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If G(C) denotes the minimal Gerigorin set for Ce C*7, and if, for any nonempty subsct
« of the first n positive integers, Clo] denotes the principal minor of C determined by =,
then conditions are determined which characterize matrices 4 and B in C*" such that the
inclusions GUD + B)lz]) © GUD + AHx]) are valid for all subsets « of the first » positive
integers, and for all diagonal matrices D in C*". Connections with the newly defined set
of w-matrices are also included.

1. INTRODUCTION

For any matrix 4 = [a; ;]e C"", let G(A) denote its minimal GerSgorin set
(cf. [6]), 1€,

GA): = N \{Ll} [eCiiz —a | < i iai,jlxj/‘xi}} (L.
= j=1

xeRY
* i
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where R" denotes the collection of column vectors x = [xy, Xz, .+ ., Xul"
in R" with x; > 0 for all I <7 < n, and where the sum in (I.1) is defined
to be zero when 7 = 1. With this notation, we seek conditions on matrices
A = [a;;] and B = [b; ;] in C"* which insure that

GUD + B)[«]) = G(D + Alx]) forall ¢ #usmy:={1,2,...,n}
land for all D = diag[d,, d,, ..., d,}]eC"", (1.2)
where A[x] in general denotes the principal submatrix of 4 determined by
%, i.e., Alx] = [a;;] where i, je . Our main result, Theorem 6, gives two
conditions on 4 and B, each of which is equivalent with (1.2).

On considering (1.2), we first observe from (1.1) that, on choosing « = {i}
for any i € {(n), the inclusion of (1.2} implies that

a;;=b,, forall ie{(m. (1.3

Next, we also observe from (1.1) that the off-diagonal entries of A enter
into the definition of the minimal GerSgorin set, G(4), only through their
moduli. This suggests that conditions which insure (1.2) will similarly depend
only on the moduli of the off-diagonal entries of 4 and B.

2. NOTATION AND TERMINOLOGY

In this section, we collect some needed notation, terminology, and back-
ground material on minimal Ger¥gorin sets and w-matrices. To begin,
assumed that 4 = [a; ;]e C"" is reducible (cf. [5, p. 46]). It is well known
that there is a permutation matrix P e R"" for which

A, ////
T e
PAP = A / , @1

O

e

2
2y

where each 4,1 <j < r, is irreducible. Here, for convenience, all 1 x 1
matrices are defined to be irreducible. Then, it is known {(cf. [6, p. 725]) that
the minimal Ger§gorin set for A4 is precisely the union of the minimal

GerSgorinsets for 4, ;, L <7 < 1, 16,
G(d) = U G(4;). (2.2)
i=1

Next, consider any real matrix 4 = [a; ;] € R"" satisfying

a;; real; a;; =0, i#j, forall i,jedn). (2.3)
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Such matrices are called essentially nonnegative (cf. [1], [5]). As a consequence
of the Perron-Frobenius theory of nonnegative matrices, such a matrix

satisfying (2.3) possesses a real eigenvalue v, ie., vespec (4): = {i:
det (A4 — A} = 0}, which satisfies
> Re A, forall lespec(4), (2.4)
and the inclusions
min { Y, a;;x/x;} <v< max { Z a;; forall xeR%.
ieGny  jeln ieny  Jjeuy
(2.5)

Furthermore, v is characterized (cf. [3, p. 201}, [4]) by
v = inf { max [ 3, a;,;x;/x]}, 2.6)
xelth  ie(nd  jeln)
and, if 4 is irreducible,
v= > a;;x/x; forall ie{n), forsome xeWR]. 2.7
J&lny
These facts can be used as follows. For any 4 = [a; ;1€ C"" and for any
z e C, define the real matrix 7(z) = [r, {z)]e R"" by
f;z) = ~|z — aijiié ’i,j(.z) = %a;,j!, istj; forall 7, jedn, (2.8}
so that 71(z) satisfies (2.3). Denoting the associated eigenvalue of T{z),
satisfying (2.4)—(2.6), by v(z; A), then v(z; A) satisfies, from (2.5) and (2.6),

min {—lz — a4 + 3 lalay/xg <z 4) 2.9)
ielny Jelny
J#i
< max {~|z—a;. ]+ 3 la;lx/x;}, forall xeRi,
jedny Jedny
i
and
wz; A) = inf { max [—|z —a,l + Y la I/l (2.10)
xel®y  iedw) 1L¥z\
JFE

As proved in [6], the points of G(4) can then be characterized in terms of
the function 1{z; A) by means of
PRroOPOSITION | Forany Ae T, ze GA) iff v(z; A) = 0
We also include from [6] the fohowing result,
PrROPOSITION 2 For any irreducible 4 = [a; ;1€ C"", then z€0G(4), ie,
zis a boundary point of G(A), implies that there exists an x € Ry such that
lz—a; ;| = Z la; |x;/x;,  forall ieln). (2.11)
jeny
FES
Next, following Engel and Schneider [2], a matrix 4 € C"" is called an
w-matrix if

spec{(A[D) N R #£ ¢, forall o with ¢ # a = (n), (2.12)
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and, on defining

KAz = min{spec(A[«]) n R}, (2.13)
if, for arbitrary subsets « and f§ of (n), one has the nesting property
b #ac B cn) implies HA[FD < (4[] (2.14)

If w,,, denotes the set of all w-matrices in C*”, then, as stated in [2], Wy
contains ali the Hermitian matrices, M-matrices, as well as all totally non-
negative matrices, in C"".
Continuing, (cf. [2]), a reflexive and transitive relation can be defined on
@,y as follows: if 4, B & wy,, then 4 2. Bif
[(Al«]) = I(B[2]), forall o with ¢ # o < <{m. (2.15)
Ta the case that 4 and B are Hermitian matrices in C"", and thus elements
of (}w, it is casy to verify that 4 >. O iff 4 is positive semi-definite, and
that A =. Bif A — B is positive semi-definite. In the same vein, we investi-
gate implications of the relation 4 >. B on a subset, Z"", of w,, which
contains the M-matrices of . Defining Z"" as the subset of R™" of all
real matrices 4 = [a; ;] for which
a,;real; a;; <0, i#j; foral ijedn, (2.16)
then from (2.3), Ae Z"" iff —A is essentially nonnegative. Thus, applying
the characterizations of (2.4)-(2.7), it analogously follows that 4 = [a; ;]e
7™ has a real eigenvalue /(4) such that
I(A) < Re 4, forall Aespec(4), 2.17)
<

min { ¥ a;x;/x} <I(4) < max { ) a,;x/x}, forall xeRY

ie(ny Jjeln) ieln) Jeln)y
(2.18)
1(A) = sup { min { }: a;;x (2.19)
xeR% ie{ndy  jelun)
and if 4 € 7" is irreducible, then
I(4) = Y ay;x/x; forall ielmp, forsome xeR:. (2.20)
Jjelny

It is not difficult to verify (cf. [5, p. 30]) that /(4), so defined, also satisfies
the nesting property of (2.14), so that Z"" is a subsel of w,. This brings us
to the following useful characterization of “>." on Z"".

PropOSITION 3 Given 4 = [a; ;] and B =1[b,;] in I"", then A >« B iff,
for every x and y in R'y, and for every ¢ # v < {n), there exist integers i and

k in « such that
2 @ Vilve Z 2 by xilxs (2.21)

Jex Jjeax

Proof First, assume that 4 =. B. It suffices to consider only the case
o = {#), since the proof for any uonempty a in {ny is similar. By hypothesis,



GERSGORIN SETS 5

I(4) = I(B) and hence, for any x and any y in R, we have from (2.18) that
max { Y @ yiviy = (A) = UB) = min { Y b;;x/x,
ialny Jelny ‘ ie{n) Jednd>

which directly implies (2.21). Conversely, it follows from (2.21) that

in {3 bi;x/xi,

(=4 jsa

max { Y a.;y;/y) 2 m
ken Jea i

foreveryxandyin R’;, and every ¢ # % < (uy. Hence, taking the supremum
of the right side over x in RY gives, from (2.19),

Y a;vilve = I(Bla]) forsome k = k(y)eo, forall yeRL.

Jen
If Afx] is irreducible, we can, from (2.20), choose y € R so that

Y ag; vilve = HA[o]) forall kewx, whence [(A[a]) = I(B{]).

Jew
If A[«] is however reducible, there is a subset ff with ¢ # f = « for which
A[B] is irreducible, and for which /(A[B]) = I(A[2]). Thus, with the above
irreducible case,

[

I{Alo]) = I A[B]) = I(BIB]) = (B[], (2.22)
the last inequality following from the nesting property of (2.14), and (ii)
implies (1). ®

3. MAIN RESULT

We begin with

DrerINITION 4 Given A = [a, ;] and B = [b; ;] in €, then |A| dominates
|B| if. for every ¢ # a S {n) for which Blu] is irveducible, and for every x
and every v in B, there is an i €« for which
Z 35";,,‘3}’1/}’; = Z 1Dy j1x/x; (3.1
Jea Jex
Note that (3.1) of Definition 4 is a condition like that of (2.21) of Proposi-
tion 3, but differs essentially in that (3.1) holds for the same 7 in the sums of
(3.1), while (2.21) holds for possibly different 7 and & in the sums of (2.21).
We note from Definition 4 that [4] dominates | B] iff, for any non-singular
diagonal matrices S = diagfs,, sy, ..., 5] and I = diaglt,, 15, ..., 4]
then |S—'4S| dominates |7-'BT|. As another characterization in terms of
w-matrices, we have
PROPOSITION 5 Given A = [a; ;] and B = [b, ;] in C"", then |A4| dominates
|Bliff D — |B] Z: D — |4| for all real D = diagld,, d,, .. .. d,]eR""
Proof Assuming first that [4] dominates [B], consider any real D =
diagld,, d5, ..., d,]in R"" and any nonempty « & (). If Bla]is irreducible,
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then, for every x and y in R", it follows from (3.1) of Definition 4 that there
is an 7 € « for which

d; — Z ébs,jb}/l's zd; - Z la; ;| vily: (3.2)

Jjew Jjex
Next, we note that D — {4] and D — |B]| are clements of Z"" and, since
B[] is irreducible, so is (D — [B])[2]. Thus, from (2.20), we choose x & R}
so that
dy — Y bl xifx, = I((D — |BD[a]), forall keo.
Jex

With this choice of x e RY, (3.2) implies that
(D — |BD[«D) = min {d, — 3 la; ;| yi/vi}, forall yeRf.

iex ;‘G‘t
Then, the characterization of (2.19) directly yields
(D — |BD[]) = I(D — {AD[«]). (3.3)

If Bla] is reducible, the argument used in (2.22) of Proposition 3 can be
repeated to show that (3.3) again holds, whence D — |B| 2. D — |4].
Conversely, if D — |B| 2. D — |A| for any real D = diagld;, d,,...,4d,] e
R™* assumed that « is any nonempty subset of {n) with Bl«] irreducible, so
that (D — [B])[x] is irreducible. By hypotheses, /(D — [BD[«]) = (D —
|AD[]) for any real D = diagld,, d,, ..., d,]. For any xe R%, define the
real numbers

(3.4)

i

R ¢ Y1kl xi/x;, forallies,
d;: = %iéz

0 , forallid¢o,
and set D: = diag[d,,d,, ..., d,) e R*". With the definition of (3.4) and
the inclusions of (2.18), it follows that
d;— Y lbijix;x; =0=1(D - BNz foralliea (3.5)
Jex
On the other hand, by hypothesis and by (2.18),
I(D = 1BDRD) = (D — [4DB]) = min {d; — } la; | vy}, forany

isx Jjea

yeRY. (3.6}
Thus, combining the results of (3.5)~(3.6), there is an i € « for which
d; - }: (b, xi/x; = d; — z la: jl yilve
Jea Jex
which implies that, for any x and y in RY, there is an i € « such that
Z %m,,-i ,Vj/l}"f = Z V)i,ﬂ legxn
jex Jex
ie., |4] dominates |B|. &
Given 4 and Bin R™" if there is a particular real diagonal matrix D e R™"
such that D — |B| =. D — |4|, then Proposition 5 provides no information
as to whether or not | 4| dominates [B]. In fact, it is possible to construct an
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example where D — |B] = — |A| for a particular real diagonal matrix,
but where | 4] fails to do*mmte |B|. To show this, letting

0 0 1 0 &% % 200
[A]: =10 0 1}; [Bl:= {O 21; [Dli=10 1 0},
1o 4 %+ 0 0 0 2

it can be readily verified that D — |B| =, D ~— |A4|. On the other hand, it can
be verified that p(l4]) = /2 = 1.414213 and that p({B]) = 1.434 467,
so that p(|B]) > p(|4]). This, however, implies from Proposition 7 in the
next section that |A4| cannot dominate |B].

This brings us to our main result.
THEOREM 6 Given A = [a,;] and B = [b; ;1 in C"", the following are equiva-
lent

i) G((D + B)[a]) € G(D + D)) for any ¢ # « = {n)y and for any

|

O

o

= diagld,, d,,....d, e C"";
u) GU(D + B)x }) S GUD + D)) for any ¢ # a = {ny and for any
= diagldy, d,, . .., d,) e C"" such that (d; + b, ;) is real for all i e {n);

iii) 1Al dominate.s zBi and a;; = b, ; for all iel{ny; ;
i) a;;=b;,; for all ielny and D —|B| =.D — |4] for any real
= diagld,, d,, ..., d,]e R™"

Proof That (1) implies (i1} is obvious. Assuming (i), we first observe, on
choosing ¢ = {i} for any i e (), that (ii) imples from (1.1) that &; + &, ; =
d; + a;; for any d; such that d; + b, ; is real, whence a;; = b;; for all
i € {ny. Next, consider any a with ¢ # o = (1) for which B{oc} is zm,ducxble
and any x € R".. Now, define the numbers d; so that

j le?iﬂ x;/x;, ieaq,
C;i + bi,i = | },j; (37)
L0 , i,

which implies that D: = diagld,, d,, . . ., d,] satisfies the hypothesis of (ii).
With this choice of the dy’s, it follows that
z—(d;+ b )l = 2 bl xy/x;, foralliea, (3.8)

Jeo
J#i

is evidently satisfied for z = 0. Usin;, the inclusions of (2.9), we see that
(3.8) with z = 0 implies that v(0; (D + B)[=]) = 0, so that, from Proposition
1,0e G((D + B)[x]). Thus, hypothesis (ii) implies 0 € G({(D + 4)[x]), whence
from Proposition 1, v(0; (5 A)al) = 0. With the second inequality of
(2.9), there is, for any y € R, an 7 € « for which
<v(0; (D + Al < - d; + a; i + Z la; it vilv:.
>

G
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But as a;; = b;,; for all ie{n), the above inequality becomes, with the
definition of (3.7), just

3 1l x/x; Z;czwdn,,

j(:m ["O(
e., |4} dominates |B], and (ii) implies (iil). That (ii) implies (iv) follows
directly from Proposition 5.

Finally, we show that (iv) implies (i). Assuming (iv), consider any « with
¢ # 2 < <(ny and any D = diag[d,, d5, ..., d,] € C"". To establish (i), it
suffices to show that if z& 8G({(D + B)a)), then ze GU(D + A)[«]). More-

over, because of (2.2), we may assume that (D + B)[x] is irreducible. Thus,
as ze 0G((D -+ B)[a]), it follows from Proposition 2 that there is an x e R,

for which (cf. (2.11))
lz — (d, + b; )| = Z b, ;1 x;/x;, forall ie{n). (3.9

Next, with the definition of the real numbers d; in (3.4), we see that the asso-
ciated matrix D: = diag[d,, d,, . ...d,] is real, and the hypothesis of (iv)
gives us that D — |B] . D — [4|. Now, from Proposition 3, this implies
that, for any v € R",, there exist integers 7 and & in z such that
di— Sblxiixi =z do— 3 lae | vilve

Jex ;cy
Hence, from the definition of the d s in (3.4) and the hypothesis that a,; =
b, ; for all i e (m), the above mequahi) reduces to

_,\L fae | vilve 2 Z 1l A;‘/V‘%

e Jeo

GEL JEk
Coupling this with (3.9) and again using the fact that @, ; = b, ; then yield

max { Z !a’k,j Yilve — lz—(d +a )l 20

yeRL  jex
JEk

Thus, from (2.10), we deduce that v(z; (D 4+ 4)[«]) = 0, whence, from
Proposition 1, ze GU(D + A)z]), i.e., (iv) implies (i). @

4. PROPERTIES ASSOCIATED WITH THE RELATION
"A" DOMINATES '8’

We begin with any easy consequence of Definition 4. For notation, let p(C)
denote the spectral radius of any Ce C*", ie., p(C): = max {{i]: i€
spec (C)}.
ProrosiTioN 7 Given A = [a; ;] and B = [b; ;] in C"", then |A| dominates
| B} implies that

p((1AD[D = p((IBDIx])  for any ¢ # o < <{m). (4.0
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Proof If |A| dominates |B|, then, from Proposition 5 with D = 0, we
have that — |B] >. — |4], or equivalently, that
(=(BD[D) = (—=(ADle]) forany ¢ # o S <n). 4.2)
But, from the Perron-Frobenius theory of nonnegalive matrices, it is easy
to see from (2.19) that (= (18D = —p(UB)[x]), and similarly I(—~(4){«])
= p({|4D[]), whence (4.2) implies (4.1). &
For the next result, we write in the usual nomiion of nonnegative matrices
that [4] > [B]if A = [a; ;] and B = [, ;] in C"7 satisfy
la; | = b, ;1 Tor uH. i, je {npy. (4.3)
PROPOSITION &  Given A = [a; ;] and B = [b; )] in C"" satisfying (1.3), then
1Al = | B] implies f;’zai §Al (imm;z(tcs |Bl.

Proof I |A] = |B], then for any nonempty « € {ny, for any real D =
diagld, oo, .. ., a’,j € M #and for any x e R,
di— S bl xfx; = dy = Y a4l x;/x;, forall e 4.4)
Jex jex

Hence, since D — |A] and D — |B] are elements of 77, it follows fram (4.4)
and the characterization of (2.19) that
(D — B[] = (D — [AD[x]) for all nonempty = e <{n),
whence D — |Bl =, D — {A4] for all real D = diagld,, d,, ..., d,je R™"
Thus, applying Propositions 5, |4] dominates |8]. &
Finally, we remark that the converse of Propositions 7 is false.
As a counterexample, consider

0 0 | 0 008 1%
;=10 0 1|, B:=10 0 2
110 4 3 0

By direct computation, it can be verified that (4.1) is valid in this case for all
¢ # o < {(3>. However, | 4] does not dominate |B|. To see this, choose & =
{3, and € = [0.30, 1, 1] and § = [0.9091, 0.5001, 1]* in R3. Then, as can
be verified, the inequality of (3.1) of Definition 4 fails for every ie(3). In
the same vein, the converse of Proposition 8 is easily seen fo be false, since,
with

0 1 0 0] 0 1 0 0]
4l =10 0 0 1] 44 g =100 10}
100 0 00 0 1
o 0 1 0 i1 0 0 0l

|A4] dominates |B| and | B} dominates [A|, but [4] # |B].
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