
Lecture 8
Math 50051, Topics in Probability Theory and Stochastic Processes

Recall that a sequence xn of real numbers is said to converge to a limit x, as n →∞, if |xn − x| → 0,
as n →∞. Clearly, when we consider Xn with distribution Fn(x), the existence of a limit X with
distribution F (x) must depend on the properties of the sequences |Xn −X|, and |Fn(x)− F (x)|.
We therefore define the events

An(ε) = {|Xn −X| > ε}, where ε > 0

Summation lemma. This gives a criterion for a type of convergence called almost sure conver-
gence. It is straightforward to show that, as n →∞,

P (Xn → X) = 1,

if and only if finitely many An(ε) occur, for any ε > 0.

Convergence in probability. If, for any ε > 0,

P (An(ε)) = P (|Xn −X| > ε) → 0, as n →∞,

then Xn is said to converge in probability to X. We may write Xn
P−→ X.

It is trivial to see that almost sure convergence implies convergence in probability; formally

Xn
a.s.−−→ X =⇒ Xn

P−→ X.

Convergence in mean square. From Chebyshov’s inequality we have

P (|Xn −X| > ε) ≤ E|Xn −X|2/ε2.

Therefore, if we can show that E|Xn −X|2 → 0 as n → ∞, it follows that Xn
P−→ X. This

is often a very convenient way of showing convergence in probability, and we give it a name: if
E|Xn −X|2 → 0 as n → ∞, then Xn is said to converge in mean square to X. We may write
Xn

m.s.−−→ X.

However, even this weaker form of convergence sometimes fails to hold; in the last resort we may
have to be satisfied with showing convergence of the distributions Fn(x). This is a very weak form
of convergence, as it does not even require the random variables Xn to be defined on a common
probability space.

Convergence in distribution. If Fn(x) → F (x) at all the points x such that F (x) is continuous,

then Xn is said to converge in distribution. We may write Xn
D−→ X.

Stochastic processes. A family of random variables (Xt)t∈T is called a stochastic process. They
are typically used as a mathematical model of the outcomes of a series of random phenomenon,
such as the value of the IBM stock, a certain option price, for example, at time t. If T is a
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discrete set then the stochastic processes are called discrete stochastic processes. In perticuler, if
T = {0, 1, 2, ...} or T = {1, 2, ...} then we are talking about discrete-time stochastic processes. In
this case the random variable X1, X2, ... can record the IBM stock price on consecutive business
days. The prices might not be evenly space out (i.e. if X1 is the price on Thursday, X2 on Friday
then X3 is the price on Monday), the counting 1, 2, ... refers only at the order of the prices.

When T is an interval in R (typically T = [0,∞)), we shall say that (Xt)t∈[0,∞) is a stochastic process
in continuous time.

If ω ∈ Ω is fixed then the function
t → Xt(ω) = X(t, ω)

is called a sample path.

Observe that when X is in discrete time, the sample path is the sequence X1(ω), X2(ω), ...

Example: A classic example of a stochastic process is the one where we consider a particle that,
at time 0, is at the origin. At each time unit, a coin is tossed. If “tails” (respectively, “heads”)
is obtained, the particle moves one unit to the right (resp., left). Thus, the random variable Xn

denotes the position of the particle after n tosses of the coin, and the s.p. {Xn, n = 0, 1, ...} is a
particular random walk. Note that here the index n can simply denote the toss number (or the
number of times the coin has been tossed) and it is not necessary to introduce the notion of time
in this example.

Example: An elementary continuous-time s.p., {X(t), t ≥ 0}, is obtained by defining

X(t) = Y t for t ≥ 0

where Y is a random variable having an arbitrary distribution.

The set VX(t) of values that the rvs X(t) can take is called state space of the stochastic process
{X(t), t ∈ T}. If VX(t) is finite or countably infinite (resp uncountably infinite) then {X(t), t ∈ T}
is said to be a discrete-state (resp., continuous-state) process.

In the examples above the random walk is a discrete time and a discrete space sp, while the
continuous time process is a continuous space process, unless Y takes the value 0.

Filtrations. As the time t increases, we have more and more knowledge about our stock prices,
about what happened in the past. Let’s think at the knowledge that we have at time t as Ft — a
σ-field from F . Then because our knowledge increases, it is natural to have

Fs ⊆ Ft, if s ≤ t

A family Ft of σ-fields on Ω (included in the absolute knowledge F) is called a filtration, if

Fs ⊆ Ft ⊆ F

for any s, t ∈ T such that s ≤ t.

Remark. Ft contains all events A such that at time t we can decide if A has occured or not.
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Example: 1) Let X1, X2, ... be a sequence of coin tosses and F be the σ-field generated by
X1, X2, ..., Xn. Let A={ the first 6 tosses produce at least 4 tails}. Is A ∈ F4 ? A ∈ F5 ? A ∈ F6 ?
A ∈ F10 ?

We say that the process (Xt)t∈T is adapted to the filtration (Ft)t∈T , if Xt is Ft-measurable for each
t ∈ T . In other words, if the values of Xt are known given the information Ft then the processes is
adapted.

If Ft is given, do I know Xs, s < t?

Remark: Given a stochastic process Xt the sequence of sigma algebras FX
t = σ{Xs, s ≤ t} forms

a filtration. Indeed, if s ≤ t, Fs ⊆ Ft.

Example: 1) Is A = {X(s) > 5 for all s ≤ 9} ∈ FX
9 ?

2) Is A = {X(s) > 6 for some s ≤ 10} ∈ FX
10 ?

3) Is E =
∫ 3
0 [X(s)32 + cos2πs]ds ∈ FX

3 ?

4) Is Mt = sups≤t X(s) ∈ FX
t ? So, is M adapted to FX ?

5) Is Nt = infs≥t|X(s)| ∈ FX
s ? Is N adapted to FX ? Is Nt ∈ FX

t ?

6) Is L = lims→∞inf |X(s)| ∈ FX
t for some t ? ∈ FX

s ?

Definition: If the random variable X(t4) − X(t3) and X(t2) − X(t1) are independent for any
t1 < t2 < t3 < t4, we say that the stochastic process {X(t), t ∈ T} is a process with independent
increments.

Definition: If the random variable X(t2+s)−X(t1+s) and X(t2)−X(t1) have the same distribution
function for all s, {X(t), t ∈ T} is said to be a process with stationary increments.

Remarks: The random variables X(t2+s)−X(t1+s) and X(t2)−X(t1) in the preceding definition
are identically distributed. However, in general, they are not equal.

Example: Independent trials for which the probability of success is the same for each of these
trials are called Bernoulli trials. For example, we can roll some die independently an indefinite
number of times and define a success as being the rolling of a “6”.

A Bernoulli process is a sequence X1, X2, ... of Bernoulli r.v.s associated with Bernoulli trials. That
is, Xk = 1 if the kth trial is a success and Xk = 0 otherwise. We easily calculate

E[Xk] = p ∀k ∈ {1, 2, ...}

where p is the probability of a success.

Definition: We say that the stochastic process {X(t), t ∈ T} is stationary, or strict-sense
stationary (SSS), if its distribution function of order n is invariant under any change of origin:

F (x1, ..., xn; t1, ..., tn) = F (x1, ..., xn; t1 + s, ..., tn + s)

3



for all s, n, and t1, ..., tn.

Remarks: The value of s in the preceding definition must be chosen so that tk + s ∈ T , for
k = 1, ..., n. So, if T = [0,∞), for instance, then tk + s must be nonnegative for all k.

Example: An elementary example of a strict-sense stationary stochastic process is obtained by
setting

X(t) = Y for t ≥ 0

where Y is an arbitrary random variable. Since X(t) does not depend on the variable t, the process
{X(t), t ≥ 0} necessarily satisfies the equation in the definition of SSS.
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