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Summary. In this paper, we continue our study of the location of the zeros and
poles of general Padé approximants to ¢*. We state and prove here new results
for the asymptotic location of the normalized zeros and poles for sequences of
Padé approximants to ¢, and for the asymptotic location of the normalized
zeros for the associated Padé remainders to ¢% In so doing, we obtain new results
for nontrivial zeros of Whittaker functions, and also generalize earlier results of
Szegd and Olver.
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1. Introduction

The purpose of this paper is to state and prove new results on the location of limit
points for the zeros and poles for sequences of normalized Padé approximants to €7,
as announced in [12], and for the zeros of the associated normalized Padé
remainders to ¢*>. We also present a new result on the angular distribution of these
limit points of zeros and poles.

What has strongly motivated this work is an incisive article by Szego [14],

which considers the zeros of the partial sums s,(z):= ) z/k! of the Maclaurin
k=0

expansion for e*. Szegd [14] showed that £ is a limit point of zeros of the sequence

of normalized partial sums {s,(nz)} , iff ~

2! %=1 and [F<1. (1.1)

(This result was obtained later independently by Dieudonné [2].) Moreover, Szegd
[14] showed that Z is a nontrivial (i.e., nonzero) limit point of zeros of the
normalized remainders {€" —s, (nz)}, iff

¢! %=1 and |§=1. (1.2)
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The connection of Szegd’s result with Padé approximations to ¢° is evident in
that s,(z) is the (n,0)-th Pad¢ approximant to e*. Our new results, giving sharp
generalizations of Szeg®’s results to the asymptotic distribution of zeros and poles
of more general sequences of Padé approximants to ¢, will be stated explicitly in§ 2,
with their proofs being given in §§3—6. For the remainder of this section, we
introduce necessary notation and cite needed known results.

As in [9], for any nonnegative integers n and v, let R, (z) denote the Pade
rational approximant of type (n,v) to €%, and write

R, (2)=F, .(2)/Q,,,(2),

where the degrees of P, ,(z) and Q, ,(2) are respectively n and v, and where Q,.,(0)
=1. It is explicitly known (cf. Perron [8, p. 433]) that

"o (n+v—k)lnlzt

Bl =8 ik o=k

Y o(n+v—k)vi(—z)f

Q@)= 2 S Tk =k (1.3)
so that
Q,.,(2)=P, ,(—2). (1.4)

Because of this identity (1.4), results on the zeros of Padé approximants easily
translate into results on the poles of Padé approximants. In addition, it is known (cf.
Perron [8, p. 436]) that the Padé remainder ¢ —R, ,(z) has the representation

0, e =R, (2} =0, ,(2)=F,,(2)

(_l)v Zn+v+1 1

zwgew(l—t)n tvdl (15)

Essential for the statements and proofs of our main results are the following
recent results on zeros of Padé approximants to €.

Theorem 1.1. (Saff and Varga E9~1 17). For every v=0, n =2, the Padé approximant
R, ,(2) to ¢ has all its zeros 1n the infinite sector

—y2
S, v::{z: larg z| >cos * <Lv )}
> n+v

Furthermore, on defining generically the infinite sector S,, 1=0, by

1—
Sl:z{z: larg z| >cos ™! <ﬁ>}, (1.6)

consider any sequence of Padé approximants {R, , (z)}7- satislying

. v,
lim n;= + o0, and lim-L=o0, (1.7
jo o ji— oonj
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for any ¢ with 0<¢ < o0. Then, for any ¢ with 0<¢ < g, {an,\,j(z) 72 1 has infinitely
many zeros in S, _,, and only finitely many zeros in the complement of S, _,,and S,
is the smallest sector of the form larg z| >, ©>0, with this property.

Theorem 1.2. (Saff and Varga [12]). For any n=1 and any v=0, all the zeros of the
Pad¢ approximant R, ,(z) lie in the annulus

(n+v)pu<lzl<n+v+4/3 (u=0.278465), (1.8)

where p is the unique positive root of ue’ **=1. Moreover, the constant win (1.8) s
best possible in the sense that
u= inl {|z|/(n+v): R, ,(2)=0}.
nz1l,v=0
We remark that because of the identity in (1.4), the inequality (1.8) also applies
to the poles of any Padé approximant R, ,(2) with n=0 and v>1.

Theorem 1.3. (Saff and Varga [10]). For any ¢ with 0<o¢ < oo, consider any
sequence of Padé approximants {R,,,,(2)} 72, for ¢ for which (1.7) is satisfied.
Then, R, , (2) has zeros of the form

(nj+vj+1)exp{iicos_l<r£{%f)}+0((nj+vj+l)“3), as j— 0. (1.9)

2. Statements of New Results

We list and discuss our new results in this section. To begin, for any nonnegative
integers n and v, we have from (1.5) that the Padé remainder to e, e =R, (2),hasa
trivial zero at z=0. As our first result, which is necessary for the proof of one of our
main results, we state

Proposition 2.1. For any nonnegative n and v with n+v >0, let z be any nontrivial
zero of the Padé remainder, e —R, (2), to ¢°. Then,

21> {(n+v)(n+v+2)11/2, ) 2.1)

The proof of Proposition 2.1 will be given in Section 3. We remark that the Padé
remainder ¢ —R, (z) is known to have infinitely many zeros for any n>1 and any
vz0, and such remainders have been studied in the literature (cf. Szegd [14] and
Wynn [187]).

To describe our first main result, for any ¢ with 0 < ¢ < o, define the numbers

zii={1—-g)+2 oi}/(1+o)=exp{iiCOS—lG;Z)} (2.2)

which have modulus unity, and consider the complex plane € slit along the two
rays

Ry={z:z=z] +it or z=z] —it, Y 1=0}, (2.3)
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as shown in Figure 1. Now, the function

ga(z)::—_-‘/ 1+zz—2z(;Z) (2.4

hasz] and z, as branch points, which are the finite extremities of ,. On taking the
principal branch for the square root, ie., on setting g,(0)=1 and extending g,
analytically on this double slit domain C\ 4, then g, is analytic and single-valued
on C\Z,. Next, it can be verified that 1 +z+g,(z) does not vanish on C\Z,.

| 7
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\\\L/ 75
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| Roq
Fig. 1
2 20

Thus, we define, respectively, (1 +z+g,(z)) 77 and (1 —z+g,())! *¢ by requir:
2 20

ing that their values at z=0 be the positive real numbers 21+ and 2% +°, and by
analytic continuation. These functions are also analytic and single-valued in C\ %,
With these conventions, we set

40(‘16?) Zega(Z)
w,(z):= 3 5., O<g<oo, (2.5

(L+0)(1+z+g,(2) Fo (1 —z+g, ()

and it follows that w, is analytic and single-valued on €\ %, . Next, on letting ¢ —
in (2.5), we verify that wy(z):=lim w,(z) satisfies

-0
wo(z)=ze' "2 for Rez<1, and
wo(z)=(ze' %)~ ' for Rez>1. (2.5

With these definitions, we come to our first main result, which is a strengthenec
form of a result announced in [12]. Its proof is given in § 4.

Theorem 2.2. For any ¢ with 0<¢ < oo, consider any sequence of Padé approx
imants {R, , (2)}jZ, to ¢ for which

limn,=+o0, and lim(v;/n)=o0, (2.6

jo o Jjooo
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and let S, denote the closure of S, (cf. (1.6)). Then,
i) Z is a limit point of zeros of the normalized Padé approximants

{Rnﬁ Vi ((n_/ + vj) Z)}f: 1
iff
ZeD,={zeS,: |w,(z))=1 and |z|<1}; (2.7
ii) if ¢ >0, then 2 is a limit point of poles of the normalized Padé approximants
(R, ((n;+v)2ie,  ff

ZeE, :={zeC\S,: |w,(2)|=1 and |z|<1}: (2.8)

iii) 2 is a limit point of nontrivial zeros of the normalized Padé remainders
(=R, (), il

ZeF, :={z: lw,(z)|=1 and |z|=1}. (2.9)

We first remark that because w,(z) =w,(Z) from (2.5), then w,(z)] =1 iff jw_(Z)|
=1forany ¢ =0. Thus, since the sector S, (cf. (1.6)) is itself symmetric about the real
axis, it follows that the curves D,,, E_, and F, of (2.7)-(2.9) are all symmetric about the
real axis (cf. Fig. 2).

Fig. 2. Zeros of R,, 4(322) and > —R,, 4(322), and poles of Ry, 4(322).
x=2zer0s of R, 5(322); + =poles of R, 4(32z); x =zeros of €***—R,, 4(322)
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We next remark that in the special case of Theorem 2.2 with ¢=0 and, in
addition, with v;=0 and n;=j for all j=1, parts i) and iii) of Theorem 2.2 reduce
respectively to Szegd’s result (1.1) and (1.2), since the normalized sequence of
approximants in this case, {R; ,(jz)}7Z,, is just {s,(nz)},~ ;. Furthermore, for the
choice v;=j=n; for all j= 1, (2.6) is satisfied with 0 =1, and in this case, the curves
D, and E,, after rotations of n/2, form the boundaries of the eye-shaped domain
considered by Olver [6, p. 336] in his asymptotic expansions of Bessel functions.

To illustrate the result of Theorem 2.2, consider the sequence of Padé
approximants {Rj,, ,(4mz)},7_, for which ¢=1/3 from (2.6). In Figure 2, we have
graphed D, 3, E 5, and portions of the two branches of F 5, along with the 24 zeros
and 8 poles of the normalized Padé approximant R, , 4(32z), denoted respectively
by #’s and +’s. In Figure 2, we have also plotted zeros of the normalized Padé
remainder e***—R,, 4(32z), which are denoted by x’s. Figure 2 shows that
Theorem 2.2 quite accurately predicts the zeros and poles of R, ((n+V) z), as well as
the zeros of the remainder ¢ *V? — R, ((n+v) z), even for relatively small values of
n and v. The reader is advised to consult [12] for further graphical illustrations of
parts i) and ii) of Theorem 2.2 in the cases 6 =0, 6=1, and 6 =1/3.

The next result is again motivated by another result of Szegd [14]. Its proofis
given in Section 5.

Theorem 2.3. For any ¢ with 0<¢ < o0, consider any sequence of Padé approx-
imants {R,; ,;(2)}72 ; to ¢* for which (2.6) is satisfied.

i) If d_ is a closed arc of the curve D, \{z;} (cf. (2.7)) with endpoints u, and u,
(with argu, =argu,), where w,(u):=exp(i¢,), j=1,2, let t{V’(d,) denote the
number of zeros z\") of R, , (z) which satisfy arg u, Zargz{"’ Zarg u,. Then,

lim ri&)(da)/njz(l +0)(¢p,— ¢1)

jo 2n

(2.10)

ii) If o >0, and if e, is a closed arc of the curve E_\ {z. } (cf. (2.8)) with endpoints
pt, and p, where w,(u;) =exp (i), j=1,2,let ¢\?'(¢,) denote the number of poles z?
of R, , (2) which satisfy arg i, Zargz’ > arg, . Then,

lim <@ (e, /s, = LT P2 = ¢1)

P 2na

(2.11)

iii) Let f, be a Jordan curve which contains in its interior a single closed subarc
of one of the branches of F, but no points of D or E_, let ¢, — ¢, denote the change
in the argument of w_(z) as this subarc of F, is traversed in the positive sense, and let
1(f,) denote the number of zeros 23 in f, of the normalized difference e/ **7*
=R, ,((n;+v;) z). Then,

J

i o) _ 9291 | (2.12)

jooo (n+ V) 2n

Again, the special case of Theorem 2.3 with ¢ =0 and, in addition, with v;=0
and n;=j for allj= 1, is due to Szegd [14]. Because wol(z)=ze' " for Rez<1 from

+ _.
(2.5"), and because w,, (15) = +ie” ' it follows from (2.10) that if 7, is the number
e
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Table 1. /5, = number of zeros of
R;,, ,(z2)in Rez=0

m lim Liw/3m
1 3 1
2 6 1
3 9 1
4 10 0.8333
5 13 0.8667
6 16 0.8889
7 17 0.8095
8 20 0.8333
9 23 0.8519
10 26 0.8667

of zeros of 5,(z) in Rez=<0, then, as shown by Szego,

A |
lim "=_+— (¢=0).
now M 2 enm
In a similar fashion, we can use (2.10) of Theorem 2.3 to deduce the following. If we
consider the sequence of Padé approximants {R 3m,m(Z)} e 1» cOrresponding to the
case g=1/3, then all the zeros of Ry w2}, from Theorem 1.1, lie in Sy3=

{z: larg z| >cos‘1(%)=g - Now, let [, denote the number of zeros of R;,, ,(z) in

Rez=<0.Then, to apply Theorem 2.3, the endpoints of the closed arc d 1/3 in this case
are approximately y; =0.706999 i and u, = —0.706999 i, from which it follows that
¢, =arg wy3(1y)=1.193433 rad., and ¢, =arg Wy,3(1,)=5.089752 rad. Thus, from
(2.10) we have

. l3m 2(452_451) .

nllljlgo Im- 3n =0.826824 (¢=1/3). ’ (2.13)
To numerically corroborate this result of (2.13), we give in Table 1 the actual
number of zeros of R, ,(z) in Re z<0 for m=1(1)10. Note that the result of the
particular case m=8 can be checked from Figure 2. Although the convergence of
the ratio 5,,/3m is, from Table 1, slow, reasonable agreement with (2.13) is evident
for small values of m.

The result of (2.10) of Theorem 2.3 can also be formulated as follows. Given any
sector SOy, ¥,):={z=re®: Y, <0<y,} contained in S, (cf. (1.6)) with
0=y, <y, =2m let <\ (¢,,,) denote the number of zeros of R, , (2)in S(.,).
Then, assuming (2.6), there is a positive constant m(i,, ¥,,0) such that

_hm Tﬁ?(l/fp%)/”ﬁm(%,%,0"), (2.10)

where the constant m(y/,,/,, 5) can be precisely determined from (2.10). We remark
that the existence of positive lower bounds for rfli)(\/xl, W ,)/n; for the particular case
o =0 and suitable sequences {n ;1721 has been recently announced by Edrei [3, 4],
for more general entire functions than &=
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3. Proof of Proposition 2.1

In this section, we collect some old and some apparently new results on Whittaker
functions from which Proposition 2.1 will follow as a special case.
Using the notation

(@);=al@+1)...(atj-1), j=lL (@)o=1,
it is well-known (cf. Olver [7, p. 255]) that the confluent hypergeometric function

e (a);2’
1Fl(a?caz)"‘ji;0(c)jj!s

c=%0,-1,-2,...,

has the integral representation

F(C) }en(l _t)c—a~1 ta‘i dt, (31)

Filas e Z)zr'——"dr(a) [c—a)}

when Rec>Rea>0. It is further known (cf. Otver [7, p. 2607) that the related
Whittaker functions M, (), defined by

c—1

M, (2):=e "7z [ Fi(a;¢;2) with k:%-—a, m=—" (3.2)
satisfy Whittaker’s equation
. 1 k m?*-%
w (Z):{Z#E+ o 4}w(z). (3.3)

Calling any z+0 for which M rmz)=02 nontrivial zero of M,_,,, we next state
Lemma 3.1 (Tsvetkoff [15, Thm. 7]). Let k and m be real with 2m+1>0. Then,

i) if k>0, all nontrivial zeros of M, ,(z) satisfy Rez>2k;
ii) if k<0, all nontrivial zeros of M, ,,(z) satisfy Rez<2k;
iii) if k=0, all nontrivial zeros of M, ,(z) are purely imaginary. (3.4)

We take this opportunity t(g point out that Theorem 11 of Tsvetkoff [15],
concerning the Whittaker functions W ,(2), 18 false. Tsvetkoff asserts in his
Theorem 11 that when k>0, W, (), defined (cf. Olver [7, pp.257 and 2607]) by

—z/22~m+ 1/2 o

e
W, _e TE ekl mtk=1/2 g
= Tz ) (t+2)

for Re (m—k+7%) >0, cannot have zeros in Re z 20, except on the real axis. To show
that this is false, it can be seen from the above definition and from the definition of
the Padé numerator P, (z) in (1.3) that

. ity
VI Waoy atvt1 (2)=(n+v)le 72z 3 )PM(Z), (3.5)
2’ 2
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for any nonnegative integers n and v. Now, for n>v, P, ,(z) can have nonreal zeros in
Rez=0. Indeed, Theorem 2.2 shows that for sequences of Padé approximants
satisfying (2.6) with 0 < ¢ < o, the zeros of the associated normalized sequence of
Padé numerators have a continuum of nonreal limit points in Re z>0. Tsvetkoff's
proof breaks down because he asserts that

o0

k
[Fie+0+ 1] e ax=o.
1
where 7 (and hence 7) is a nonreal zero of W, .(2). However, because of the factor
e * in (3.5), the integration above can take place only on a ray in the right-half
plane, i.e., only if the zero t satisfies Re 7> 0.
The following result is apparently new.

Proposition 3.2. If m>0, then every nontrivial zero of M, ,,(z) lies in the region

{z=x+iy:x>2k and y*>>x*(4m?—4k*-1)/4k*} if k>0; (3.6)
{z=x+iy:x<2k and y*>x?(4m?>—4k>—1)/4k>}  if k<O; (3.7
(z=iy Y >@m2—1)}  if k=0, (3.8)

Proof. If w(z) is a solution of the differential equation w’+ G(z)w=0, it is well-
known (cf. Hille [5, p. 286]) that

(w(z) - w'(2)) T—T lw’(m%ff G(1) w(t)|? dt=0. (3.9)

Z1 z1

In the case of the Whittaker equation (3.3), G(z) is given by
1
Gz)=———5——. (3.99
Z .
Now, let Oz, =x,+iy, bea zero of M, ,(z). The hypothesis m >0 implies (cf. (3.2))

that ¢> 1. Thus, for w(z)=M,_,,(z), we can integrate from z, =0to z, =z, in (3.9) to
obtain

T IM L OF & + ] G0 M, (0 di=0.
0 0

Setting t=pz,, 0<p <1, this becomes with (3.9)

! [k m*—% z, :
=t =ML (p2o)P dp = M, (p20) Z, dp.
j P ,0220 4J k, o) g k, 0. 0

Taking real parts on both sides then gives

1 . 1
S R Rl 2dp=( 1M, P x, dp.
g[p pz(x%—i’yé) 4] \ k,m! p gJ k,m! 4] p
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Now, suppose that k>0. Then, from (3.4i) of Lemma 3.1, Rez,=x,>2k>0,
whence

Trk m?>—1/49x, xo]
——s s —— M, P dp >0,
g [p pr(xg+yy) 4 e

or equivalently

: [4k(><3 +y5) p —(4m* —1) xo —Xo (x5 + ) p*

! S 4D

] M, 2 dp>0. (3.10)

The positivity of this integral implies that the quadraticin p in the numerator of the
integrand of (3.10) must evidently satisfy

—xo(xg +5) p* +4k(x5+y5) p —(4m* —1) x>0

for some p with 0<p <1, and this in turn implies that its discriminant must be
positive:

16k (x2+ y2)? —4x3(x3+ y3)(4m* —1)>0. (3.11)
Simplifying, (3.11) can be equivalently expressed as
yi>xi(4m? —4k* —1)/4k?,

which, with x,> 2k, establishes the desired result of (3.6). The proofs of (3.7) and
(3.8) are similar. []

We remark that Proposition 3.2 improves and corrects Tsvetkoff’'s Theorem 3
in [16].

Corollary 3.3. If m>0, then every nontrivial zero of M, , (z) satisfics

|lz|>1/4m* —1, whenever 4m>—1>0. (3.12)

Proof. Suppose that k>0, and let 0z,=x,+1iy, be a zero of M, . By (3.6) of
Proposition 3.2, we have y2 > x2(dm? —4k?* — 1)/4k?, or x§+yg>xg(4m* —1)/4k>.
But as x{>4k* also from (3.6), then

xg+ye>4m* —1,

which gives (3.12). The cases k<0 and k=0 are similar. []

Proof of Proposition 2.1, From the identities of (3.1) and (3.2), it follows that

(n+v+1)!
M,y e ()= !

2 2

(n + v+ 2) 1 .
e Pz 2 et —0tetde
vin! °
for any nonnegative integers n and v. Comparison with the integral representation
(1.5) thus shows that the above relation can be expressed as

My s vever ()= (= 1p BEVOEVEDY e (50 (0, ()
20 2 (3.13)

vin! .
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whence any nontrivial zero of the Padé remainder €Q, ,(z)—F, ,(2)is a nontrivial

. . n—v
zero of Mu-v n+v+1(z), and conversely. Now, in this case, k:( 5 ) and
2’ 2

e (n+v+1
L2
Corollary 3.3 gives that the nontrivial zeros of €0, ,(z)—PF, (z) satisfy

2| >1/4m> —1 =1/ (n+v)(n+v+2), the desired result of (2.1) of Proposition 2.1 [

), from which it follows that m>0 if n+v>0. Applying (3.12) of

We remark that for the case of positive integers n and v with n=v, it follows from
(3.4ii) of Lemma 3.1 and Proposition 2.1 that every nontrivial zero z of e, .(2)

—F, .(2) is purely imaginary, with |z[>7/(n+v)(n+v +7): 2 n(n+1).

4. Proof of Theorem 2.2

We begin this section by deriving the following useful property of the function
w,(2).

Lemma 4.1. For any o with 0<¢ < o0, the function w,(z), as defined in (2.5)H2.5),1s
univalent in |z| <1.

Proof. Assume first that 0 < ¢ < o0. From the definition of g, in (2.4), it follows that

g2(z)=—n <0 implies that z=(1 —¢ + i)/(1+0), where a:=1/40 +n(l +0)? satis-
fies o<>2]/g. Hence, by definition (2.3), ze#,. With this and the fact that the
principal branch for the square root is chosen in the definition of g,, then

—g<arg gg(z)<g VzeC\Z,,

or equivalently

Reg,(z2)>0 VzeC\Z,. 4.1
Next, a straight-forward calculation based on the definition of w,(z) in (2.5) shows*
that

2w, (2)

— =g (2) VzeC\Z,. (4.2)

Ww,(2)

Thus, with (4.1) and the fact that the open unit disk is a subset of C\Z, (as shown in
Fig. 1), then

Re{%i—;((zi))}>0 in |zl<1. 43

Moreover, from (2.5'), we directly verify that (4.3) is valid also for ¢ =0. Now, as is
well-known (cf. Sansone and Gerretson [13, p. 211]), (4.3) implies that w,(z) is
univalent (and starlike) in |z|>1 for any 0<o<oco. []

1 We remark that Equation (4.2) arises in a natural way by applying the Liouville transformation
[7, p. 191] to the differential Equation (3.3)
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We remark that, using (4.3), it can be shown that for any ¢ with —n <0<, there
is a unique 7,(0) with 0<r, () <1 for which lw,(r,(0) %) =1, and, moreover, that

r (0)=1 only if 0= +cos™? (i ;O—) Hence, the set

o
G,:={zeC: |w,(z)|=1 and |z|=1}, (4.4)

is then a well-defined Jordan curve which lies interior to the unit disk, except for its
points z* of (2.2). As a consequence of (2.7) and (2.8), note that G, =D, VE,. 50 that
D, and E, are well-defined Jordan arcs.

Proof of Theorem 2.2. Because the case =0 is similar, consider a fixed ¢ with
0<o< oo and any sequence of Padé numerators {P,,j)vj(z)}joz1 for which (2.6) is
valid:

lim n;= + 0, and lim (vi/ny)=o0.

J 0 J—= w0
For notational simplicity, we now write n and v, respectively, for n; and v;. By virtue
of Theorems 1.1 and 1.2, any zero z of B, ,(n+v)z) satisfies

vjz1.

zeS and O<u<|zl<1l+

n,v

4
3(n+v)

Consequently, any limit point Z of zeros of (B, (n+v)2)}i=, belongs to the closed
set

{zeS,: O<pu<s|z| 1),

where S, denotes the closure of the sector S, (cf. (1.6)). To complete the necessity of
(2.7) of Theorem 2.2, it remains to show that any such limit point £ satisfies |w,(Z)|

=1.1f 2=z} orif z=z,, then, as previously noted, ZeG,,, whence lw,(2)]=1 from
(4.4). Thus, we may assume in what follows that z=Z satisfies

zeC\(Z,w {0}), 4.5)

so that in particular, 20 and z =z,
From the explicit formula (1.3), it can be verified that P, ,(z) has the following
integral representation:

(49! P, @)= [ e (2 d izl
0

the path of integration being the nonnegative real axis. Replacing z and t
respectively by (n+v)z and (n+v)t, and defining

N - n v
. =n.At.: = — E— L j Z
hi(t)=h;(t; z) t+<n+v> In(t+ 7)+<’n+v> Int, Vjzl1, (4.6)
this integral representation for F, ,(z) becomes

(LB (n+V)2) T e, :
(n+v’)”+”‘” .—_ie<+)hm>dt, vzl 4.7
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As defined, /;is a multi-valued function of r which is analytic on C\ {0, —z},and for
each zeC\(#, U {0}), h {t;z) can be defined to be single-valued and analytic as a
function of ¢ on the complement of two suitable cuts T in the t-plane, respectively
joining t=0 and t= —z with infinity. Note however that exp [(n+v) A, (0] s
analytic and single-valued for all t. Next, from (4.7) and from (1.3)~1.4), it can also
be verified that

(n+we" ™20, [(n+v)z) 7

(n+ v)n+v+1 j e(n+‘))7lj(t> dt> v]g 1» (48)

the path of integration being the horizontal ray —z+u for =0, and from (1.5),

(n+0)!H{e" ™20, (n+v)2) =P (n+v)2)} O L ,
- by nENRO g >1 ,
(il jze . vizl, o (49)

the path of integration being chosen to be the line segment from —z to 0. F mally,
from (2.6), we can define, in analogy with (4.6), the function

hy()=h,(t;2)=—t+{In(t+2)+olnt}/1 +0), (4.6)

and we now investigate the zeros of 7, (1) and h(1).
From (4.6), the derivative of h is

{n(t+2)"*+ve™ 1},

(n+v)
whose only zeros, £ (z) and ; (z), are

5 (2)=3{1-2z%8(2)}, (4.10)

where

gj(z):=|/1+z —22(71;:) (4.11)

In analogy with the definition of (2.2), the points

Zj _{(n—V)izmi}/(n+v)=exp{iicos_l <n~v)}

n+v

are the branch points of § j» and we can similarly consider the complex plane C slit
along the two rays

@-:z{z: z=Z] +it or z=%; —it, Y120}

On setting g,(0)=1 and extending g ¢, analytically on (E\% then g; is analytlc and
single- Valued on C\Z, for all j=1, the same being true for the functions t *(z) of
(4.10). Note that with (2 4) and (2.6),

lim i () =3{1 —z+g, ()} =t} (2),  VzeC\(%,U{0}). (4.12)

J— o

and that ¢ (z) are correspondingly the zeros of h(2).
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Next, it can be readily verified from the assumption of (4.5) that

) 1 (@%t,(2)
ii) tZ(z)=*0 vV zeC\(Z, w {0}). (4.13)
i) () —z

Thus, from (4.12),

) 1 (2)*1(2)
i) ff (z)£0 vV zeC\(£,0{0}), Vj suff. large. (4.13)
iii) f]?“ (2)+—z

From (4.6), we further have that

~ _(k—l)!(—l)"H
hP(0= (n+v)

(n(t+2) *+ve Ry, Vk=22, (4.14)

J

and, on using the case k=2, it can be verified from (4.5) that

h(z)( (z))=0  for all j sufficiently large, and
W2 (tE(2)) #0. (4.14)

In other words, for 0< ¢ < oo and for ze C\(Z,, U {0}), tJ (z) and tN* (z) are distinct
saddle points (of order one) of h, ;(0), for all j sufficiently large, and t *(z) are distinct
saddle points (of order one) of h L)

We now seek to obtain asymptotic estimates for the integrals of (4.7)+4. 9), as
j— o0, by means of the steepest descent method (cf. [1,7]). To this end, we examine
the particular functions

Iji (Z; 5):: j e(nJrV)%(l)dt, (4.15)
75 ©)

where the paths of integration, y; £ (6), are respectively the line segments t—f (z)
+pe‘91 with —8<p< +0, where >0 and where 0 are to be specified below
Now, for any compact subset K of €\ (%, {0}), it can be verified that 6 >0 can be
chosen sufficiently small so that each line segment is a positive distance from ¢ =0, ¢
= —z, and from the other line segment, independent of the choices of Hf, for all
zeK, for all j sufficiently large.

Now, for suitable cuts T joining t=0 and ¢ = —z with infinity but not passing
through ¥ (z), we can expand /i; about 7" (), and as (i7" (2)=0, we obtain

Ty

()= (5 (z>>+z(” FOEE@) tert ()

Recalling that (i (2)) %0 for all j sufficiently large, let 7" :=arg RA(t5 (2)), and
set
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For these choices of Qf, it follows from the expansion above that

hy(T} (2)+p e ) =hy(iF (2)— 15}2’(5}’(2))I+0(p3),

as p—0. Thus, for any compact subset K of €\ (2%, U {0}), there exist § >0, A >0,
and J >0 (in general dependent on K) such that

Reﬁj(f (z )+5e’91)<Reh ( (2))— (4.16)
for all zeK, all j=J. Next, with the change of variables

ofu 2 1/2
p=—»>—, where of:= {T*N—%} >0,
Vn+v ! (i (2))]

then

u2 © (ot ue® R0 (2
BO=Ry G G ‘_;{“V;%} (k!()),

and the integral I;—“ (z;0) of (4.15) can be expressed as

o exp 0 f} 2) +i07) 7

Vn+v —3VnFvjaj

where the sum in the above integral is the same as in the previous display. Thus, on

making the Maclaurin expansion of the integrand, integrating termwise, and using
+M

the facts that j e **u*du=0for any odd positive integer k and any M >0, and that

8

Iji(z;é):

e "exp {(n + v)k: 3} du,(4.17)

j e du— ﬂ as M — oo, it follows that the integral on the right of (4.17) satisfies
(cf [1,7])
Ve {40+ Y, as j- o,

where the modulus of the multiplier of (n+%) ! in the last term above, is bounded
above by

i (i (2) (5‘3)(t~+(2)))2
B2 @)? | (P (2))°

However, because of (4.13)4.13'), we see from (4.14) that this sum is bounded
above, uniformly on any compact subset of C\(#,u{0}), as j— co. Combining,
then

2n 172
(n+ V) AP (iF (2))

as j— oo, uniformly on any compact subset of C\(Z, U {0}).

I (z;8) = e VRS @) % {1 +O0(n+v)" 4}, (4.18)
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We now extend both ends of the line segment y; (8): t=¢; (2)+ pe®s
—3<p<3, by means of the curves I}, =I;*(z) and I}, =1I;",(z) defined by

I[5:={teC: Imh,(t)=Im hi(t; *(z)+ 6% ) and
Refiy (1) = Refiy (i (2) +5e‘0+>}

[5={teC: Imh(t)=Imh(t] ()-de %) and
Ref,(f) S Re (i (2)—6€7)},

so that I;7 and I} are descent paths for (1) (cf. [1, 7]). Note that since Ii(1) can
vanish only for t—-t *(2), these descent paths are then well-defined from the local

univalence of h away from t *(2), for a suitable choice of the cuts T. If one of these
descent paths, say F*, passes through t (z), then necessarily

16+
Imh( "(2)—6e" )= Imh(t (ez)) (4.19)
Reh ( ( (z))<Reh ( Tz)— e,
and I}, then consists of two branches for Re h. () <Re I, (t ). We select cither one
of these branches to specily [, * . In the same manner, we extend both ends of the line

segment y; () by means of the descent paths I} and I, in the ¢-plane. Next, from
(4.6),

Refi,(t)= ~u+< " >1n|t+z|+< n >ln|t tr=u-+iv, (4.20)

so that Re/; ()= —co implies that t— —z, t—0, or that u— + oo. Thus, for any
zeC\(#, U {0}), L% and I}, are curves in the t-plane, which extend to t= —z or ¢
=0, or u— — 0. If, say, the curve I} ", is such that u— + co, it can be verified that the

points t=u-+iv of I}, behave asymptotlcally as

1 1
v =—Kt+- {?Ijrnvz) +}+O(uz>’ u— +o0, where
n
K" =Imh.( (2)+8€%). (4.20))
AN AR

Similar asymptotic relations can be derived if the curves I} and I;5 tendtot=0or
tot=—z
To illustrate this, consider the special case of {F, (2jz)};~, for which ¢ =1 (cf.

3n
(2.6)). In this case, /i ;(0)is independent of j. For the choice z :5exp f> and 6 =4,

4
the line segments ;" £(8) (shown as double lines) and the curves ]; % (shown as single
curves) are given in Figure 3, where the arrows indicate the direction of increasing
Rel, ;(1) along these curves.
Next consider any curve 1; * which has either t=0 or t= —z as an endpoint.
Using the appropriate asymptotic relation as in (4.20') as t—0 or as t > —z, it
can be seen that the integrals | ¢®*"%®d¢ are finite. Moreover, as a consequence

&
LN
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Fig. 3

of (4.16) and the definitions of I;7, it follows that

| f e(ﬂ“)%(t)dt[:0{e(nﬂ)(Reﬁij(Z))—A)}, (4.21)

ES
ik

uniformly on any compact subset of €\(#,u{0}) as j— oo, where 4>0 is
independent of j. Actually, because of the asymptotic behavior (4.20") of such curves

% for which u— + o0, (4.21) holds for any F*

Now define the curve I;* =I;"(z) as the umon of the line segment y* (9) and its
extensions [}, and I, and let F be analogously defined.

Because the integrals of (4.21) are exponentially small, as j — oo, compared with
the integral of (4.18), it follows that, with (4.6),

Iji(Z)iz j eV Jp jie_("+“)t(t+z)"tvdt

Fji Fj
1/2 1
elfi {1 +0 ( )} (4.22)
n-+v

2 vz . 1
w0l
n+v

(n+v) hP(t7 (2)
as j— oo, uniformly on any compact subset of C\(%, U {0}).

As previously mentioned, the endpoints of I;" and I} areeithert=0,t=—z or
t=0o0 with u— 4+ o0 as in (4.20)), and, of the various possible combinations of
endpoints (9 in all) of I; * and I;”, certain combinations can be immediately
excluded. For example, suppose that both I;* and I}~ have only t=0and t = —z as
endpoints, so that It wl;” would form a closed curve through —z, 0, and the
distinct points t (z) Now if a steepest ascent curve n at, say, t 7 (2), is defined by

27
(n+v) AP(i5 (2)

= etk 5 @)

eI O () 4 2) (77 (2)

{te€: Im A (1)=Imh(f} (2)) and Reh,()=Re ki ({ (2))},

then 7 is orthogonal to I;* at ¢/ () since A)(f} (2))=0 and h(t7 (2))%0, and one
branch of y would be Confmed to the bounded set having F wlI;” asboundary. But
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this contradicts the fact (cf. (4.20)) that Re & ()= + oo implies that ¢t — co. Ruling
out such cases, only three essentially different cases remain for each fij(t):

Case 1. I is a curve through tNJT (z) with endpoints t=0 and t = —z, and I}* isa
curve through ¢; (z) with endpoints t = —z and t = co with the asymptotic relation
(4.20') holding (or with Fj+ and ;" interchanged);

Case 2. I} is a curve through fj‘ (z) with endpoints t= —z and t=0, and I} is a
curve through ;" (z) with endpoints t=0 and t=co with the asymptotic relation

(4.20) holding (or with I;* and I~ interchanged);

Case 3. I;” is a curve through fj‘ (z) with endpoints t=0 and t=oo with the
asymptotic relation (4.20') holding, and I} is a curve through ;"(z) with endpoints ¢
= —z and t=co with the asymptotic relation (4.20') holding (or with I} and I;*
interchanged).

We remark that all three of the above cases can occur. Figure 3, for example,
corresponds to the curves of Case 1. In addition, where there is a selection of
branches to specify I;" or I;” as in (4.19), more than one of the above cases
simultaneously apply.

It is now important to point out that descent curves I'* and I'~ through t (z)
(cf. (4.12))can similarly be defined for h_(f) of (4.6") when zeC\(%,,u {0}), and that
the classification of the above three cases can be applied to these curves. Moreover,
because of the assumption of (2.6), it follows from (4.6) that

lim h(t)=h, (1),

Jj— o
uniformly on any compact subset of C\{7, 0, —z}.

Now, consider the integral of (4.7). Because the integrand of the integral has no
finite singularities, we can deform the path of integration in (4.7), the nonnegative
real axis, to I;” UI;" in Case 1, or to I;" (or I;7) in either Case 2 or Case 3, ie.,

(+WIE (n+v)2)

(I/l + v)n+v+ 1 _Ij+ (Z) +ij (Z) (423)

if Case 1 applies, and
+ “Pn v + + ) — /
n (ZZ v),1§?+1v) 2 ~I'(z) (o] (2)) (4.23)

if either Case 2 or Case 3 applies. Similarly, from (4.8), we have

(n+v)e”" ™20, ((n+v)z)

PRSIy =L @)+17 () | (4.24)
if Case 2 applies, and
(00 (102 _ ) (or 1 (2) (424)

(n+v)n+v+1

if either Case 1 or Case 3 applies, and from (4.9)
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(e 70, (n+v)2) =B (n+v)2)}

PESSTESEE e Ij+ (2)+1; (2) (4.25)

if Case 3 applies, and
+ ! (n+v)z . + __B, y +v)z N - ,
(i)t e Q(n, _:(:;f)j) AR ) or 1 () (4.25)

if Case 1 or Case 2 applies

Now, suppose that Z is a limit point of zeros of {B, J[(n+v)2)}52, where
2eC\ (%, {0}). Thus, there are subsequences {n,}* , < {n %, and {Zkfk , for
which

limz, =2 limn=+0c0, and P _, (n,+v)z)=0 Vk=L. (4.26)

Hics Vi
k— oo k— oo

Suppose that ZeC\(Z, U {0}) is such that either Case 2 or Case 3 applies for an
infinite subsequence {zj} ; of the sequence {z,};° ,. Because the multiplier of

1
1+0 (m>} in (4.22) does not vanish for all j sufficiently large, then from (4.22)

and (4.23) (with I;" (z)), we have
1/2 1
_1 +0< )
n—+v

as j — oo, uniformly on any compact subset of C\ (%, u {0}). But, evaluating the left
side of the above expression in the points z} gives zero from (4.26), while the
corresponding right side tends, from the uniformity of the estimate, to unity as
i— 0. This contradiction shows that limit points ZeC\ (%, U {0}) of the zeros of
{£, \((n+v)2)}72, can only occur if Z is the limit point (cf. (4.26)) of zeros z, which
correspond only to Case 1 for all k sufficiently large. In a similar fashion, the
limit points ZE(D\(% w{0}) of the zeros of {Q, ((n+v)z)}7, and of
{e"2Q, ((n+v)2)—P, ((n+v) 2)}72 | can occur, respectively, only if Z is the
limit point of z, Wthh cmrespond only to Case 2 and to Case 3, for all k
sufficiently large.

Continuing, consider any zeC\(Z, U {O}) From the last display in (4.22), we
have from (4.13) and (4.14") that I;" (z) cannot vanish for allj sufficiently large. Thus,
consider

4B (492 e |+ P (2)

2n

()" " Lexp {(n+v) hy(t] ()}

(4.27)

which is well-defined for any zeC\ (%, L {0}), for all j sufficiently large. Now, it can
be verified that 14z +3;(z) does not vanish on (E\% and, as in §2, we define
( 2n ) ( 2v
(I+z+g;(z) "+ and (1 —z+§;(2)) nev) , respectively, by requiring their values at
( 2n ) 2y )

z=0 to be the positive real numbers 2"+ and 2("+V , and by analytic con-
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tinuation on C\@j. In analogy with the function w,(z) of (2.5), we then set

4(%)(n+v)zexp (#(2)
wj(z):: . Py T Vi=1, (4.28)
<1 +E) (4242, (1 =2+ 3,2

which is analytic, single-valued, and nonzero on (E\(Jf w{0}). With these
definitions, it can be verified, using (4.22), that (4.27) can be expressed as

I}f (Z) 1 (v ntv z
¥ () =1—=(%;(2))" "/Ny(2), (4.29)
where
N. ~ n+v J+( ) 1+ H(Z)UJ ( )) e 1+0 ‘1 4.30

By definition, N, is analytic and single-valued in a neighborhood of each z in
C\(Z, {0}), for all j sufficiently large. Moreover, with (4.13) and (4.14), it follows
from (4.30) that

lim [N, (2)[V/* "V =1, {4.31)

jmoo T
uniformly on any compact subset of C\(Z,u {0}).

Again, let Zbe a limit point in C\ (%, U {0}) of zeros of {P. w((n+v) 2)} 52, so that
(4.26) is valid, and Case 1 is valid for z, for all k sufficiently large. Hence, from (4.23)
and (4.29),

(n+v)!R,,v((n+v)z)_
(n+v)"+v+11.+(z) -

is valid for the points z, of (4.26), for all k sufficiently large. Thus, (W (z)yme e
=N, (z,), and thus

—(W;(2)""/Ny(2) (4.32)

Wzl = N (20 [ sufficiently large.
But, it follows from the definitions of W, in (4.28) and w, in (2.5) that

klim Wizl =w, (2.

Thus, from the uniformity of the relation in (4.31),
w, (D) =1, (4.33)

whence ZeD, which completes the necessity of (2.7) of Theorem 2.2 for the case
0 <o <. The proof for the case ¢=0 is similar and is omitted.

We remark that, because of identity (1.4), the necessity of (2.8) for the case
0 <o < o0 of Theorem 2.2 for the limit points Z of the poles of the normalized Padé
approximants also follows from the analysis above, and 2 €E,. Finally, if 2 is a limit
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point of nontrivial zeros of the normalized Padé remainders {¢”""*Q, ,(n+v)z)
— b, ((n+v)z)};2,,itis evident from (2.1) of Proposition 2.1 that |Z|= 1. Moreover,
Z must be the limit of z, which correspond only to Case 3 for all k sufficiently large.
Thus, with Case 3 of (4.25) and the analysis above, |w,(£)]=1, whence ZeF,,
completing the necessity of (2.9) of Theorem 2.2.

To complete the proof of Theorem 2.2, we consider the sufficiency of (2.7)-
(2.9), and we again assume that O<o< oco. Consider first the set G, of (4.4),
where G,=D_ UE_ . As previously noted, z7 and z; are in G,. But, as a
consequence of (1.9) of Theorem 1.3, it follows, upon normalization, that P, ,((n
+v) z) has zeros w} which satisfy

wj=z5+o0(l), asj—o.

Thus, both z," and z; are limit points of zeros of {P, ,((n+v)z)}5~,.

Next, consider any 2eG, with Z+zF. From the discussion following (4.4), 2 is
then a nonzero interior point of the unit disk, whence Ze C\ (%, U {0}). Now, choose
any sufficiently small closed disk H having Z as center such that H = C\(%, U {0})
and such that H lies interior to the unit disk. From (4.31), [N;(2)|'/"*" - 1 uniformly
on H as j— oo. Noting by definition (4.4) that |w_(2)|=1, for each j and each ze H
select the (n+v)-th root of N;(z) with argument closest to w,(Z). With this choice,

(N, > w,(8)  as j— oo,

uniformly on H. Next, set
f(2)i=w,(2) = w, (2). (4.34)

Because w, is univalent in |z|< 1 from Lemma 4.1, f'has a unique zero in H at £, and,
moreover, f(z)%0. Next, define

[(@)= W) = (N@) ™ =1, (4.35)

It follows that {f;(z)}°, converges uniformly to f/ on H. Hence, by Hurwitz’s
Theorem (cf. Walsh [17, p. 6]), f; has precisely as many zeros in H as does f; for all j
sufficiently large. But, as f has exactly one zero (at Z) in H, then f; has precisely one
zero, say z, in H for all j sufficiently larg?, and moreover

lim z;=2Z. (4.36)
J— oo
Now, fi(z;)=0 implies from (4.35) and (4.29) that 1+(I7(z))/I"(z))=0, or
equivalently
I7(z)+I7(z)=0  for all j suff. large. (4.37)

Now, each point z; of the sequence {z;} 2 | corresponds to one (or more) of Cases 1-
3 for the curves I;= for h,(t). Suppose then that {z,}_ , is an infinite subsequence of
{z,}2 for which each point z; corresponds to Case 1. Thus, from (4.23) and (4.37), it
follows that

P (n+v)z)=0 forall k=1,
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whence, from (4.36),
Z is a limit point of zeros of {B, ((n+v)z)}7,. (4.38)

Moreover, in this case, Theorem 1.1 gives us that Z, as the limit point of zeros of
{P, (n+v)z)}7,, must lie in S, whence ZeD, (cf. (2.7)). Similarly, if Case 2 holds
for each point of an infinite subsequence of {z;}% ;, then ZeE, (cf. (2.8)). Finally, if
Case 3 were valid for each point of an infinite subsequence of {z;}¥ ,, then £, a
nonzero point interior to the unit circle, would be the limit point of zeros of

(eln=)2 0, (n+v)2)—F (n+v)2)} 2 ;.

But this contradicts, by normalization, the result (2.1) of Proposition 2.1. This then
establishes the sufficiency of (2.7)—(2.8) of Theorem 2.2.
Finally for 0 <o < oo, we consider the set F, defined by (cf. (2.9)):

F :={z: |w,(2)|=1 and |z|=1}.

Using (4.2), it can be shown that |w,(re'?)|, for any fixed 6, is a strictly increasing
function of r =2 0 on C\ %, except for a jump discontinuity on the cuts Z,. Next, w,
is doubled-valued on the cuts %, and moreover, for any zeZ,, these two values of
w,(z), say w,(z), and w_(z),, can be shown from (2.5) to satisfy

Wo(2)il- W, (2)sl =1 Vze,. (4.39)

From this observation, it follows that, for o = 1, the set F, consists of two branches,
emanating from z~, symmetric with respect to the real axis, such that each branch is
a curve which lies (except for the points z.) interior to one of the two closed sectors
having vertices z* and bounded by %, and the rays

o

., {1-0
z=rexp<ilcos l—l-o) rz1

shown as the shaded regions below in Figure 4. This can also be noted from
Figure 2. For the remaining case o =1, the sectors of Figure 4 reduce to the rays
comprising #,, and morcover |w,(z)|=1 for all zeZ#, (cf. (4.40)).

Again, if 0<o < oo with 641, consider any ZeF, with Z4zF, so that |2]>1.
From (4.1) and (4.2), it follows that w,(z)= 0, so that for a sufficiently small closed
disk J in €\ £, having center 2, w_(z) is univalent in J. From (4.31), we have that
lim [N;(z)|"*"” =1, uniformly on J, and by simply repeating the previous
Jj— oo
constructions of (4.34)+(4.35), we have (4.36)(4.37). Now, each z; of the sequence
{z;}72, (cf. (4.36)) must again correspond to one (or more) of Cases 1-3 for the
curves ITL for ﬁj(t). Clearly, if Cases 1 or 2 were valid for an infinite subsequence of
{z;}7 4, then |2|=1 would follow from the previously established (2.7) or (2.8),
contradicting the assumption that [Z|>1. Thus, only Case 3 is valid for all j
sufficiently large, so that from (4.36) and (4.25), Z is a limit point of zeros of
{20, (1) 2)~ B, (n+) 2},

We now consider the special case g =1, omitted in the previous discussion. In
this case, it is convenient to simply redefine the cuts £, of (2.3) by, say,

R={z: z=i+re’™* or z=—i+re ™4 Vrz0),
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Fig. 4

and to define g,(z)=1/1+2z* with g,(0)=1 and (cf. (2.5))
ZeVl +z2

:14—|/1+z2

on C\Z, by analytic continuation. Then, (4.2) is valid on (E\?;?l and Lemma 4.1 is
unchanged, so that w,(z) is univalent in |z|<1, and |w,(z)]=1 for all ze#,.
Moreover, for any z=it with t real and || > 1, there is a sufficiently small disk J
with center at z such that J is a subset of €\%,, and w, is univalent in J. The
previous arguments can then be applied, giving the desired result (cf. (2.9)) that each
point z=it (t real with |t|>1), is the limit point of zeros of the normalized
remainders {""?Q, ((n+v)z)—P, ,((n+v)z)} ;2 ,, which completes the proof of
Theorem 2.2. []

In the special case ¢ =1 of iii) of Theorem 2.2, we know (cf. (2.9)) that #, =F, is
precisely the set of limit point of nontrivial zeros of the normalized Padé
remainders {e"""*Q, ((n+v)z)—F, ((n+v)z}Z,. Complementary to this is the

fact from Lemma 3.1 and Proposition 2.1 that all the zeros of the normalized Padé
remainder > Q, (2nz)—P, ,(2nz) lie on #, for any n=v=1.

wyl(z (4.40)

5. Proof of Theorem 2.3

From the definition of N;(z) in (4.30), we have that

vt (RO @)\ i
(=b M(Z):(ﬁs-z)(f,*(z))) {”O(w)}’
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uniformly on any compact subset of €\ (%, U {0}), as J— 0, so that with (4.12) and
(4.14),
+ 204 o2 — (o2 - 2

lim (_ 1)v+ 1 jVJ(Z) _ {(ta_ (Z) + 2)2 (ti (Z))Z}{(ti (Z))z +U(ti (Z) +Z)2} . U(Z),

= (to (2422, @) (1] @) + ot (2)+2) (5.1)
where U (z) is analytic and nonzero (cf. (4.13)) on C\(Z,u {0}).
Proof of Theorem 2.3. Although it was not needed in Section 4, it can be verified
from the definition of W ;(2) in (4.28) that, in analogy with (4.2),

ZWi(z)

Wj(z)
and, in analogy with Lemma 4.1, that W;(2) is univalent in lzl<1 for all j>1.
Moreover, from (2.5), (2.6), and (4.28), we have that

=g,(2) VZE(D\@J': (5.2)

lim W.(z)=w,_(z), (5.3)
j=

uniformly on any compact subset of C\ Z,. Now, as the proof of Theorem 2.3 turns
out to be a suitable modification of Szegd’s original argument [14], we merely
sketch the argument,

Assuming 0<o¢ < oo, it can be verified from (2.2) and (2.5) that
WU(Z;L):eiion/(l +a'). (54)

Consider then any two real numbers ¢, and ¢, such that

a1 o1
— < 21— . .
e P <d,<2m T (5.5)

From the univalence of W, in |z|<1 from Lemma 4.1, it follows that the inverse
image under w, of the arc {w=e"": ¢, <1 =¢,} in the w-plane is a subset of D, of
(2.7), lying wholly in the open unit disk of the z-plane. Next, choose r and R
sufficiently close to unity with 0 <r <1< R so that the inverse image under w, ofthe
set in the w-plane,

K:={w: r<|w|<R and P Sargw=¢,}, (5.6)

also lies in the open unit disk of the z-plane, and set w, '(K)=:L, where [
=L(r,R, ¢, ¢,). In the same fashion, the univalence of W; similarly defines the sets
(Wj)‘l(K)zLj, with L;— L as j— oo because of (3.3).

Asin Szegd [147, it suffices to establish Theorem 2.3 for any ¢, and ¢, satisfying
(5.5)with ¢, — ¢ 1 >Oarbitrarily small, for then, any closed arc C of the curve D_can
be broken into sufficiently small pieces to which Theorem 2.3 can be separately
applied. More precisely, r and R can be further chosen close to unity and ¢, — ¢,
can be chosen sufficiently small so that (cf. (5.1))

U)=b(1+5(z)) v zel(r,R, ¢y, ¢,),
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where |b| %0 and [6(z)| < 1/2 for all zeL. Next, define

(W52
N;(z)

~ +
WJ Z))n v

b,(z):= and vj(z)::(—l)v“( (b 5.7

on L ;. Then, suitable small changes can be made, as in [14], in the boundaries of L,
asa functlon of j, thereby defining L ,so that L —Lasj— coandso that?;and v; do
not take on the value unity on the boundary of L Now, an application of Rouch
Theorem (cf. [14], Hilfsatz 2) shows that o #; and v take on the value unity the same
number of times in the interior of L for all j sufflclently large. Next, a simple
calculation shows that the change in the argument of (v;— 1), as the boundary of L
is traversed in the positive direction, is

A, (0= D=4+, =)+ 0(1),  as j— co.

Thus, by the PrmCIple ofthe Argument, the number of points in L where v; takes on
the value unity is

(n+v)(¢,—0,)
2n
Next, since L contains a subset of D \{z;} for all j sufficiently large, it can be
verified that the points of L must correspond to the descent curves of Case 1 for all j
large. Hence, on combmlng (4.23), (4.29), and (5.7), we have

+0(1), asj-ooo. (5.8)

(n-I—v)!R,’V((n+v)z)_1+1j“(z)
(n+v)n+v+llj+(z) - Ij+(2)

=1-0,(2).

Thus, the number of zeros of P, ,(n+v)z) in L is given by (5.8), from which it
follows that the fraction of the number of zeros of P ((n+v)z)in L is, with (2.6),
given by

(I1+0)(p,— 1) 1
2n +O<(n+v)

), as j—oo. (5.9)

If (5.9) is applied successively for angles Glgg/and 0,, and angles 0, and 0,, where
0<0,<¢,<¢,<0, and ¢ ,<0,<0,<0¢,

with 0, 05 approaching ¢, (and 0,, 0, approaching ¢,), then, as in Szego [14, p.
60], the desired result of Theorem 2.3 is obtained. The remaining cases of Theorem
2.3 follow similarly. [
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