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1. INTRODUCTION

Any study of best uniform approxirhation of real continuous functions
on [—1, -+1] by polynomials contains much about Chebyshev polynomials
and their numerously elegant properties and characterizations. And new
properties and characterizations of Chebyshev polynomials continue to
fascinate us (cf. DeVore [1], and Micchelli and Rivlin [4]). In this spirit, we
present another property of Chebyshev polynomials which, though elemen-
tary, has not to our knowledge been mentioned previously in the literature.

To motivate our theoretical discussion, suppose we wish to find the best
polynomial approximation §,(x; r), of fixed degree n, to f(x) := ¢® in the
uniform norm on [0, 7], where r is a large positive number. Equivalently,
by mapping to the interval [—1, 411, we seek the best uniform polynomial
approximation p,(t; r) of degree n to the normalized function

g5 1) =2 | (e + D] [f(), 12 =1, +1, (1)
where p,(¢; ) and $,(x; r) are obviously related through
SO (BT 5 ) = 28w 1), et + 12 = ). (12
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234 ROULIER AND VARGA

Because of inherent monotonicity properties of %, it is not difficult to verify
that the unique linear polynomial p,(¢;7) of best uyniform approximation
to g(#; r) on [—1, 1] is explicitly given for any r > 0 by

pen = [er+ (A ()| e (1)

so that as r — - 00, py(t; r) tends uniformly on [—1, 1] to the Chebyshev
polynomial 7y(f) = ¢, i.e., for the case n = 1,

i || pu(s 1) = Tallzgfosn = 0. (1.4)

As we shall show (cf. (3.6) of Theorem 3), (1.4) similarly holds for any
fixed nonnegative integer n, in part because the continuous functions g(¢; r)
tend pointwise ‘on [—1, 1], as »r— +c0, to the discontinuous function

0, -1 <<,
fO(t) T 2’ t = 1. (15)

With w,, denoting the set of all real polynomials of degree at most 7, it is
readily seen (cf. Lemma 1) that there is no unique best uniform approximation
to f, in 7, over [—1, 1], but the set of best approximations to f, in 7, does
contain T, , the nth Chebyshev polynomial (of the first kind), for every n > 0.
To state our main result for sequences of continuous functions on
[—1, +-1], we give some needed notation. For brevity, we write || * lli—,+11
for | - | L [—1,+11 - Next, given a sequence { [y} Of continuous functions on
[—1, +1], let p, ,€m, be the unique best uniform approximation to f
on[—1, +1]inm, ,ie, ‘

E(fy) == Il)relf I fe — Pl = [ fe — Pk lli-1,42 Vk >1,Y¥n = 0. (1.6)

It is well known that there exist n -+ 2 distinct points of alternation in
[—1, +1] for p,s — fi» and by discarding at most one of these points on
the extreme right, # -+ 1 consecutive alternation points x{™* can be found

such that

() —1<xim? <xlmh << x(m oyl g

<
() paax™?) — filx™P) = (1Y En(f), 0 < <.
‘With this notation, and with the function Jfoof (1‘.5), we then state

(1.7

TuroreM 1. Let {f)2, be any sequence of continuous functions on
[—1, 4-1] such that (cf. (1.5))

lim [ fe = folan=0 Vi€ [—1, +1), | (1.8)
CAim fi(1) = 2, 19
]%132 I fe — s =1 S (110)
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and (cf. (1.7))

lim sup xm0 <1 yn=o0. | (1.11)

Then,
lim || pog — Tollicss1 =0 Vn >0. (1.12)

We remark that (1.8} and (1.9) imply of course the pointwise convergence
of {fils to fyin [—1, +11.

Because the assumption of (1.11) is a priori difficult to verify, a stronger
but more convenient hypothesis, (1.13), can be made, which, with (1.8)
and (1.9}, imply both (1.10) and (1.11). This results in

THeorem 2. Let {fi}n., be any sequence of continuous functions on
[—1, -+1] such that (1.8) and (1.9) are both satisfied. In addition, assume:

there is an o with — 1 <o <1 such that f;, is nondecreasing | (1.13)
on [o, 11Vk = 1. ’

Then, the conclusion (1.12) is valid.

2. PrROOF OF MAIN RESULTS

To prove Theorems 1 and 2, we establish a number of lemmas. First _
with the definition of f; in (1 5), it is immediate that, for any p, €, and
anyn->= 0,

1fo = Palli-1,401 = max{| 2 — p(D]; | p(D} > 1

from which the next reéult edsﬂy follows.

Lemma 1. E(fy) = 1 for all n > 0, and g, € m, is a best approximation
to fy inm, (over [—1, +1D iff || gullt-1.411 = 1 and ¢,(1} = 1. In particular,
each Chebyshev polynomial T, , n > 0, is a best approximation to f; in =, .

Lemma 2. If g, is a nonconstant best approximation to fy in w, and if
[ fo — qn | takes on the value E,(fy) in n distinct points in [—1, +1), then
g = Ty.

Proof. By hypothesis, there exist n distinet points {x;}7; in [-—1, +1)
(fo — g3 = E(fo) =1, ie, [g.x)l=1 for 1<j<n From
Lemma 1, | g,(1)| = 1 and also || g, ll-1,421 = 1. Thus, |g,| assumes its
maximum of unity on [—1;4-1]in n + 1 distinct points, from which, using
a result of Rivlin [6, p. 73], it follows that either ¢, is a constant, which
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contradicts the hypothesis, or ¢, = +7T, . Since g,(1) = 1 from Lemma I,
then only g, = T, is possible. §

LemMa 3. Let {fi}v1 be a sequence of continuous functions on [—1, +1]
satisfying (1.8)~(1.10). Then (¢f. (1.6)+(1.7)), for each n = 0, there is a sub-
sequence { Pp,s by Of { Poitima i 7y, @ Gy €7y, and 1 points —1 < &, <
Bpq <o K%y < for which

]%LIE: HPn,s,, —qn “[_1.+1] =0, (21)
and
lim X" =&, 1 <j<n. (2.2)

Moreover, q, is a best approximation fo f in m, .

Proof. By definition, it follows that

E(f) < Ef(f) <lfi—1 =141 Vn = 0, Vk = 1. (2.3)

When coupled with the hypothesis of (1.10), this implies that
lim sup £,(fs) < 1. @.4)

Then, because || pp.r — fi l—1.411 = En(f%) from (1.6), it follows from the
hypothesis (1.10) and (2.3) that { p,, ;}r.; is 2 bounded subset of =, . Thus,
by the Bolzano-Weierstrass Theorem, there exist a subsequence { pp,s }is
and a g, € 7, such that (2.1) and (2.2) are satisfied. To show that g, is a best
approximation to f; in m, , we first see from the triangle inequality that,
for any fixed ¢t with —1 <1 < 1,

L gn(D] < (@ — Pr,sJO + 1(Pr,s, — [5)O + 1 O] - |

The first term on the right tends to zero as k — o because of (2.1), the last
term tending to zero because of (1.8). The second term on the right is bounded
above by E,(f,), so that with (2.3) and (1.10), then | ¢,()] < 1. But as ¢
was arbitrary in [—1, 1), then |[ ¢, |1 .17 <X 1. Next, we have that

| P — S5 < M P — Sop lors1 = Eulf)s

so that from (2.3),
| 2o, (1) — fo, (DI < 1 f5, — T li-avan -

Thus, from (2.1), (1.9), and (1.10), it follows that | ¢,(1) — 2| < 1, whence
g.(1) = 1. But as|| g, 1,411 < 1, then g,,(1) = L and || g, [l—1,27 = 1, whence,
from Lemma 1, ¢, is a best approximation to fyinm,. §
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LemmA 4. Let {fi}w 1 be a sequence of continuous Junctions on [—1, 1]
satisfying (1.8)~(1.10). Then,

lim E,(f,) = 1. (2.5)
Proof.  Clearly, from (2.3) and (1.6),
| 2o (D) — [ < En(f3) <1 fo, — 1 llrog a1 -

Then, since Pn,s,(1) tends to g,(1) = 1 from (2.1), f;,(1) tends to 2 from (1.9),
and || fy, — 1r_y 4] tends to unity from (1.10), it follows that

lim E,(f,) = 1. (26)

If limy_, E,(fy) # 1, there is a subsequence { Jo i of {fi}ia for which,
with (2.4), imy_., £.( J#) = « < 1. But then, by what has been established,
{/r =1 will have a subsequence satisfying (2.6), a contradiction.

LEMMA 5. Let { fy}i_y be a sequence of continuous JSunctions on [~—1, +1]
satisfying (1.8)~(1.11). Then (¢ff (L.7) and (2.1)),

im po s = (-17 1 <1 <m @7)

Consequently {(cf. (2.2)),
gul&) = (1), 1< j<n, (2.8)
and the x;'s are distinct with —1 < &, < £, | < = < £ < 1.
Proof. From (1.7(i1)), we have that
P ) = L&) (1Y E(f,).1 < <n. 2.9)

With the hypothesis of (1.11), there is g with = < 1 such that xm < < 1
for all 1 <j<m, all k> 1. Thus, on applying the hypothesis of (1.8),
the first term on the right of (2.9) necessarily tends to zero as k — o0, while
the second term tends to (—1) from Lemma 4, proving (2.7). Next, (2.8)
follows directly from (2.7) and (2.1)~(2.2) of Lemma 3, which then provides
the distinctness of the £;s in [—1, -+ 1).

Proof of Theorem 1. As.a consequence of Lemma 5, we can apply
Lemma 2 to deduce that ¢, = T, for each n > 0. Hence, (2.1) becomes

Iki_zr; I Pn,s, ™ T ”[v].,+11 == 0,
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It remains to show that (1.12) is actually valid. Suppose, on the contrary,
that (1.12) fails to be true for some n > 0. Then, there is subsequence
{re}r_, and an € > 0O for which

I Pary — Tl =€ Ve =1 (2.10)

But, by the proof of Lemma 3, there is a subsequence {rkj};‘?:l of {ry}rq and
a §, €m, such that lim;. || p,, o — §n =111 = 0 where, as in Lemma 3,
d, is a best approximation of f; . But the proofs of the subsequent lemmas
similarly hold, so that by the same reasoning, §, = 7, , which contradicts

2.10). §

To prove Theorem 2, it suffices from Theorem 1 to simply establish

LEMMA 6. Let {f,), be a sequence of continuous functions on [—1, +1]
satisfying (1.8), (1.9), and (1.13). Then, (1.10) and (1.11) are satisfied.

Proof. It is easy to verify that (1.8), (1.9), and (1.13) together imply
(1.10). Next, setting o := lim sup;_., x™", we wish to show first (cf. (1.11))
that o < 1. Letting {k;}, be any subsequence for which o = lim,., ximE)
we may assume that x{"*’ > « of (1.13) for all j > 1, for otherwise, (1. 11
is trivially true. From (1.7)(0), we have that o < x{™* < x{* <1.
Hence, on subtracting the cases j = 0 and j = 1 in (1.7)(ii),

D) — P i) = (PG ™) — FO5™) + 2B ()
>2E(f)  Vi=1, @11)

since fy, is by hypothesis (1.13) nondecreasmg on [«, 1]. Consequently,
{2.11) can be expressed as ‘ ‘

Pag (EPINIE — XY 2 2E,(f) V=1 (2.12)

for some £™*) e [—1, +-1]. Then, since 1 — x{™* = x{"* — x{™* > 0,
{2.12) implies that

pnk(x

o 2E.(fr,
1"_ x(n,kj) > (fkf)

! Hp;a,k, H{~3,+1]

Vi=1. 2.13)
Next, as in the proof of Lemma 3, the boundedness of { p, ; };2, implies
that there is an M > O for which
||pn,1cj ez < M Vi =1,
so that by MarkofI’s inequality (cf. Meinardus [3})

I Poe; lioa,an < Mn®* - Vj = 1.
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Inserting this in (2.13) then yields

Mn? Vi

V.

(1 = x™Edy > 1. (2.14)

But as Lemma 4 implies that lim, . E,(f) = 1, this gives that
1 — o = 2/Mn?,
or

2
—_——t > =1 (n,K)
I>1 = O llI]{Lg}lp x{mo,

Le., (1.11) is satisfied.

3. APPLICATIONS AND ADDITIONAL REMARKS

First, though the hypotheses of Theorem 1 .may seem lengthy, it is
interesting to point out that if any one of the four hypotheses of (1.8)-(1.11)
is dropped, a counterexample to the conclusion (1.12) of Theorem 1 can be
constructed.

Gur original motivation for this problem came from investigations of
best polynomial approximation to continuous functions defined on [0, - c0).
To close the cycle and apply the result of Theorem 2, let C_[0, + o) denote
the subset of all real continuous functions f(x) on [0, -+ o) for which there
exists a real number 7(f) = 0 such that f(x) is positive and nondecreasing
for all x = «(f). Next, for any fe C,[0, -} c0), define its associated non-
negative and nondecreasing function m(r) by

)= max 1fG =1 /ln V=0 3.1

Note that fe C,[0, - co) implies that m, e C,[0, + o). With this notation,
we say ghat fe C.[0, + o0) is order positive on [0, + o0) if, for each fixed
y satisfying 0 << v < 1,
msyr)
Jim, mi(r) 0. ; 3.2)
As is easily seen, f(x) = e” and A(x) = ¢® — 10e%/% sin x are order positive
on [0, - o). In addition, any entire function of positive order and of perfectly
regular . growth (cf. Valiron {7, p. 45]), having only nonnegative Maclaurin
coefficients, is necessarily order positive on [0, -+ c0). Note, however, that
no polynomial can have this property. _ ; ’
Next, if f is order positive on [0, - c0), it follows from (3.2) that m;,
and hence f, is unbounded on [0, -}- o). Consequently, on setting

My 2= {r = 0:my(r) = f ()}, (3.3
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then 9, is an unbounded subset of [0, -+ c0) which contains all r sufficiently
large. This brings us to the following construction. Assuming f is order
positive on [0, + o), then, with the functions g(z; r) of (1.1), set

£0) 1= gl 1) = 2f [ (4 DY 1 -1 110k =1, (34

where {r,};_; is any fixed subset of 9, satisfying

0 <7(f) <r <ry,< -, with }3930 r, == -+ o00. - (3.5

Because f'is order positive, it is easily seen that { g,}5, is a sequence of con-
tinuous functions on [-1, +1] satisfying (1.8) and (1.9), and that g, is
positive and nondecreasing on [—1 -+ 27(f)Jre» 11, so that (1.13) is satisfied
with « = 27(f)/r; . Hence, Theorem 2 can be applied, but as this application
can be made for every subset {r, )}, of M, satisfying (3.5), we also then have

THEOREM 3. If f is order positive [0, + o), let the functions g(t;r),
r = 1(f), be defined as in (1.1), and let p, (-, ¥) be the unique best approximation
iny, to g(-; 1)y on [—1, +11. Then,

m ( (5 7) = Tolisin =0 Vu 0. (3.6)

If f'is order positive on [0, 4 o), then it follows from (3.6) of Theorem 3
and known properties of Chebyshev polynomials that p,(-; r), the unique
best uniform approximation in w,, to g(-; ) on [—1, -1}, is evidently positive
and strictly increasing on [1, -+ o0) for every » > 1, provided that r is suffi-
ciently large. But since p,(x; r), the unique best uniform approximation in
ar, to f(x) on [0, rl, is related to p,(¢; r) through

forE=D =050, et D2=x ()
then, as a consequence of Theorém 3, we have

CoroLLARY 1. If f is order positive on [0, + o0), then for each positive
integer n, there is an s = s(n) = +(f), such that p,(-;r), the unique best
uniform approximation in , to f on [0, r], is positive and strictly increasing
onr, oo} forallr = s.

We remark that sufficient conditions on f to insure increasing and non-
negative polynomial approximations on the right of the interval of approxi-
mation have similarly been considered in [2].



CHEBYSHEYV POLYNOMIALS 241

Finally, the function f, of (1.5) has the property (cf. Lemma 1) that

O  E(H=1 Yn = 0,
and (3.8)
(ii) If— T, H[—-1.+1] =1 Vn =0,

and this was key in our development. However, f; is not the only function
on [—1, -+1] satisfying (3.8). For example, changing the definition in the
Jo in the point x = —1 so that f(—4%) = %, gives a new function also satis-
fying (3.8). It is then of interest to exactly characterize those functions f
defined on [—1, +1] for which (3.8) is valid, for this allows an obvious
parallel derivation of results analogous to Theorems 1 and 2. To sketch
this characterization, note that (3.8)(ii) implies that

I+ T <) <1+ T,  Vxe[—1,+1], Vn >0,
whence
I sup {T(0)} == L(x) <f(x) < UR) =1+ inf {T,(x)} Vx € [-1, +1].

3.9

Since —1 < T(x) < 1forall xe [—1, +1]and all n = 0 while Ty(x) := 1,
it follows that L(x) := 0 and 0 < U(x) < 2, so that

0<fx) <U® <2  Vxe[—1, +1]. (3.10)

Next, it is known (cf. Pélya-Szegd [5, vol. I, p. 71]) that if s is irrational,
then the sequence {ns — [[ns]o is uniformly distributed in [0, 1] where
[[ns]] denotes the integer part of ns. This implies that U(x) = 0 for any
x = cos 0 for which 0/ is irrational, and thus, from (3.10), f(x) = O in such
points. In a similar fashion, one then establishes

PROPOSITION 1. For f.defined on [—1, 411 to satisfy (3.8), it is necessary
and sufficient that

@ fH=2 ’
(i) f(x) = 0forany x = cos 0 with 0 e [0, 7] for which 6/m is irrational:
(i)  f(x) = 0for any x = cos 6 with 0 e [0, =] for which § = :—:; , withr

and m in lowest terms and r odd; (3.11)

(iv) 0<f(x)<1— cos (%%w) Jor any x = cos 8 with § ¢ [0, 7]

Jor which § = (_*_2_@'__) .
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