
Lecture 6
Math 50051, Topics in Probability Theory and Stochastic Processes

Conditioning and σ-fields. Continuation.

Example: Suppose you are trapped in a house with 3 doors. Door 1 leads you back to the house
after 1 day. Door 2 leads you back to the house after 2 days. Door 3 leads you to freedom after 3
days. On the first trial you are equally likely to pick any of the doors. If you pick door 1 or 2, then
upon your return to the house, you immediately try again (until you are free).

(i) If you don’t learn from your mistakes, what is the expected number of days until freedom?

(ii) Repeat part (i) with the assumption that you do learn from your mistakes.

Example Suppose X1, X2, ... are independent identically distributed random variables with mean
µ. Let Sn denote the partial sum Sn = X1 + ... + Xn. Let Fn denote the information in X1, ...Xn

Fm = σ(X1, X2, ...Xm), suppose m < n, then:

(i) E(Sn|Fm) = Sm + (n−m)µ

(ii) E(Sn
2|Fm) = Sm

2 + (n−m)σ2

We need to move carefully in making the idea of convergence precise for stochastic processes, since
random variables are functions on Ω, having distributions and moments. There are several ways in
which they might be said to converge, so we begin with some simple results that will tie all these
approaches together.

Markov inequality. Let X be a non-negative random variable. Then for any a > 0

P (X ≥ a) ≤ EX/a.

Chebyshov inequality. For any random variable X

P (|X| ≥ a) ≤ EX2/a2, a > 0.

The event that infinitely many of the An occur is expressed as

{An i.o.} = {An infinitely often}

∞⋂
n=1

∞⋃
r=n

Ac
r.

Borel-Cantelli lemma. Let (An;n ≥ 1) be a collection of events, and let A be the event {An i.o.}
that infinitely many of the An occur. If

∑∞
n=0 P (An) < ∞, then P (A) = 0.

Second Borel-Cantelli lemma. If (An;n ≥ 1) is a collection of independent events, and
∑∞

n=1 P (An) =
∞, then P (An i.o.) = 1.
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Recall that a sequence xn of real numbers is said to converge to a limit x, as n →∞, if |xn − x| → 0,
as n →∞. Clearly, when we consider Xn with distribution Fn(x), the existence of a limit X with
distribution F (x) must depend on the properties of the sequences |Xn −X|, and |Fn(x)− F (x)|.
We therefore define the events

An(ε) = {|Xn −X| > ε}, where ε > 0

Summation lemma. This gives a criterion for a type of convergence called almost sure conver-
gence. It is straightforward to show that, as n →∞,

P (Xn → X) = 1,

if and only if finitely many An(ε) occur, for any ε > 0.

Convergence in probability. If, for any ε > 0,

P (An(ε)) = P (|Xn −X| > ε) → 0, as n →∞,

then Xn is said to converge in probability to X. We may write Xn
P−→ X.

It is trivial to see that almost sure convergence implies convergence in probability; formally

Xn
a.s.−−→ X =⇒ Xn

P−→ X.

Convergence in mean square. From Chebyshov’s inequality we have

P (|Xn −X| > ε) ≤ E|Xn −X|2/ε2.

Therefore, if we can show that E|Xn −X|2 → 0 as n → ∞, it follows that Xn
P−→ X. This

is often a very convenient way of showing convergence in probability, and we give it a name: if
E|Xn −X|2 → 0 as n → ∞, then Xn is said to converge in mean square to X. We may write
Xn

m.s.−−→ X.

However, even this weaker form of convergence sometimes fails to hold; in the last resort we may
have to be satisfied with showing convergence of the distributions Fn(x). This is a very weak form
of convergence, as it does not even require the random variables Xn to be defined on a common
probability space.

Convergence in distribution. If Fn(x) → F (x) at all the points x such that F (x) is continuous,

then Xn is said to converge in distribution. We may write Xn
D−→ X.

Central limit theorem. If EXr = µ and 0 < varXr = σ2 < ∞, then, as n →∞,

P
(Sn − nµ

(nσ2)1/2
≤ x

)
→ Φ(x),

where Φ(x) is the standard normal distribution.
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Weak law of large numbers. If EXr = µ < ∞, then for ε > 0, as n →∞,

P
( ∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε
)
→ 0.

Strong law of large number. As n →∞,

Sn

n

a.s.−−→ µ

for some finite constant µ, if and only if E |Xr| < ∞, and then µ = EX1.

The central limit theorem is the principal reason for the appearance of the normal (or ‘bell-shaped’)
distribution in so many statistical and scientific contexts. The first version of this theorem was
proved by Abraham de Moivre before 1733.
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