(1.1)

PADE AND RATIONAL APPEDXIMATION
® 1977
ACADEMIC PRESS, NG,
NEW YORC SAN FRANCISCO Y- ]

ON THE ZEROS AND POLES OF PADé APPROXIMANTS TO ez. IT.

E.B. Saff and R.S. Varga

In this paper, we continue ouv study of the location of
the zeros and poles of general Pade approximants to e%. We
state and prove here two new results on improved estimates for
the zeros of general Pade approximants Rn v(z) to e?, and state
results on the asymptotic location of the normalized zeros and
poles for certain sequences of Padé approximants to eZ.

1 Introduction

A number of recent papers (cf. [1, 4, 6, 9, 15]) have been
concerned with Padé rational approximations of e” because of
applications to the numerical analysis of methods for solving
certain systems of ordinary differential equations. The
rurpose of this present paper is to continue our study [9] on
the zeros and poles of general Pade approximants to e”. In
particular, for every Padé approximant we determine a
"close-to-sharp'" annulus, having center at z = 0, containing
all the zeros and poles of this approximant. These results will
be described in §2, with their proofs being given in §3.

In this paper, we also state more precise information about
the asymptotic distribution of the zeros and poles for
spec.fic sequences of Pade approximants to e’. What has
motivated this work is an article by Szego [13], which considers
the zeros of the partial sums 5, (z):= 232 /k! of the Maclaurin
expansion of ez. Szego [13] showed thatosn(nzd has all its
zeros in Iz] =1 for every n 2 1, and that z is a limit point
of zeros of {sn(nz)]nzliff

B

zZ e = 1 and IEI <

(This result was also obtained later independently by Dieudonné

(37.)
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The connection of Szegd's result with Pade approximations
of e° is evident in that sn(z) is the (n, 0)-th Padé approx-
imant to e°. Our new results, giving sharp generalizations of
Szegd's result to the asymptotic distribution of zeros of more
general sequences of Pade approximants to ez, will be stated
explicitly in §2, but their proofs, being lengthy, will appear
elsewhere. For the remainder of this section, we introduce
necessary notation and cite needed known results.

Let m denote the set of all polynomials in the variable
z having degree at most m, and let nn v be the set of all

)
complex rational functions r(z) of the form

r(z) = 5—%%—, where pEnn, qEﬂV, and q(0) =1.

Then, the (n,V)-th Pade approximation to e is defined as that

element Rn’v(z) € “n,v for which

ez-Rn,v(z) = O(Iz{n+v+1), as Izl—‘O.

In explicit form, it is known [8, p. 245] that
v(z) - Pn,v(z)/Qn,v(Z)’

where

(n+VvV-{P! n! zj
j=0 (+V)! j! (n- §HU°

(1.2) Pn,v<z):=
and

3
- (n+v- P! v (-2)
(1.3) Q v (@): 23 0 (m+v)! 31 (V- i

We shall refer to the polynomials P (z) and Q (z)

respectively as the Padé numerator and Padé denominator of type

(n, v) for eZ.
Generally, one is interested in both the zeros and the
poles of the Pade approximants Rn v(z). However, since the

’

polynomials of (1.2) and (1.3) satisfy the obvious relation

(1.4) Q@) =B (2),
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it suffices then to investigate only the zeros of the Pade

approximants Rn v(z), Or equivalently, the zeros of the Pade
»

numerator Pn,\)(z)'

The approximants Rn v(z) are typically displayed in the
?

following infinite array, known as the Padé table for ez:

—’g,o(z) B1,08) Ry 4(2) -
RO,I(Z) Rl,l(z) Rz,l(z) ..
(1.5) Ro,2 @ R L@ R, (2

Note that the first row {Rn' o(z)}n:0 of the Pade table for ef
14

is, from (1.2), 8imply the sequence of partial sums

[sn(z) % zk/k!}n:O of &%,

Essential for the statements and proofs of our main results
are the following recent results on zeros of Padd approximants

z
for e”.

THEOREM 1.1. (Saff and Varga [9], (11], (12]). For every v 2 0,
n 2 2, the Pade approximant Rn V(z) for e% has all its zeros in
Iy

the infinite sector

=ln-v-2
(1.6) Sa,vi= {z: [arg z| > cos Qv

Furthermore, on defining generically the infinite sector
Sl, A0, by

1.7) 5, = (z: |arg z| > cosnl(l—i-h)},
consider any sequence of Pade approximants (R

satis&ing
\V

(1.8) limn = +, and 1im . g,

jm e —'_"'J-.mnj

(z) }j:l

nj,\)j
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for any o with 0 < g5 < » Then, for any € with 0 < ¢ < o,
(R

@« i
v (z)}jal has infinitely many zeros in £O~ .and only

> v E-—_
i’
finitely many zeros in the complement of ﬁy_e,and ﬂ} is the

smallest sector of the form larg zl >, 4 >0, with this

EI‘OEQI‘CX.
THEOREM 1.2.  (Saff and Varga [9]). If1<n<3v+ 4, then

all the zeros of the Padé approximant Rn V(z) for e° lie in the

’
half-glane
(1.9) Rez<n-v -2,

2 Statements of New Results

We list and discuss our main results in this section. Qur
td
first results give estimates for the zeros of general Padé

approximants Rn

§1.

THEOREM 2.1. For any n =21 and any v 2 0, all the zeros of the

v(z), which extend the results of Theorem 1.2 of

]

Pade approximant Rn,v(z) satisfy

(2.1) Re z <n - v.

THEOREM 2.2. For any n =1 and any v 2 0, all the zeros of the

Pade approximant Rn v(z) lie in the annulus

3

(2.2) (+Vv < |z| <n+v+4/3 @ = 0.278 465),

. , . 1+
where u is the unique positive root of pe “=1. Moreover, the

constant 4 in (2.2) is best possible in the sense that

. z ) -
M= :';fl {(n+\)) Rn,v(z) 0}.
v=0

We remark that while the first inequality of (2.2) of
Theorem 2.2 is best possible in the above sense, the upper
bound of (2.2) may not be best possible. 1In any event, because

Rl V(z) has its sole zero at z = -(v+l), we have
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sup {{zt - (@+v): R (2) = 0} > @

n>l, v>0 ‘ faV -
and thus, the constant 4/3 in (2.2) can however be decreased at
most to zero. In fact, the Kakeya-Enestrom Theorem (cf. [5, p.
106, Ex. 2]) directly gives that all the zeros of g (z) lie 1in
|z] < n, which sharpens the last inequality of (2. 2) of Theorem
2.2 for the case v = 0. However, applying the Kakeya-Enestrom
Theorem to the general Padé numerator P (z) gives only that

(z) has all its zeros in | l < n(v+1) which, except in
essentially trivial cases, gives a worse upper bound than that of
the last inequality of (2.2) of Theorem 2.2.

Note that because of the relation (1.4), the inequalities of
(2.2) of Theorem 2.2 hold for the zeros as well as for the poles
of R ’v(z). Thus, given any compact subset Q of the complex
plane €, there is a constant Y > 0, depending only on the geo~-
metry of {, such that all zeros and poles of any Pade approximant

v(z) lie outside of Q 1if (n+v) >y. '

To describe the remaining results, for any o with 0<g <+,

define the points
N |
(2.3) zZ:= {1-0)+2/311/ A +0),

which have modulus unity, and consider the complex plane € slit

along the two rays
= {z: 0 * s iTjor z = go - ir, 7 2 0},

as shown in Figure 1. Now, the function

(2.4) g (2):= V1422 - 25 (—}-::"’-)

+ -
has ﬁy and ﬁo as branch points, which

| &,
/l‘\
~ | i:.

// | \
—_4\--’07“'""*1"“‘
\ /

N /

|
~_ | L
\r” Figure 1
|
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are the finite extremities of RC. On taking the principal branch
for the square root, i.e., on setiing gO(O) = 1 and extending

8, analytically on this doubly slit domain C\%}, then %g is
analytic and single-valued on C\RO, Next, it can be verified

that 1 + z + g_(z) does not vanish on C\R_. Thus, we define,
- a ag

2 20

l+o

respectively, (1 + z + %3(2))1+O.and a1 - zi-%J(z)) by

2 20
1+go and 21+0

requiring that their values at z = 0 be 2 , and by

analytic continuation. These functions are also analytic and

single-valued in C\@j. With these conventions, we set

a
AGQIE ze%(“
2.5) gj(z):= 7 75 »

o)A +z+g ) (-2 +g @)

0 <0 < +o,

and it follows that w& is analytic and single-valued on C\%j.
Next, on letting g = 0 in (2.5), we obtain that wo(z):= lim wb(z)
satisfies 0=0

2.5") wy(z) = z &!77,

for Re z < 1.
With these definitions, we state the following results,

whose proofs will appear elsewhere.

THEOREM 2.3. For any 0 with 0 <g < @, consider any sequence of
(z)}j:1 for e for which

Pade approximants {Rn

37V
\Y
(2.6) limn, = +®, and lim - = ¢.

Then, Z is a limit point of zeros of the normalized Pade approx-

imants {an,vj((nj-+vj)z)}j:1 iff z belongs to the curve
2.7) qj:= {z € %J : lﬁj(z)l = 1 and |zf <1},
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where g; denotes the closure of ﬁ3~§Cf‘ (1.7)).

We first remark that the special case of Theorem 2.3 with

0 =0 and, in addition, with vj = 0 and nj = §j for all j 21,
reduces to Szego's result (cf. (1.1) and (2.7)) since $ = ¢,
and since the normalized approximants {Rj 0(jz)}j= are just
{sn(n2)1n=1

We illustrate this special case of 0 = 0 of Theorem 2.3 by
graphing respectively, in Figures 2 and 3, the twelve zeros of
512(122) and the twenty-four zeros of 524(242), along with DO’
indicated by the solid curve.
for all § =1, (2.6)

Similarly, for the choice Vj = § = nj
is satisfied for ¢ = 1, and in this case, Figures 4 and §
indicate the curve Dl’ along with, respectively, the twelve

zeros of the polynomial P12 12(242), and the twenty-four zeros

of the polynomial P24 24(482) Next, we remark that the curve
1, after rotations of n/2, form the boundaries of the eye-shaped

domain consider by Olver [7, p. 336] in his asymptotic expansions

of Bessel functions. That such a connection exists is not

surprising, since the diagonal Padé numerators P (z) satisfy
n iz 1/2
n(2iz) =nlQ2z) e “(n z/2) {(-1)" J_(MI/Z)(z)-iJn+1/2 (z) }/@n)!.

To further illustrate the result of Theorem 2.3, we note
that the choice Vj = {1, nj = 3j for all j 21 satisfies (2. 6)
with 0 = 1/3, and Figures 6 and 7 show D 1/3° along with the
twelve zeros of P12 4(162) and the twenty-four zeros of the
polynomial P24 8(32z) Thus, we see from Figures 2-7 that
Theorem 2.3 quite accurately predicts the zeros of P «n+v)z),
even for relatively small values of n and V. Y

With the relationship of (1.4), Theorem 2.3 can directly be
used to deduce the limit points of the poles of

{an,vj((nj-*vj)z)}le. Specifically, we state
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COROLLARY 2.4. Let {Rn v (z)]j:l be a sequence of Pade approx-
i’ '

. z e , . . A L
lmants to & satisfying (2.6) with 0 <g < @, Then 2 is a limit

point of poles of {R ((n, +v.)z)},". iff # belongs to the
- - n,,v b J j=1 -
i
curve QDIAj where (cf. (2.7))

(2.8) -DIA3:= {z:-2 € Dlﬁj}'

Interestingly enough, the closed curve
2.9) 3 := (2: lgj(z)l =1 and |z| 1)
can be represented as the union

2.10 = - 0 <0 < o,
( ) 3 D_ U {-p ®

1/0]’
Thus, the limit points of zeros and poles of {Rn v )
b |

play a complementary role to one another. To illustrate this,
consider the sequence of Padé approximants {R3m’m(4nlz)}m:1,

for which ¢ = 1/3. 1In Figure 8, we have graphed 01/3 and (-D3),
along with the 24 zeros and 8 poles of R24,8(322)’ denoted
respectively by *'s and @'s.

*

*

Figure 2: Zeros of 312(122).

(ag+vp2)} 7
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Figure 4: Zeros of Plz’lz(ZQz).
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Figure 5: Zeros of P

Figure 6: Zeros of P

24,24

12,4

(48z).

(16z).
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Figure 8: Zeros and Poles of R21¢ 8(322).
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3 Proofs of Theorems 2.1 and 2.2

As in Saff-Varga (11], for any n 2 0 and any v = 0, set
n+v
¢ )
1-2/2 2 .
(3.1) wn’v(z).n e 2 Pn,v(‘)’

where the Padé numerator Pn v(Z) is defined in (1.2). 1In the
3

n+v

-( )
casc that n + v is odd, z 2 denotes the principal branch of
n+v
-5
z . Then, as is known (cf. Olver [7, p. 260]), LA v(z)

?
satisfies Whittaker's equation

2
dw() 1l kM
(3.2) 2 (z -7+ 22] w(z),

with

 n-v o AFV+1.2 1 (n+V)(n+V+2)
(3:3) k= A5, and A= (AL 2 4

Proof of Theorem 2.1. Ifv=n>1, then 3V + 4 > n > 1, so that

from (1.9) of Theorem 1.2, we have that any zero z of Pn v(z)
H

satisfies
Rez<n-v -2,

which is stronger than the desired result (2.1) of Theorem 2.1.
Similarly, if n = 1, the single zero of P1 V(z) is z=-(v +1),

which implies that
Rez =n-v -2,

and again (2.1) of Theorem 2.1 is satisfied.

For the remaining case 0 < v < n, define

(3.4) yT(x):= wn’v(Tx), T#0, 0 < x<w,

which, using (3.2), satisfies

2
dy, ) 51 &

-2l kA =.
(3.5) ——;;5—— =T {4 Tx-+T2x2] yT(x) : pT(X)-YT(X)«
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Next, choose T toc be a zero of ?n,v’ i.e., wn,v(T)*()ﬂyT(l).
If Re 7 < 0, then by hypothesis Re 7 < 0 < n - v, and (2.1) of
Theorem 2.1 is trivially satisfied. Hence, assume that

Re 7 > 0, in which case T is alsc a distinct zero of Pn

3
Defining similarly

o= < < %
(3.6) y?(x). wn’v(?x), 0<x ,

which satisfies

a’y- ()

T ~2.1 k A

(3.7) —TL—=F(+ - —+ —=Yy=(x)=: p=(x)y=(x),
dx? 4 T "r’2x2 T T T

it follows from (3.5) and (3.7) that for real a and b,
b

(3:8) | ®p(®) - p_() y (x_ (x)dx
a

T : )dzy;<x> ( dzyr(x>)

= y_(x - y=(x) ——=—}dx

a T dx2 T dx2
dy—(x) dy_(x) x=b

= (v, (0 e - y=(0) ——g;f—oxza

Now, because Re T > 0, we'see from (3.1) that yr(x), y?(x), and

their derivatives tend to zero as x—++, and as yT(l) = y.f(l) =0,

the choice a =1, b =+ in (3.8) gives

(PF(x) - P (x))y, (x)y=(x)dx = 0.

Equivalently, using the definitions of pT and p?, we have that

v

-0 [ -5 |y %o,
1

since yT(x) = y?(x), But as (r - T) # 0, this reduces to
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» Tk 12
(3.9) f [5%;~’* g} !yT(x)l dx = 0.
1

Clearly, the term g(x):= Ri T. %, which is monotone increasing

on [1, +) and positive at infinity, cannot be positive for all
x & 1, as this would contradict (3.9). Thus, g(1)=3-§2——‘r--k<0
which implies from (3.3) that Re T < 2k = n - Vv, the desired
result of (2.1) of Theorem 2.1. =

For the proof of Theorem 2.2, we need the following

LEMMA 3.1. For any n2 1, and any v 2 0, let T be any maximal

zero of P z i.e.
zero of B\ (2), i.e.,

(3.10) P (1) = 0 and |7] = max{|z| : Py =0}
Then,
(3.11) ReT2- (V+1).

Proof. First, it can be verified from (1.2) that Pn v(z)

?
satisfies the differential equation

(3.12) n Pn,v(z) = (z+n+vV) P;,V(z) -z P;,v(z)‘

Next, it is known (cf. Saff-vVarga [10]) that all the zeros of
P (z) are simple. With T a maximal zero of P (z), define,
n,v n,v

for any n > 1,

P; y(
(3.13) T:=7T1 - 2(n - 1) == -
P" (T)
n,v
By definition, Pn v(z) has no zeros in IzI > 'T’. Hence, using
H

a result of Laguerre (cf. Szego [14, p. 117]), T must lie in

lzI‘S ‘Tl, and, because Pn v(T) = 0, equations (3.12) and (3.13)

give that T =T - %%%f:%;gy . Then, a short calculation shows

that !Tl = ITI implies (3.11) for any n > 1, any v 0. If n=1,
the sole zero of P1 V(z) is -(v+1), which also satisfies (3.11). =
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Proof of Theorem 2.2. We first establish the second inequality

of (2.2) of Theorem 2.2. Let T be a maximal zero (cf. (3.10)) of
P (z). If T is real, then T is evidently negative since

nV

n V(z) has only positive coefficients, and thus, applying
Lemma 3.1, we have |T| <1+ Vv <n +vVv. But as T 18 a maximal

zero of P (z), then | l =n + v for any zero of P N which
’

satisfies the second inequality of (2.2) of Theorem 2 2,

Let T then be any non-real maximal zero of Pn V(z) with
3

Im 7> 0. With v V(z) defined in (3.1), set

b

(3.14) y(x):= v v(T(I +yx)), 0 < x<ew,

]
where ¥ is a constant, to be selected later, such that
(3.15) Re(ry) > 0.

From (3.2), we see that y satisfies

dy (x 2.1 k A
(3.16) _12(_Z= (ry) {Z-T(l +vx)+¢2(1 +‘yx)2}y(X)‘: P'(X)Y(X).

Since T is also a maximal zero of P (z), we also consider
’

(3.17) y(x) = v (‘(1+'yX)), 0<x<oeo,

which satisfies

D e
318y B L35 560
dx

As before (cf. (3.8)), we similarly have that

b

J&® - penlyelPax = 6oL - yay 2@

a x=a
Because of (3.15) and (3.1), y(x), ;?;T, and their derivatives
tend to zero as x—++w, and as y(0) = ;?33 = 0, the choice a = 0

and b = +® in the above expression then gives

319 [ G - peo) |yeo%ax = 0.
0
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Now, p(xj »/p(x) is, purely imaginary, and using (3.16),

.20y 20 -G {2 emosiery 44 mr 0 7o)
: 2i

4’1 %»Yxié
Because of (3.19), note that the numerator of the right side of
(3.20) cannot be of one sign for all 0 < x < w, Writing 'r==pe18
with 0 < 8 < 7, we choose ¥:= % e-16/2, so that (3.15) is

satisfied. With this choice of ¥, the numerator of (3.20) can be

written, after some algebraic manipulations, as the product

2p 7 sin g~ oa(x), where GA(X)’ a quartic polynomial, is defined

by
(X):= x4[cos 9*] + x3[4p cos2 -g— - 2k]
(3.21) {+ x [(20 -4kp)cos gufép cos QJ~+X[4p3cosz %- 2kpz- 4ip]
+ (D - Akp Jcos % .

As before, o, cannot be of one sign on [0, +®) because of (3.19).
To complete the proof of the second inequality of (2.2) of

Theorem 2.2, assume on the contrary that p = IT!E:n-kv-+4/3.

Using the definitions of (3.3) and in particular the result of

Lemma 3.1, a lengthy calculation (which we omit) shows that

4 .
= i . . <<
04(x). ;Ez Bix has only positive coefficients Bi’ 0<i<y4, a

contradiction. Thus, ]T|< n+V+4/3, and as T is a maximal
zero of Pn v(z), all zeros of P (z) necessarily satisfy
l I< n+ Vv + 4/3, the desired seéond inequality of (2.2) of
Theorem 2.2,

We now establish the first inequality of (2.2). For the

n

partial sums sn(z):= z zk/k! of the Maclaurin expansion for
k=0

ez, it is known (cf. Buckholtz [2]) that, for any n =1, any

zero z of the normalized polynomial sn(nz) satisfies
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(3.22) [Eel"zj > 1 and |2] <1,

i.e., as Figures 2 and 3 show, Z lies outside Dy but in the unit
disk. It is easy to verify (cf. Figures 2 and 3) that the point
€ in the unit disk satisfying lge gl 1 which 1s closest to the
origin is the real point { =-y,u > o, where;JeL+“=1, and i is
given approximately by u % 0.278 465. Hence, for any n 2 1, any

zero z of sn(z) from (3.22) satisfies
(3.23) |z| > au.

Since sn(z) = Pn 0(2), then (3.23) gives the desired first
inequality of (2.2) of Theorem 2.2 for the case v = 0.

Next, on defining the "reciprocal" Pade numerators:
* n
(3.24) Pn;v(z).- z Pn’v(l/z) for all n2 0, v2 0,

it follows directly from the definition of Pn V(z) in (1.2) that

’

v *
(3.25) 9-\-) P o) = -(———l- p L) forall n20, v 2 0.
dz n+Vv, ’

*
Now, since Pn*-v,o (z) has, from (3.23), all its zeros in

l l < ((n—+v)u)-1, then, by the Gauss-Lucas Theorem (cf Marden

(s, p. 14]), the same is true for all derivatives of P.+V o(z)

In particular, from (3.25), P n, (z) has all its zeros in

] | < ((n-fv)u) , Which implies that P (z) has all its zeros
l [ > (n+vVv)u, which gives the first inequality of (2.2) of

Theorem 2.2.

Finally, the first inequality of (2.2) implies that

(3.26) 1 < inf (-‘—-LZ-L PP () = 0]

To show that equality holds in (3.26), Szego [13] has established
that z is a limit point of zeros of {s (nz)} iff z satisfies
(1.1). As z =-p satisfies (1.1), then evidently equality holds
in (3.26), completing the proof of Theorem 2.2. .
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