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THEOREMS OF STEIN-ROSENBERG TYPE

John J. Buoni* and Richard S. Varga**

§1. Introduction.

To obtain a solution of the linear system of equa-
tions

Ax = b, (1.1)

where A i8 an n Xn complex matrix, it is often convenient to
consider the splitting of A,

A=D-L-1, (1.2)

where D, L, and U are n X n matrices with D nonsingular.
Here, we do not assume that D is diagonal, nor that L and U
are triangular. Associated with the splitting (1.2) are the
following well-known successive overrelaxation (SOR) iteration’

matrices -&w defined by
£ := (D - L) M {(1-0)D + wt} 1.3)

for all complex relaxation factors w with w sufficiently small,
and the extrapolated Jacobi matrix
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J:= 1 - wp LA, (1.4)
w
Historically, the Stein-Rosenberg Theorem [3] plays

an important role in the comparison of the iterative methods
of (1.3) and (1.4), when J, is assuTed to be a nonnegative
matrix (written J, = 0O) an!l when D™'L and DlU are respectively
strictly lower triangular and strictly upper triangular. If
p(F) denotes the spectral radius of any n X n matrix F, then
the Stein-Rosenberg Theorem effectively gives us under these
assumptions that (cf. Young [6, p. 120])

p(&) p(J <1 for all 0<w<1if p(J1)<1, (1.5)
and that

p(;fm) P p(Jw) >1 for all 0 <w<=<1 if p(Jl) >1. (1.6)
Thus, on defining in general

Q= {w € ¢: pe) < 1}, and ,:= {weC: (4”)>1}, (1.7)
and |
OJ:= {we€ec: p@) < 1}, and :s)J:= {w € c: pPE,) > 1}, (1.8)
we deduce from (1.5) and (1.6) that

Theorem A. Assuming J1 2 & and that D is nonsingular with

D'IL and D"lu respectively strictly lower triangular and -
strictly upper triangular, then

Q'Cﬂ o D (0,1] if p(Jl) <1, and (1.9)

3)‘.,' D D (0,1] if p(J ) > 1. (1.10)
The question we address in this paper

is the finding of necessary and sufficient conditions such

that Qiﬂ Q_# @& and tD'Lﬂ . # ¢, without assuming that

J1 20 or that D "1L and D 1U are respectively strictly lower
and strictly upper triangular matrices.
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Some preliminary results are given in §2, while our main
results are given in §3. Then, in §4, some remarks and
examples are given.

§2. Relationships between %, and J .

In this section, we establish some formal identities
relating the matrices :Cw and J,- In particular, we deduce in
Theorem 2.2 an expression relating the eigenvalues of aﬂw and
Jo for w small.

As an easily verified consequence of the definitions
of (1.3) and (1.4), we have

Lemma 2.1. For the splitting A =D - L - U of (1.2), assume
that D is nonsingular. Then,

2, =3 -o’@Lya - w0 a) 2.1)
for all complex w with w sufficiently small.

If o(F):= {A € €: det(\I - F)} denotes the spectrum
of any n X n matrix F, then, using (2.1) of Lemma 2.1, we
establish

Theorem 2.2. For the splitting A =D - L - U of (1.2), assume
that D is nonsingular. Then, for each ) € o'(-lw), there exists
ap € o(Jw) such t{xat )

I)\-Hl = O(|w|1+.ﬁ), for all w sufficiently small. (2.2)

Proof. Consider the matrix

1 pla, 2.3)

QW):=D A + wn'lL(I - wD-lL)-l
which is defined for all w sufficiently small. Because W is
assumed small, a classical result of Ostrowski [2, p. 334]
gives us that for each £ € 0 (Q(w)), there is a Y €0 (D™*A)

such that
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I1/7) for all w sufficiently small,  (2.4)

le-y| = o(Jw

where n is the order of the matrices in (1.2). Notei however,

from (1.4) and (2.1) that we can express Q(w) and D “A as
Qw) = %(I-i%) for all w # 0 sufficiently small, (2.5)
and
-1 1
D A= ;(I-Jw) for all w # 0. (2.6)

Hence, each § € 0 (Q(w)) and each ¥ €<3(D-1A) can be expressed
from (2.5) and (2.6) as

£ = -:7(14\) with A €0), 2.7)
and
y = %{1 - u) withu €0, 2.8)

and substituting (2.7) and (2.8) in (2.4) yields (2.2) for
w # 0 sufficiently small. Of course, (2.2) trivially holds
for w = 0, since ib = J0 =1 from (1.3) and (1.4). [ |

We remark that the exponent of |w| in (2.2) of
Theorem 2.2 is, in general, best possible, as simple examples
show. However, with further assumptions on the matrices in
the splitting of (1.2), the exponent of |w| can be increased
to 2, as we now show.

Theorem 2.3. For the splitting A =D - L - U of (1.2), assume
that D is nonsingular, and that

i) p 1A commutes with D-IL, or
ii) D-lA is diagonalizable.
Then, for each ) €<JGq”), there exists a K €<°(Jw) such that

ll -u' = O('wlz), for all w sufficiently small. (2.9)
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Proof. Assuming i), it follows from (1.2) that D-IA commutes

with D'lL as well as D'IU, whence and Iy also commute from
(2.1). Then, (2.9) follows from (2.1) and the fact that if M
and N are commuting matrices, then g M+N) S o M) + g (N).
Assuming ii), a slight modification of a result in Stewart
[4, p. 3047 gives (2.9). =

§3. Main Results.

With the aid of Theorem 2.2, we can develop our
analogs of the Stein-Rosenberg Theorem.

Theorem 3.1. For the splitting A = D - L - U of (1.2), assume
that D is nonsingular. Further, assume that there exists a
real § with 0 < § < 27 for which

min Re{eieg : E € G(D-IA)} > 0. (3.1)

Then, for w = reie with r > 0 sufficiently small, 4” and J
w
simul taneously converge. Thus,

Q-C” QJ # 0. (3.2)
Proof. Since Jw =1 - wD'lA from (1.4),§it follows that any
M € 0 (J,) can be expressed, for w = rel®, as

H=1l-Ww=1- reié§, where € € c(D-lA),
so that
Ll =1 - 2¢ ree¥e) + 2|e2. 3.3)
Using (3.1), then p(Jw)< 1 for all r > 0 sufficiently small.

Continuing, using (2.2) of Theorem 2.2, it follows
that for each )\16 o’(ndw), there is a 4 € 0(J,) such that

A -u] = oG *H), or
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1+Elx‘
Ix] = Jul +ocx ).
Using (3.3), it follows that 1
1+=
2 ié n
[A\[© =1 - 2r Re(e" E) +0Cx ), (3.4)

which, from hypothesis (3.1), gives that p(xlw) < 1 for all
r > 0 syfficiently small. Consequently, o) n QJ contains all

w = reie for r > 0 sufficiently small, which establishes
(3.2). =

In the converse direction, we have

Theorem 3.2. For the splitting A =D - L - U of (1.2), assume
that D is nonsingular, and assume for each real 6 with
0 =<6 < 2r that

min Re{el®€ : £ € o (0 71a)} < 0. @3.5)
Then, J‘.0 diverges for all complex numbers w.
Proof. Any u € cr(Jw) can, as in the preceding result, be 10
expressed ag 4 = 1 - wE where € € o‘(D"lA). For any w = re ,
we have, as in (3.3), that
“ 2
lul? = 1 - 2r Re(et®) + 2lel? =1,

the last inequality following from hypothesis (3.5). Thus, Jw
diverges for all w. [ ’

Now, set
K(D-lA):= closed convex hull of o(D-lA), (3.6)

and let K(D A) denote its interior. As a characterization of
(3.5) of Theorem 3.2 in terms of K(D~ A), we have

Theorem 3.3. For the splitting A =D - L - U of (1.2), assume
that D is nonsingular. Then, 0 € K(D~ 1oy 1ff (3.5) is valid.
for each 6 with 0 < 8 < 2m.
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Proof. If O € K(D- A), then 0 € ei K(D-IA) for each 9,

0 <6 < 2n, from which it follows that (3.5) is valid for each
real 0. Conversely, if 0 ¢ K(D" 1p), then it is geometrically
evident that there exists a 9 with 0 < 9 < 2n for which (3.1)
holds for & = §. But then, from Theorems 3.1 and 3.2, (3.5)
cannot hold. o

As an immediate consequence of Theorems 3.1-3.3, we
have the following analog of (1.9) of the Stein-Rosenberg
Theorem A.

Theorem 3.4. For the splitting A =D - L - U of (1.2), assume
D is nonsingular. Then,

-1
Q, N0 # ¢ iff 0 £ K(D A). (3.7)

As a consequence of Theorem 3.4, we have

Corollary 3.5. For the splitting A =D - L - U of (1.2),
assume that D is nonsingular, and that D-1A is strongly stable,
i.e., Re E > 0 for any § € g(D"1A). Then, and J, are
simultaneously convergent for all w > 0 sufficiently small.

Proof. The hypothesis that D-lA is strongly stable insures
that (3.1) is valid with 6 = 0. Then, apply Theorem 3.1. ®

In the converse direction, we similarly establish
the analog of (1.10) of Theorem A.

Theorem 3.6. For the splig tinf A=D-L-Uof (1.2), assum
D is nonsingular. If O € K(D"*A), then

0 and w # 0} for some ro>0. (3.8)

Conversely, if (3.8) is valid, then O € K(D-IA).

§517$l£§2 fwe€e: |o]<r

Proof. If O € K(D A), then for ever¥ 0 with 0 <6 < 21,
there is a € € g (D"1A) such that Re(e §) < 0. Thus, by
Theorem 3.2, Jw diverges for all w. Moreover, from (3.4), we
deduce that p@E, ) > 1 for all w = reie with 0 < 8 < 21, and
with r > 0 sufficiently small. Hence, (3.8) is wvalid.
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Conversely, assume (3.8) is valid. Then, for each 6 wjith
0 <8 < 2 and each r, 2 r > 0, there exists a § €5(D"*A) with

€ # 0 such that ]1 - reie§| > 1, whence
1 - 2r Re(eieg) + r2|§|2 > 1.

For { > 0 sufficiently small, this evidently implies that
Re(e e§):S 0. But as 6 was arbitrary, then 0 € K(D'IA). n

The following example indicates the sharpness of
the above results.

Example 3.1. Consider the matrix A and its splitting (1.2)
defined by

1 1 0 0 1
A= 3 D= I; L:= ; U:= .
-2 -1 2 0

Then, o (D JA) = {+1}, so that K(DA) = {ir: -1 <7 < +1}1,
whence 0 € K(D-1A), but 0 ¢ i(D’lA). Thus, by Theorems 3.2

and 3.3, Jw diverges for all w. However, the chgractgristic
polynomial for the associated matrix is just A"+ (2w_=2)A+1-w",
and,as its discriminant is 4w2(w -1), then pG£ ) = Jl-0 < 1
for all 0 < w < 1. Thus, Q, 2 (0,1], while Q; = ¢

§4. Remarks and Examples.

In the case when Q, N QJ # @, our Stein-Rosenberg-
type Theorem 3.4 does not givVe us“that the successive over-
relaxation matrix is iteratively faster (cf. [5]) than
the corresponding Jacobi matrix Jw‘ Indeed, within the
framework in which our results were derived, such a result

could not be true, as the following examples show.

Example 4.1. Consider

A:= 1 1 , D:= I.
-1 1
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In this case, A is strongly stable since g(D'lA) = {1 + i}.
Furthermore, one easily sees that

p@y) = f20% - 20 + B2, 4 real, %.1)
;TR = (0,1), (4.2)
min{p(J ) : w real} = p(J,,,) = 2"1/2 . g 7071 (4.3)
PUy) ¢ 1/2 - 1071. :
Now, set
0 0 0 -1
L) L@ ’
1 0 0 0
from which_it fgllows that the associated matrix ) has

(A +w-1)° + 0™\ as its characteristic polynomial. From
this, one easily obtains that

Q (1) NR = (0,1), (4.4)
o
pet{l)y < PW,) <1 for all w € (0,1), .5)
and that
min{p @) : v rea1} = p® ) 0.1716. .6)
2(f2-1)

On the other hand, setting

0 0 0 -1
-1 0
2

the associated matrix (2) has xz - (" - 2w-+2)x-+(3w2-2w+1)
as its characteristic polynomial. From this, one again easily
obtains that

Q 0y NR = (0, 2/3), 4.7)
,2)

P, < p(.ﬁufz)) <1 for all w € (0, 2/3), %.8)
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and that

minfp %)) : v real} - p(.{l(%) $ 0.8165. (4.9)

Note that (4.8) is the reversed inequality of (4.5).

Finally, it is interesting and appropriate to
consider two well-known examples [1; 5, p. 747, due to
Professor L. Collatz who is being honored with this volume,
which are associated with the convergence and divergence of

ia and Jl'
Example 4.2. With D:= I, set
2 -1 1 0 0 o0 0 1 -1
a=2l2 2 J;LF {2 0 of;u=2lo o -2,
-1 -1 2 1 1 0 0 O 0
Then, it was shown by Professor Collatz that p(Jl) > 1, while
p ) < 1. However, o(D-lA) = {1; 1 i‘iv§72}, 8o that D-IA is

strictly stable. Thus, by Corollary 3.5, there is an w > 0
such that

N[

;N a2 (©, .

A short calculation shows that the largest such w is 8/9,
whence

o N Qe 2 0, 8/9).
On the other hand, consider

Example 4.3. With D: I, set

1 2 -2 0 0O o0 0 -2 2
A:= |1 1 1] ; L:= 1 0 O}; U:= ([0 O -1
2 -2 0 o 0

In this example, it was shown by Professor_ Collatz that
p(Jl) < 1, while pGﬂl) > 1. However, c(D'lA) = {1, 1, 1}, so
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that DA is again strictly stable, and hence, by Corollary 35,
there is an ® > 0 such that

A short calculation shows that the largest such ® is approxi-
mately 0.4873, whence

q; N q,2 (0, 0.4873).
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