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ABSTRACT

The purpose of this paper is to characterize and interrelate various degrees of
stability and semipositivity for real square matrices having nonpositive off-diagonal
entries. The major classes considered are the sets of diagonally stable, stable, and
semipositive matrices, denoted respectively by @, £, and &. The conditions defining
these classes are weakened, and the resulting classes are examined. Their relationship
to the classes of real matrices 9 and 9, whose off-diagonal entries are nonpositive
and whose principal minors are respectively all positive and all nonnegative, is also
included.

1. INTRODUCTION

In a previous paper [1], classes of real matrices, resulting from various
degrees of stability and semipositivity, have been examined and interrelated.
The four major classes considered there are the classes of diagonally stable
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matrices, stable matrices, matrices whose principal minors are all positive,
and semipositive matrices, denoted by @, £, ¥, and &, respectively. The
purpose of this paper is to examine and interrelate these four classes and
their variants, with the restriction that all real matrices considered have only
nonpositive off-diagonal entries; i.e., using the notation introduced by Fied-
ler and Ptik [3], the matrices considered are in £™" [cf. (2.1)]. As is well
known, elements of Z™" appear frequently in many applications of the
physical sciences (cf. Plemmons [5]).

In Sec. 2, we give the necessary notations and preliminaries; one of our
main results appears in Sec. 3, and further extensions appear in Sec. 4.

2. NOTATION AND PRELIMINARIES

For n a positive integer, R™" denotes as usual the collection of all real
n X n matrices A =[g, ;]. Then, following Fiedler and Ptak [3], the subset £™"
of R™" is defined as

Zrm:={A=[q,;]ER"":q,; <0 for all i#j}. (2.1)
Next, for A=[q,;]ER™", we write A>0 if ¢,;>0 for all i and {. If R"
denotes the collection of all real column n-vectors x=[x},%,,...,%,]", then
x>0 (x> 0) implies that x;, >0 (x;>0) for all 1<i<n,

As is well known, if A ER™" is reducible, there is a permutation matrix
P eR™" for which PAP" is in reduced normal form (cf. [8, p. 46]):

PAPT= B N (2.2i)

where each A, ;, 1<i<k, is either square and irreducible or a 1X1 null
matrix. For our purposes here, it is convenient to define a 1 X1 null matrix to
be irreducible. Continuing, if A is irreducible, we write simply

A=[A] (2.2ii)

Next, as is well known, any A €Z™" can be expressed as

A=al-B, (2.3)
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where B €R™" satisfies B > 0, and a is a real scalar. If a > p(B), where p(B)
denotes the spectral radius of B, then A is an M-matrix. The collection of all
M-matrices in Z*" is denoted by ¥,, while the subset of all nonsingular
M-matrices is denoted by &. We note that if A EZ™" has the reduced form
(2.2i), then AEP, iff A, ;€D for all 4.

As analogously defined in [1], £, @, and & denote the following subsets
of ZM™:

£:={A€Z"":3X eR™" with X symmetric and positive

definite such that AX + XA T is positive definite }; (24)
@:={A€Z™":3 positive diagonal matrix D ER™"

such that AD+ DA is positive definite }; (2.5)
S:={A€Z"":3xER" with x>0 such that Ax>0}. (2.6)

These subsets of Z“" can be enlarged by weakening their respective
hypotheses, giving rise to the sets

WE:={AezZ>":3X €R™" with X symmetric and positive
definite such that AX + XA T is positive semidefinite }; (2.4')
W Q:={AezZ"":3 positive diagonal matrix D ER™" such
that AD + DA is positive semidefinite }; (2.5)
WS :={AeZ"": IxER" with x>0 such that Ax >0}. (2.6
Next, if T is an arbitrary subset of Z™", then
T:={AET:A is symmetric} (2.7)

denotes the collection of all symmetric matrices in 7. This then allows us to

consider the subsets W&, WE, WS, and 6}0 of Z*".
As subsets of Z%", it is well known (cf. Plemmons [5] and [9], and
references included there) that

Q=L=9 =5, 2.8)
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and a continuity argument easily shows that WL, W, and WS are all
subsets of ¥, i.e.,

WECP), WACF, WSCH (29

The precise relationship among these last four sets is one of the main results
(Theorem 1) of this paper, to be given in the next section.

3. FIRST MAIN RESULT

We begin by establishing

Lemma 1. Let A€, be irreducible. Then, A is an element of U @,
WS, and WL.

Proof. If AE?, ie., if A is a nonsingular M-matrix, then from (2.8), A
isin @, &, and £, whence A isin W&, WS, and WL as well. Thus, we
may assume that A=[g;;JEZ"™" is a singular irreducible M-matrix. Now,
from (2.3), we can express A as A=p(B)I— B, where B is irreducible and
satisfies B > 0. From the Perron-Frobenius theorem (cf. [8, p. 30]), let x>0
and y>0 in R" be such that Bx=p(B)x and BTy =p(B)y, so that Ax=ATy=
0. Thus [cf. (2.6)], A€W S. In the spirit of Tartar’s proof [7], define

di=x/y;  cp=yax;  1<ij<n, (3.1

and set D: =diag[d,,d,,...,d,], and C:= [¢;;,JEZ™". Note that D is a positive
diagonal matrix and that C is irreducible with zero row and column sums. By
definition, the real symmetric matrix (C+ C*)EZ™" is then diagonally
dominant with positive diagonal entries, and thus (cf. [8, p. 24, Exercise 4]) it
is a positive semidefinite matrix:

w(C+CTw=2 > w,
i,j=1

(¢;)w>0  YweER" (3.2)

But then, from (3.1) and (3.2), we have that

n

n u. u.
wADu= 3 wuaq, du= Z( 1)0“( ’)>o VueR", (3.3)

ij=1 ij=1 Yi yj
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which is equivalent to AD+ DAT being positive semidefinite. By definition
[cf. 2.5)], A€ @, and automatically [cf. (2.4)], A€W E. ]

Lemma 1, coupled with (2.8) and (2.9), shows that the differences
between the various sets W@, WL, WS, and P, can occur only in the
case of reducible singular matrices in ¥,,.

One of our main results is

TueoreMm 1. Let A€ P,. The, with the notation of (2.2),

(i) A€W Q@ iff A, singular implies A; ;=A, ;=0 for all j#i;

(i) AE WS iff A, ; singular implies A, ;=0 for all j#1i; (34)
(iii) A € WL iff A, ; and A, ; singular, j > i, imply A, ;= 0.

Consequently, as subsets of Z™",
WECUWS CUWL CP,. (3.5)

Moreover, while equdlity trivially holds in (3.5) for n=1, strict inclusion
holds throughout (3.5) for every n>2. Finally, in the symmetric case [cf.
2.7)], for every n>1,

WER =UWS = WL =3, (3.6)

Proof. Note that if A €9, is irreducible, conditions (i)(iii) all vacuously
hold, implying that A is in W@, WS, and W £, as established in Lemma 1.
Thus, we may suppose that A is reducible, and is in the form (2.2i).

(i) Suppose that each A, ; singular in (2.2i) implies that A, ;=A, ;=0 for
all j5i in (2.2i). Then any singular A, ; is, in the sense of directed graphs,
disjoint from any other of the A, /s, so that, by a suitable permutation of the
blocks of (2.2i), we have

PAPT= " , (3.7)

O Br+1,r+1

where A, ; is a singular irreducible M-matrix for 1<i<r, and where B, , |,
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is an upper triangular nonsingular M-matrix. Thus, B, ., an element of
9, is from (2.8) in @ and hence in U @, while from Lemma 1, each A, , is in
Gllf@ 1<i<r. Clearly, PAPT, the direct sum of matrices in U @, is then in
W @, whence A€W Q.

Conversely, let A€W have the form (2.2i), and suppose, on the
contrary, that a singular irreducible A;; can be imbedded into a larger
principal submatrix A, of A of the form

A= { A x } (3.8)
0 a

where a is a scalar, and where x#0. (Because A is an element of Z%", note
that x<0.) Now, since A €W @ by hypothesis, it easily follows that A, €
W @. Hence there exists a positive diagonal matrix D, with

Ds=[13 2], (3.9)

where d is a positive scalar, such that [cf. (3.3)]

wA Du >0 Vu,. (3.10)

§TT8TT8 s

Next, because A, ; is irreducible and singular, let u>0 be such that A, ;Du=
0, and consider u,: =[u,€]”, where € is a scalar. Then, we directly find from
(3.8) and (3.9) that

u/A,D,u, = ed (u"x + €a).

But, because x <0 with x70, the above is negative for all € >0 sufficiently
small, which contradicts (3.10). Thus, x=0. A similar argument applied to

a yT
0 Ai,i

shows that y"=0, completing the proof of (3.4i).

(i) Suppose that each A, ; which is singular in (2.2i) implies that A; ;=0
for all j# i. If A ; in (2.2i) is singular, then, by construction, A, ; isa smgular
irreducible M-matrix, and thus there is a y; >0 for which A, ;y,=0. Simi-
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larly, if A; ; in (2.2i) is nonsingular, then A, ,; is a nonsingular irreducible
M-matrix, and there is a y, >0 for which A ;y,>0. Recalling that 4, ;<0
for all i, and that A, ; singular by hypothesis implies A, ;=0 for all j#1, it
can be verified that the y;’s can be scaled so that x: =[y,,y,,...,y,]" satisfies
x>0 and

ZA,-,iy’)O forall 1<i<k,
i>i

whence PAPTx> 0. Hence, ACU'S.
Conversely, assume that A€W S, and let x=[y,,¥s,...,yx])” >0 be such
that PAP™x > 0, i.e., from (2.2i),

2 Ay;>0 forall 1<i<k (3.11)
j>i

Because A; ; <0 for all j>1, it follows that A, ;y, >0 for all 1<i<k. Now,
suppose that A;; EZ"" is a singular irreducible M-matrix. Using the well-
known min-max formulation (cf. [8, p. 32]) for the spectral radius of a
nonnegative irreducible matrix, it follows from the representation (2.3) that
for any w>0 in R,

min{i—ii—l’-}<0
7 w’

since A, ; is a singular irreducible M-matrix. However, from the above we
have that A, ;y; >0, which implies that

{ (At‘,iw)j

i

} =0 forallj, (3.12)

(Ai,i)'i) i
(Yi) i

min
i

}>o.

Thus, from (3.12), A;,;y;=0, and hence, because A,;;<0 for all j>1i, it
further follows from (3.11) that A, ;y;=0 for all j>i. Hence, since y;>0,
A; ;=0 for all j> i, which completes the proof of (3.4ii).

Continuing, (3.4iii) is a direct consequence of Schneider [6] and Carlson
and Schneider [2], which completes the proof of (3.4). The inclusions of (3.5)
are a direct consequence.

Omitting the trivial case n=1, we now show that the inclusions of (3.5)
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are strict for every n > 2. Consider the following matrices in Z"", n > 2:

O

In*2

where the identity matrix, I,_,ER"">"72 is to be deleted in the above
matrices if n=2. It is easily verified from (i)-(iii) that A, W R, A, €U S ;
A @UWS, ApeUWL; A, g UL, A,ED,. :

Finally, in the symmetric case, (i)-(iii) again directly give (3.6), since
(2.2i) reduces to the direct sum of the A, ;s when A is symmetric. [ ]

4. EXTENSIONS

There are a variety of ways, as considered in [1], in which the sets @, P,
£,8 and WE, Py, WE, WS, considered specifically as subsets of Z™",
can be either restricted or enlarged, and the relationship between these sets
can then be pursued, in the spirit of extending the inclusions of (2.8) and
(3.5). In this section, for brevity, just one such extension will be considered.

In analogy with (2.4)~(2.6) and (2.4')(2.6"), we define

VUL ={A€Z"":IX €R™" with X symmetric, X0, and
X positive semidefinite such that AX+ XA T is
positive semidefinite }, (4.1)
VU @:={ AeZ™": 3 nonnegative diagonal matrix D ER™"
with D# 0 such that AD+ DA is positive semidefinite}, (4.2)

VU'S:={AeZ"": IxeR" with x> 0 and x#0 such that

Ax>0}. (4.3)
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Lemma 2. Let AE€Z™" be irreducible. Then AEVU S iff A€,

Proof. Consider any irreducible A€V S. From (4.3), there is an
xER" with x>0 and x50 for which Ax > 0. Suppose that x has some zero
components, i.e., after a suitable permutation of indices, x=[y1,y2]T, where
y, >0 and y,=0. Partition A conformally; then Ax >0 implies that

Ay A ||n - A
Ay Ay || O Ag V1
But, as Ay ;<O and y, >0, evidently A, ,=0. As this contradicts the
hypothesis that A is irreducible, x >0. Hence, by definition, A€W & . Thus,

from (3.5) of Theorem 1, A €%,. Conversely if A€ P, is irreducible, then
from Lemma 1, A€ U S, whence A€ VA'S. B

>0. (4.4)

Lemma 3. Foranyn>1, VU R=TVUS.

Proof. Since it is known from [1, Proposition 15] that
VUWRCVUS (4.5)

as general subsets of R™", it suffices to show that the reverse inclusion holds
in (4.5) in Z™". Note first from Lemma 2 that any irreducible A € VU S is
in 9, so that from Lemma 1, A €W @, whence A € VU &. Thus, only the
reducible case remains.

Suppose then that A€V S is reducible, and suppose that A has the
reduced normal form of (2.2i), where the diagonal blocks A4, ; are irreducible.
Then there is an x €ER" with x >0 and x#0 for which Ax > 0. Partitioning x
conformally with respect to the partitioning of (2.2), we can express x as
x=[yp,Ya-..,yxl", where y,>0 for 1< j<k, and where at least one y;#0.
Moreover, Ax > 0 implies that

S Ay>0  forall 1<i<k (4.6)

i>i
Since A, ; <0 for all j>i and since y; >0, it follows from (4.6) that

Ay, >0 forall 1<i<k (4.7)
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Now, consider any y;#0. Because A, ; is irreducible, it necessarily again
follows [cf. (4.4)] that y;>0. Thus, y; 70 implies y;>0, and A, ; is, from (4.7),
necessarily in WS, whence A, ;€% from (3.5). Now, define the nonempty
set

Q:={j:1<j<kandy, >0},
and let §’ be its complement relative to 1 <i<k. As a consequence of (4.6),
A,;=0 Vj>i with i€, jeq. (4.8)

Next, let 7 be the first positive integer in Q. If r>1, then (4.8) implies
that A, ,=0 for all i<r. Thus, with the assumed triangular form of A in
(2.2i), we have (whether r>1 or r=1) that

A =0 forall i#r. (4.9)

Now, define the block diagonal matrix E: =diag[E\, E,,...,E,] where E,: =1,
and E;:=0 for all j%r, and where the partitioning for E is conformal with
that of A in (2.2i). By construction, then, the product AE is a block diagonal
matrix of the form

AE=diag[©,...,0,4, ,0,...,0],

7,72

Now, applying (3.4i) of Theorem 1, we have AE € U @, which implies [cf.
(4.2)] that A€ VU @. B

With Lemmas 2 and 3, we have

TueoREM 2. Let A €Z™". Then, with the notation of (2.2),

(i) AEVAUWS iff there is an r such that A, ,€P,, with A, ,=0 for all
iFr
(i) AE VAL iff A has an eigenvalue A with ReA > 0.

As subsets of Z", VU @ =VUS, and

P CVUS CVAUL. (4.10)

Moreover, while equality trivially holds throughout in (4.10) for n=1, strict
inclusion holds throughout (4.10) for every n > 2. Finally, in the symmetric
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case [cf. 2.7)],

F,C VAS VWL, (4.11)

where equality holds trivially in (4.11) for n=1, while strict inclusion is
valid throughout there for every n> 2.

Proof. To establish (i), it suffices to show, as a consequence of Lemma 2
and the proof of Lemma 3 [cf. (4.9)], that if AEZ™" is reducible with
A,, €9, and with A,,=0 for all i#r, then AEVWS. Writing x=
[¥1 Y25 ---»yx]"s we can choose y, >0 such that A, .y, >0, since A, EYD, is
irreducible. Defining y;: =0 for all j#7, then it directly follows that Ax >0,
where x>0 and x0. Thus [cf. (4.3)], AEVUS, completing the proof of
(i). That (ii) holds is a direct consequence of [1, Proposition 5].

The inclusion P, C VU'S now follows from (i), or from Fiedler and Ptak
[4] or [1, Theorem 4], so that from Lemma 3, ¥, C VU &. Next, from the
definitions of (4.1) and (4.2), it is evident that VU@ CVWEL, which
establishes (4.10).

Concerning the sharpness of the inclusions of (4.10), consider A:=
diag[—1,0,...,0]€ER™" for every n>2. It is obvious from (i) that A€
VUS, but AgP,. Next, for every n>2, consider the upper bidiagonal
matrix A €Z™™:

Since A has an eigenvalue zero, A € VUL from (ii). On the other hand, A

fails to satisfy (i), whence A VUS.
Finally, in the symmetric case, (i)-(ii) directly give (4.11), as well as the
statements concerning the inclusions of (4.11) for the cases n=1 and n >2.
]
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