
Lecture 8
Math 50051, Topics in Probability Theory and Stochastic Processes

Markov Processes

Markov processes play an important role in derivative asset pricing. Our discussion will be mostly
in discrete time, and we will try to motivate some important aspects of stochastic processes and
will clarify some notions that will be used in dealing with continuous time models for interest
rate derivatives. It is quite important that the process one is modeling in finance is a Markov
process. The Feynman-Kac theorem that we will see later (maybe next semester) will be valid only
for such processes. However, it can be shown that short-term interest rate processes are not, in
general, Markov. This imposes limitations on the numerical methods that can be applied for short
rate processes. Let’s consider a discrete-time, discrete space sp {X(t), t ∈ N}, with values (the
state space) V = {0, 1, 2, . . . , N}. To characterize the distribution of the stochastic process X it is
sufficient to have all the finite dimensional distributions, ie we want the values of

P (X0 = i0, X1 = i1, · · · , Xn = in)

for every n and every finite sequence of states (i0, · · · , in).

Remark: 1) i0, i1, · · · , in ∈ V
2) When we say P (X0 = i0, X1 = i1, · · · , Xn = in) we mean P ({X0 = i0}∩{X1 = i1}∩· · ·∩{Xn =
in})
3) Knowing all P (X0 = i0, X1 = i1, · · · , Xn = in) is equivalent to knowing the initial distribu-
tion, denoted in general by π, ie

π
(0)
1 = P (X0 = i), i ∈ V

and the transition probabilities

P (Xn = in|X0 = i0, X1 = i1, . . . , Xn−1 = in−1), for all i0, i1, . . . , in ∈ V, n = 1, 2, . . . ,

Why are these two things equivalent?

Discrete time Markov Chains Let (Ω,F , P ) be a probability space and (Xn)n be a discrete time
stochastic process with state S (discrete) (Xn takes values in S). We say that X is a Markov Chain
on S if for all n ∈ N and s ∈ S

P (Xn+1 = s|X0, ..., Xn) = P (Xn+1 = s|Xn) ∗

∗ is called the Markov property of Xn, n ∈ N. Because S is discrete, * is equivalent to:

P (Xn+1 = sn+1|X0 = s0, X1 = s1, ...Xn = sn) = P (Xn+1 = sn+1|Xn = sn) (5)

for all n ∈ N and for all s0, s1, ...sn+1 ∈ S

Remark: The assumption of Markovness has more than just theoretical relevance in asset pricing.
The Markov property states that to make predictions of the behavior of a system in the future, it
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is sufficient to consider only the present state of the system and not the past history. That is, the
state of the system is important but not how it arrived at that state.

The relevance

1) How does these notions help a market practitioner? Suppose that Xt represents a variable such
as instantaneous spot rate rt. Then, assuming that rt is Markov means that the expected future
behavior of rt+s depends only on the latest observation and using this property one can captures
the dynamics of rt, the interest rate. But if interest rates are not Markovian, since the conditional
means and variances of the spot rate could potentially depend on observations other than the
immediate past one could not determine the dynamics of r, so at least for interest rates derivatives
the Markovian property is important.

2) We will see that, although two processes could be jointly Markov, when we model one of these
processes in a univariate setting, it will, in general, cease to be a Markov process. The relevance of
this can best be described in fixed income. There, a central concept is the yield curve. The classical
approach attempts to model yield curve using a single interest rate process, such as rt discussed
above. The more recent Heath-Jarrow Merton approach, consistent with Black-Scholes philosophy
models it using k separate forward rates, which are assumed to be Markov, jointly. But, as we will
see, the univariate dynamics of one element of k−dimensional Markov process, will, in general, not
be Markov.

Now, let’s go back to our definitions.

Remark: We see that a DTMC is completely characterized iff we have

(a) The initial distribution π(0)

(b) The one-step transition probabilities:

P [Xn+1 = j|Xn = i] ∀i, j ∈ S

for all n.

The MC is called time-homogeneous if

P (Xn+1 = j|Xn = i) = P (Xn = j|Xn−1 = i) = ... = P (X1 = j|X0 = i) = pij for all n.

Hence, for time homogeneous MC (a) and (b) are transformed into

(a′) The initial distribution π(0)

(b′) pij for all i, j ∈ S.

pij are called transition probabilities from state i to state j and the matrix P = (pij)i,j∈S is called
the one-step transition matrix of the chain Xn.

Observed that:

(i) 0 ≤ pij ≤ 1 (because pij are just some probabilities)
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(ii)
∑

j∈S pij = 1

Indeed ∑
j∈S

pij =
∑
j∈S

P (Xn+1 = j|Xn = i)

=
∑
j∈S

P (Xn+1 = j, Xn = i)
P (Xn = i)

=

∑
j∈S P (Xn+1 = j, Xn = i)

P (Xn = i)

because the events {Xn = j} are disjoint.

=
P (∪j∈S{Xn+1 = j, Xn = i})

P (Xn = i)
=

P (∪j∈S{Xn+1 = j} ∩ {Xn = i})
P (Xn = i)

=
P (Ω ∩ {Xn = i})

P (Xn = i)
=

P (Xn = i)
P (Xn = i)

= 1

This is because the process must be in one and only one state at time n + 1.

A matrix with properties (i) and (ii) is called stochastic.

The sum
∑

i∈S pi,j could take any nonnegative value. If we also have
∑

i∈S pi,j = 1 for all j the
matrix P is called doubly stochastic

Examples:

1) On any given day you are either H(happy), S(sad), or N(neutral). If you are H today, you
will be H,S,N tomorrow with probabilities 0.5, 0.4, 0.1. If you are sad today, you will be H,S,N
tomorrow with probabilities 0.3, 0.4, 0.3. If you are neutral today, then you will be H,S,N
tomorrow with probabilities 0.2, 0.3, 0.5. let Xn = your mood on the n′th day. What can you say
about {Xn, n ≥ 0}?

2) (Turning a non-Markov Chain to a MC) Suppose that whether or not it rains today depends
on previous weather conditions through the last two days:

— If it has rained the past two days, then it will rain tomorrow with probability 0.7.

— If it rained today but not yesterday, then it will rain tomorrow with probability 0.5.

— If it rained yesterday but not today, tomorrow it will rain with probability 0.4.

— If it has not rained in the past two days, then it will rain tomorrow with probability 0.2.

Now let {Xn, n ≥ 0} be such that

Xn =

{
1 if it rains on day n

0 otherwise
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What can you say about Xn? Now, let Yn be defined as:

Yn =


1 if it rained on days n, n− 1
2 if it rained on days n but not on n− 1
3 if it rained on days n− 1 but not on n

4 if it didn’t rain on both n and n− 1

What can you say about Yn?

More examples of MC

1) Let S = Z and (Xn) be a sequence of iid random variables with P (X1 = 1) = p and P (X1 =
−1) = 1 − p (Xn tells you if you take a step to the left or to the right at time t = n ). Define
Yn =

∑n
i=1 Xi (Yn tells you where you are at time t = n) and let Y0 = 0. Show that Yn is a

Markov Chain and find its transitional probabilities. Yn is called a random walk on Z starting at 0.
Replacing Y0 = 0 with Y0 = i, we get a random walk that starts at i.

2) If gambler wins $1 with probability p and loses $1 with probability 1 − p at each play of the
game. He quits when he goes broke or he attains a fortune of $N . Let Xn be the gambler’s fortune
at time n. Then what can you say about {Xn, n ≥ 0}? {Xn, n ≥ 0} is also called a random walk
but on S = {0, 1, ..., N} absorbed at 0 and N (absorbing barriers).

Transition probabilities in n stepsConsider the case when the process moves from state i to
state j in n steps. Of course, a first question to ask is what is the probability that a MC that is
in state i will be in state j after n additional transitions. These transition probabilities in n steps,
denoted by p

(n)
i,j = P (Xm+n = j|Xm = i), for m,n, i, j ≥ 0 are recorded in a matrix denoted by

P (n), named n-step transition matrix. Observe that these probabilities do not depend on m, ie
they are the same for any m. Indeed,

p
(n)
i,j = P (Xm+n = j|Xm = i) = P (Xn = j|X0 = i),

because of the time homogeneity.

Turns out these matrices have some nice properties:
Theorem: Chapman-Kolmogorov equation Suppose that Xn is an S−valued Markov chain
with n−step transition probabilities p

(n)
i,j . Then for all k, n ∈ N we have

p
(m+n)
i,j =

∑
S

p
(m)
i,s p

(n)
s,j , for all i, j ∈ S

where p
(0)
i,j = 1 if i = j and is 0 otherwise.

Remark: This implies that P (m+n) = P (m)P (n), and even more

P (n) = Pn

Remark: If we are interested in unconditional probabilities associated to MC then we need to
know the initial distribution, π(0), because

P (Xn = j) =
∑
s∈S

p
(n)
s,j π(0)

s .
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Example: Suppose that if it rains today then it’ll rain tomorrow with probability .7 and if it
doesn’t then it’ll rain tomorrow with probability .4. What’s the probability it will rain two days
from now given that is raining today? If we know that the probability that will rain today is .4,
what is the probability that it will rain in two days from now?

Classes and states We say state j is accessible from state i or that state i communicates with
state j if p

(n)
i,j > 0 for some n ≥ n, ie the chain will visit state j if it starts in state i in n steps,

for some n positive. Two states i and j intercommunicate if they are both accessible or if both
communicate to each other.

Notation:
i→ j j is accessible, or i communicates with j.
i↔ j i and j intercommunicate.

Remark: If two states do not intercommunicate then either

p
(n)
i,j = 0 for all n ≥ 0

or
p
(n)
j,i = 0 for all n ≥ 0

Properties: Intercommunication is an equivalence relationship, meaning it verifies the following
3 properties

1) It is reflexive, ie i↔ i.
2) It is symmetric, ie i↔ j implies j ↔ i;
3) It is transitive, ie, if i↔ j and j ↔ k then i↔ k.
Why is this true?

Two states that intercommunicate are said to be in the same class. If all states intercommunicate
then we say that the MC is irreducible. If there are several classes in the MC we say the MC is
reducible.

Examples:

Notation Denote by f
(n)
ii = P [Xn = i,Xm 6= i,m = 1, 2, ..., n − 1|X0 = i] – the probability that

starting from i, the first return to i occurs at the n′th transition and by fii =
∑∞

n=0 f
(n)
ii – the

probability that starting from i, the process will ever return to i. (f (0)
ii = 0).

Definition State i is said to be recurrent iff fii = 1; State i is said to be transient iff fii < 1.

Consequences:

c1) State i is recurrent implies that starting in i, the process will revisit i infinitely many times
with probability 1 (the M.P. and time homogeneity implies this.)

c2) i transient =⇒ P [X will ever return i|X0 = i] = fii
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=⇒ P [X will be in i for exactly n time epochs|X0 = i] = fn−1
ii (1−fii). Note it is fn−1

ii not f
(n−1)
ii .

=⇒ Given X0 = i, the number of time epochs in state i is distributed Geom(1− fii).

=⇒ E[number of times epochs in i|X0 = i] = 1
1−fii

<∞.

=⇒ P [X revisits i∞ times |X0 = i] = 0.

Proposition: Let X = {Xn} be a M.C with state space S. Let i ∈ S, then
If

∑∞
n=0 p

(n)
ii =∞, then i is recurrent.

If
∑∞

n=0 p
(n)
ii <∞, then i is transient.

Why?

Corollary 1 In a finite state M.C. not all states can be transient.

Proof: Assume S = {1, 2, ..., N} and suppose all states are transient. Let Ti = the time after which
state i will never be revisited (P [Ti <∞] = 1, i ∈ S). Then after time T = max{Ti} no state will
be revisited, with probability 1. But this is absurd.

Corollary 2: a) i recurrent & i←→ j =⇒ j is recurrent, and
i transient & i←→ j =⇒ j is transient.

b) All states in a finite irreducible M.C. are recurrent.

Example 1 
0 0 1/3 2/3
1 0 0 0
0 1 0 0
0 1 0 0


This is a finite irreducible M.C., so all states are recurrent.

Example 2 
1/2 1/2 0 0 0
1/3 2/3 0 0 0
0 0 1/2 1/2 0
0 0 1/2 1/2 0

1/4 1/4 0 0 1/2


reducible and we have 3 classes {0, 1}, {2, 3} (recurrent), {4} (transient).
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