Lecture 4
Math 50051, Topics in Probability Theory and Stochastic Processes

Independence of rv Two rv X and Y are independent if, for all z and y we have

Fxy(z,y) = Fx(z)Fy(y).

In particular, if X and Y are jointly continuous, they are independent, if for all x and y we have
Ixy (2, y) = fx(@)fy(y).
Expectation:

Question: Toss a die. If you toss an even number you loose a dollar, if you toss an odd number
you gain a dollar. What is the best approximation for your outcome, if you do not know anything
else? Answer: Since the two outcomes are equally likely, the answer will be the average of the two
numbers.

In general:

Let X be a discrete random variable with distribution f(k). The expected value (mean) of X
is denoted by F(X) and defined by

B(X) =) kf(k),
k
provided that ), |k| f(k) is finite. (If this condition fails to hold then X has no finite mean.)

You may, if you wish, think of this as a weighted average of the possible values of X, where the
weights are f(k).

But if X is a continuous rv the weighted average transforms in the corresponding integral, ie:

The ezpected value (or mean) of a continuous rv X is denoted, like in the discrete case, by E(X)
and defined by

E(X) :/xf(x)d:v
R
provided that [ || f(z)dx is finite.

Remark 1: The mean of a rv is the center of gravity of the distribution of the rv.

Remark 2: If the above conditions are verified the rv are called integrable. In particular, this
means that the expectation of |X| is finite. Observe that if a rv is integrable then its expectation
is finite, but if its expectation is finite that does not mean that it is integrable! If F(X?) is finite
then we say the rv is square integrable.

Exercise: Compute the mean of a Binomial, Poisson and Normal rv.

Example: We denote by 14 the indicator function of the set A, defined by
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Then for any Borel set A, the indicator function is an integrable random variable and its expectation
is P(A). Why?

Properties:

1) Expectation of a composition Let the random variables X and Y satisfy ¥ = ¢g(X), where
g(+) is a real-valued function on R.

(a) If X is discrete, then
E(Y) =Y g(x)fx(),
provided that > |g(x)| fx(z) < o0
(b) If X is continuous, then .
BY) = [ gl@)fx(@ds
provided that [ |g(z)| fx(z) < oo.
2) Linearity of E. If E(X) and E(Y) exist, then for constants a and b

E(aX +bY) = aBE(X) + bE(Y).

3) Independence case. If X and Y are independent, then for functions g and h
E{g(X)h(Y)} = Elg(X)| E[h(Y )],

whenever both sides exist.

Moments

(a) The kth moment of X is j, = E(X%).

(b) The kth central moment of X is o, = E(X — E(X))*.

In particular y; is the mean u = E(X), and o9 is called the variance and denoted by o2 or var X.
Thus
0? = B(X — p)? =varX

and for the second moment
E(X?) =varX + (E(X))? = 0% + 1%

The square root of the central moment is the standard deviation. It is a measure of the average
deviation of observations from the mean. In financial markets the standard deviation of a price
change is called the volatility.

Moment generating function

The moment generating function (mgf) of a random variable X is

Mx(t) = E(et)



for all real ¢t where the expected value exists. The reason is called mgf is because
E(X") = MY(0).
Why?
Properties: 1) Uniqueness. If Mx(t) < oo then there is a unique Fx(z) having Mx(t) as its

mgf.
2) Factorization. If X and Y are independent then

M(s,t) = E(eX YY) = Mx (s) My (t)

3) Continuity. If M,, is a sequence of mgf such that lim, .o M, (t) = M(t), then if M is the mgf
of the distribution F', and M,, are the mgfs of the distributions F;,, we have

lim F,, = F.

n—oo

Conditional expectation

Suppose, as before, that X is a r.v measuring the outcome of some random experiment. If we do
not know anything about the outcome, we said that the best guess for X is E(X). If, on the other
hand, we know completely the outcome of the experiment then we know the exact value of X. The
notion of conditional expectation deals with making the best guess for X given some, but not all
information.

The discrete case Suppose that X and Y are both discrete rv with joint probability mass function
fxy(@,y) =P(X ==Y =y)

and marginal probability mass function fx(z) and fy(y) taking values in Vx and Vy respectively.
Then

EX|)Y =y) = Z rP(X =z|Y =y) = Z xP();(:Yx,_};): Y)
zeVyx 2eVy
v P
_ng:x fr(y) 2)

Notation: P(X = z|Y =y) = fx|y(z|y) and it is called conditional mass function of X given
Y.

The continuous case Assume X and Y are two rv jointly continuous, taking values in Vx and
Vy respectively, and with joint density function fxy(z,y) for x € Vx and y € V,. Then the
conditional density of X = x given Y =y, fx|y(z|y) is given by

Fxy(ely) = W

when fy(y) > 0. And the conditional expectation of X given Y =y is given by

B(X|Y =y) = / © Fxpy (2ly)dz,

zeVy
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when fy(y) > 0.

We observe that E(X|Y = y) is a function of y, a rv on the o—field generated by Y, denoted by
E(X]Y)

Example: 3 coins are tossed: 1lc, 5c, 10c. The rv X gives the sum of the values of the coins that
land heads up. What is E(X|2 coins have landed heads up)? What is E(X|Y) if Y gives the total
amount shown by the 5¢ and 10c only?



