then M is a B.m.

Interpretation:

What is the interpretation of quadratic variation ?

(∗)
n−1∑
k=0

|f(
t(k + 1)

n
)− f(

tk

n
)|1+α →? as n→∞

For B.m. (∗)→∞ if α < 1 ; (∗)→ t if α = 1 : (∗)→ 0 if α > 1

When α = 0, (*) should converge to
∫ t

0 |g
′(s)|ds.But B.m. is to squiggly. It is not differentiable any

where. So we would like to ask ourselves how non differentiable the function is. So we increase α
until we can differentiate. It is related with the fractal structure.

* It measures the variation of the process, if the process does not have derivatives.

Definition

The joint variation of two square integrable martingales X,Y is defined y the following formula:

< X,Y >=
< X + Y > − < X > − < Y >

2

Remark:

It turns out that

< X,Y >= lim
n→∞

n−1∑
k=0

[X(
(k + 1)t

n
)−X(

kt

n
)]Y (

(k + 1)t

n
)− Y (

kt

n
)]

Definition

(semimartingales) let W (t) be B.m. and let {µ(t)}t≥0,{σ(t)}t≥0 be FW−adapted stochastic process.
Let X(t) = X(0)+

∫ t
0 µ(s)ds+

∫ t
0 σ(s)dW (s). This process is not a martingale (it would be if µ ≡ 0).

We call this process a (continuous, square integrable) semimartingale w.r.t. FW .

Example

Any martingale plus a drift µ will give us a semimartingale. If the drift is positive then the
semimartingale is a submartingale (show that.)
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Proposition

A semimartingale has a quadratic variation too, i.e. the limit

lim
n→∞

n−1∑
k=0

[X(
(k + 1)t

n
)−X(

kt

n
)]2 exists in L2(Ω)

Moreover,

< X > (t) =

∫ t

0
σ(s)2ds =< M > (t).

where M(t) is the martingale part of the semimartingale, i.e. M(t) =
∫ t

0 σ(s)dW .

Iton formula

Let X be a semimartingale defined by

dX(t) = µ(t)dt+ σ(t)dB(t)

and let f ∈ C2. then

f(X(t)) = f(X(0)) +

∫ t

0
f ′(X(s))dX(s) +

1

2

∫ t

0
f ′′(X(s))d < X > (s)

= f(X(0)) +

∫ t

0
[f ′(X(s))µ(s) +

1

2
f ′′(X(s))σ2(s)]ds+

∫ t

0
f ′(X(s))σ(s)dB(s)

In particular, if X(t) = B(t) (B.m.) then

f(B(t)) = f(B(0)) +

∫ t

0
f ′(B(s))dB(s) +

1

2

∫ t

0
f ′′(B(s))d < B > (s)

Sketch of proof ?

In conclusion, remember (dB(s))2 = ds, d < X > (s) := (dX(s))2 = σ2(s)ds, (dt)2 = 0
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