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ApstrRACT. Consider, as nodes for polynomial interpolation, the nth roots of unity.
For a sufficiently smooth function f{z), we require a polynomial p{z) to interpolate
f and certain of its derivatives al each node. It is shown that the so-called Polya
conditions, which are necessary for unique interpolation, are in this setting also
sufficient.

1. Introduction. While there is considerable literature on the Hermite-Birkhoff
problem of interpolation on the real line (cf. Lorentz and Riemenschneider [3],
Sharma [8], and van Rooij et al. [10]), the corresponding problem where the nodes
are on the unit circle has received far less attention (cf. Ki§ [1] and Sharma [6], [7]).

There is a distinction between these problems, since examples are known where
the Hermute-Birkhoff (written H-B) interpolation problem is not poised on the real
line, but the corresponding H-B problem on the circle is poised, and, conversely.
To illustrate this, the H-B problem in three distinct points zy, z,, z3, corresponding
to the incidence matrix

Zi(1 0 0)
10 1 0},
z;{1 0 0

is to determine a polynomial p,(z) = g + a;2 + a,z* which satisfies
. ¥ oo B o )
oz = py; Poza) = s Palz3) = s

for any given arbitrary complex numbers { )31 The determinant Az}, z,, z,) of
the associated 3 X 3 matrix for the unknown coefficients {@}7.q for this problem is

A2y 2y 23) = (25— 2){2; + 23— 225} (L.1)
From this, it directly follows that this H-B problem is poised on the unit circle, i.e.,
A2y, 25, 23 7 0 for any three distinct points 2, 25, 23 on the unit circle. The
associated problem on any line however is not poised, as choosing 2z, =z, + 24
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shows. Conversely, for the H-B problem, corresponding to the incidence matrix

Zift 0 0 O
Zzi0 11 0
1 0 6 0

the determinant A,{(z,, z,, z5) for this incidence matrix is
. N 2 2
Az, 25 23} = 2(z; — Zt){{zs — z5)" + (2, — z))" — (23 — 2)(2, — z,)}.
(1.2)
In this case, this H-B problem is real poised since, for any three real points with
z, < 2z, < z3, Ay(2y. 25, 23) > 0, but is not poised on the unit circle since 8,(Z,, £,, Z3)

in/3 2 2w /3

=0forz; =14, =¢ Zy=e
This note concerns the H-B interpolation problem whose incidence matrix is

given by

0 m, 1, m,
2, 10 0 1 0 0 1 0 0 1 0 0
7, to0 g 1 90 0 1 @ o 1 © 0
z, roo 510 g 1 0 6 1 0 o
For short we refer to this problem as the (0, m,, m,, . . ., m,) case. In §3, we prove

the

TuroroMm. For any nonnegative integer g, let {m;}i., be any nonnegative integers
satisfving

O=my<m <my<--- <m, (1.3)

and let n be any positive integer for which ‘ ,
m, <kn forallk=20,1,...,4q. (1.4)

Then, the H-B interpolation problem (0, my, m,, ..., m) in the nth roots of unity
(2.}, is uniquely solvable for any given data.

We remark that special cases of this Theorem are known in the literature. The
H-B interpolation problem (0, 1,2, ..., ¢) is just the classical case of Hermite
interpolation, which is of course real and also circle poised. Next, Ki§ [1] showed
that the H-B interpolation problems (0,2) and (0, 1,2,...,rr + 2), for r any
nonnegative integer, are uniquely solvable (for all sufficiently large n) in the roots
of unity. The first result of Ki¥ was generalized by Sharma [7] to the (0, m) case for
any positive integer m. Sharma [6] also observed that the H-B problem (0, m1,, m,),
the special case ¢ = 2 of our Theorem, 1s uniquely solvable in the roots of unity for
any positive integers m, < m,, and gave an explicit proof of this in the case



sufficient. We also obtain at the end of §3 explicit formuiae ior (e lundamenta:
polynomials.
2. A necessary lemma. To handle the determinants which we encounter in the
proof of the Theorem, we need the following
Lemwma. For any nonnegalive integer q and any nonnegative integers {a Yo and
{a,}9. ¢ satisfying
(U§a0<dl< e <aq,
O <a, <" <ay,
o <q fori=01,...,9 2.1)

we define

f oy Ty o v v s 8.3

£ a0 i s Vg

ﬁf’j == M . e
%\i&@, gy oo v & )

() () ()] e

det M > 0. (2.3)

Then, we have

We remark that the result of this Lemma can be found in a paper by Zia-Uddin
[11]. Zia-Uddin’s proof, apparently due to A. C. Aitken, is however much more
complicated. We also are indebted to Dr. C. A. Micchelli for suggesting the
approach used below.

Proor OF THE Lemma. Consider the following two-point Polya problem in the

points 7 = 0 and ¢ = 1, corresponding 10 the incidence matrix schematically shown
below:
a, a, a,
=0 1 101 101 1o
¢ =1 ¢ 010 010 010 0
a, @, o (2.4

Because o, < g, for all 0 <i < ¢ from (2.1), it follows that the above incidence
matrix satisfies the (weak) Polya condition (cl. [4]). But, as this is a two-point
interpolation problem, the Polya condition is both necessary and sufficient for
unique solvability (cf. [4]). Now, cousider the particular polynomial

g
p) = 3 dun 2.5)
i=0
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By definition, it follows that
i
i - “ . .
}?—pm(zﬁmg =0 foranyj+a,0<i<g,

whence p(7) satisfies the interpolation of homogeneous data in the point ¢ = 0 for
the problem of (2.4). On the other hand, imposing the homogeneous interpolation
conditions of (2.4) at the point ¢ = 1 implies that

[Nt

'),y =0 foreach0 < j < gq. (2.6)

{a)
In terms of (2.5) and (2.2), (2.6) can be expressed in matrix form simply as
T
M-[dydy,....d]" =6

But, as there is unique solvability for this problem, then det M = 0. Thus, it
remains to show that det M > 0. It is well known (cf. Schoenberg [5]) that the
infinite triangular Pascal matrix

3
i
L

is totally positive, so that the determinant of any square submatrix of @ is
necessarily nonnegative. Since the matrix M of (2.2) can be seen to be a square
submatrix of ¥ and since det M 5= 0 from the discussion above, then det M > 0.

]

3. Proof of the Theorem. We shall prove this Theorem by induction on ¢. The
Theorem is cbviously true for ¢ = 0 and any » > I, since this is the case of
Lagrange interpolation. Suppose then that the Theorem is true for any ¢ — 1
integers my. #,. ..., m,_, satisfying (1.3), and suppose that (1.4) is valid. Then, if
w is any primitive nth root of unity, there is a unique linear interpolation formula

g—1 pn—1

Lizfy= 2 2 f™(w")e,(2) (3.1

v=0 k=0
which reproduces polynomials in 7, ; (where %, denotes the set of all complex
polynomials of degree at most r). Here, the &, ,, () form the unique fundamental
polynomials associated with the H-B interpolation problem (0, m,, ..., m__)), ie.,

—

~ &g enticfies



We will now show that P(z) = 0. We can express P(z) as

Pz} = z90{z) + R{(z), (3.4)
where Q(z) € m,_, and R(2) € m,,_,. Set
n-—1
Q(z) = % a,z”. | (3.5)

Applying the conditions of (3.3) to (3.4) for0<v<g—1,0<k <n—1,gives
Ry = = (29Q(2));Z! 0<r<g-10<k<n—-1L (36)

Using the induction hypothesis, we apply the operator L, of (3.1) to R(z). Then the
linearity and reproducing properties of L, together with (3.5) and (3.6), give that
n—1

R(z) = Lz R(2)) = —Ly(z; 2%°Q(2)) = = 2 a,L,(z;27").  (3.7)
v

Setting (a),, = a{a — 1) - - - (@ — m + 1) and (a), = 1, we see from (3.1) that

g1
Lz 2" = 3 (v + ann,,(2), 38)
j=0
where
n—1 .
LAz)y= 2 w“’"'”‘/’ak%(z}. 3.9
=0

Next, the reproducing property of L, also gives (cf. (3.8)) that

g1
2= [z 2y = D (v A (2); 0<A<g-L0<r<n-L
J=0

(3.10)

Thus, from (3.8) and (3.10), we see that

- LH{Z? zx&*’?ﬂ} 1 <y + gﬁ’i)m, e (v A qn)%'!
z° 1 {g}.}m: t {V)mq—s
s 1 (v + nm, s (v + n)m,_,

A B O SN CE 1) PRI C O o C Rl § ) S

i

7

- Iy,(}g\z}

_ju,i’{z}

- jy,q*%(‘z}



628 A, 8. CAVARETTA, TR, A. SHARMA AND R. §. VARGA

which implies that

] L(z;z"*9) 1 (v + gnln, ce (v + gn)m _,
P 1 {I;}m; N (p)me_i
det zP¥n 1 (7 + n)m, <. v+ M)m_, -0
L¥+(g=Dn 1 v+ (g =D, -+ (r+(g- Dn)m,_, ]

{(3.11)
Now, as (a),, = (°)) - m!, the cofactor Ay of L(z; z7%%) in the above determinant
is just (cf. 2.2)

g1 /
(g}(’%f)}M{g’ y+n, ..., v+(q—-l)n>’

/ s m}! [ L)

g—1
and hence is nonzero from the Lemma. Thus, on expanding the determinant in
(3.11), it follows that

g1
Liz; 22"y = 3 b, (v)z"*M 0<r<n—1, (3.12)
A=0
where
) = — Ay 01/ As 0<Ai<g—-1L (3.13)

Here 4, denotes the cofactor of the /th element of the first column of the matrix in
Gl <i<g+ 1
Next, from (3.4) and (3.7), we can write

m—1
Pzy= 3 a{z"t" — [ (z; vy,
p ==}
so that with (3.12),
n—1 { g1
P(z) = 2 ay{z”'q" -3 b}\(v)z”’k"}. (3.14)
p=0 A=0

Applying the final condition (cf. (3.3) and (3.6)) that
Pk = 0, 0<k<n—1,
vields

n—13

S oace*=0 0<k<n-—I, (3.15)
==

where

g1

e T



¢, = My'qi/Mm,wi,
where
N O T N O

T (vt ), (4w, - (vt ),
M, = M, (n) = det . .

1 (04 gnim, (4 g)m -+ (vt gi)m,
(3.18)

To complete the proof of our Theorem, we need only note that

fT \} v, v4+n, ..., v+ng
3‘\,___ mj}l (O, 1y, cey m, )
for any 0 < » < n — 1. Since m, < kn by hypothesis (1.4), the condition (2.1) of
the Lemma is satisfied and so M, > 0 in (3.18). Thus, ¢, > 0, whence g,¢, =0
implies a, = 0, 0 < » < n — 1. 1t follows that P(z) vanishes identically, as desired.
0 v

Incidentally, we observe that explicit formulae for the fundamental polynomials
% i (2D 0<k<n-—10<j<g, can be easily obtained. First, from (3.2) (with
g — 1 replaced by ¢}, it gasziy follows that

Om(z w ) =w "”‘f‘akﬂ;\ 2}, VO<k<n—1,¥0<,j<qg (319

Thus, it suffices to determine explicitly «g ,, (2) for alld < j < ¢q. Set

{j + 1)st column

i (*)om, c. i S (V)m,
i (v + mha, c. 27 ce (v + I’i)m,,
N{z"; v, q) = det : : : : .
U (w4 gnym, -+ 2% o (v gn)m,

(3.20)

which results from replacing the (j + I)st column of M, of (3.18) with
(1,27 2%, ..., z%}". Then, it can be verified that

1 nﬁ—:l Zv;)%(zn; v, {Iz

(£} = — . w0 3.2

a{},y@ NS 7 = ﬁ/{,,q g {KI ( 1)
For example, for z = w* for any 0 € k € n — 1 and for any j > 0, it is evident
that the matrix in (3.20) has identical first and (j + D)st columns, whence
]‘g}{w*”; y,g)=0lorall0 <&k <n 1. Thus, ”Q”&{“ e, foral0 <k <n— L

4. Some nonpoised problems. As a further consequence of the Lemma, we can
improve upon a theorem of Sharma and Tzimbalario [9], concerning the non-
poisedness of certain three-point problems. Let £ be a three-row incidence matrix
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with exactly n + 1 ones. Let i, <i, < - -+ < by i <Jp < -+ + <, and k; <k,
< -+ <k, denote the positions of the I's in the first, second, and third rows
respectively; p + ¢ + 7 = n + 1. Suppose further that [, <L < -+ < by, de-

note the positions of the 0s in the second row. Following Sharma and Tzimbalario,
we take the interpolation at the nodes a, 0, 1, with @ < 0, and denote by D (a) the
determinant of the homogeneous problem. If D,{a) changes in sign {(— o0, 0), we

say that E is strongly m?yﬂazsm’ The Lemma of §2 allows for the following

)

improved version of Sharma and Tzimbalario

TueoreM, Suppose
<, ., <]
by <Ay ok <UL 4.1)

UE-———

28 iy, — L+ pr=1(mod 2), then E is strongly nonpoised.

Our condition (4.1) replaces a more restrictive condition of Sharma and Tzimba-
lario [9] which requires /; > max( i, — p; k. — 7). We further remark that the result
of [9] has been shown to be a special case of a criterion of G. G. Lorentz (ct.

Lorentz and Riemenschneider [2]), but the exact interrelation of the above Theo-
rem with the criterion of Lorentz is beyond the specific aims of this work, and is
left as an open question.
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