Numerische
Mathematik

© by Springer-Verlag 1980

Numer. Math. 35, 69—79 (1980)

On the Sharpness of Some Upper Bounds
for the Spectral Radii of S.O.R. Iteration Matrices

Michael Neumann' and Richard S. Varga®*

! Department of Mathematics, The University of Nottingham, Nottingham NG 72RD, England
2 Department of Mathematics, Kent State University, Kent, OH 44242, USA

Summary. Sharpness is shown for three upper bounds for the spectral radii
of point S.O.R. iteration matrices resulting from the splitting (i) of a
nonsingular H-matrix 4 into the ‘usual’ D—L—U, and (ii) of an hermitian
positive definite matrix A into D—L—U, where D is hermitian positive
definite and L=%(4—D+S) with S some skew-hermitian matrix. The first
upper bound (which is related to the splitting in (i)) is due to Kahan [6],
Apostolatos and Kulisch [1] and Kulisch [7], while the remaining upper
bounds (which are related to the splitting in (ii)) are due to Varga [11]. The
considerations regarding the first bound yield an answer to a question which,
in essence, was recently posed by Professor Ridgway Scott: What is the
largest interval in @, w=0, for which the point S.O.R. iterative method is
convergent for all strictly diagonally dominant matrices of arbitrary order?
The answer is, precisely, the interval (0, 1].

Subject Classifications: AMS(MOS): 65F10, CR: 5.14.

1. Introduction and Notations

The importance of relaxation methods for the iterative solution of nonsingular

systems Ax=b. (1.1)

arising in the (possibly approximate) solution to practical problems is well
known, e.g., [4, 10, 13 and 14]. This is further reflected in the works of many
other authors concerning particular aspects or applications of these methods.
As indicated in the Summary, we are concerned here with the sharpness of
three known upper bounds for the spectral radii of S.O.R. iteration matrices
arising from two classes of matrices, the class of all nonsingular complex H-
matrices, and the class of all hermitian positive definite matrices. However, the
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S.O.R. iteration matrices relating to the latter class, will be slightly more general
than the conventional S.O.R. iteration matrices.
Let €*" denote the set of all n x n complex matrices. A matrix A =(a; JeC""
is called a nonsingular H-matrix if it can be scaled, via multiplication by a
nonsingular diagonal matrix, to be a strictly diagonally dominant matrix, that is,
if a nonsingular diagonal matrix E=(e; ;)eC™" can be found such that
lag ;e > lagje; 5l i=1,2,...,n

J=1
JjFi

(Thus, every strictly diagonally dominant matrix is, in particular, a nonsingular
H-matrix.) The theory of nonsingular H-matrices, as has been shown in [12], is
intimately related to the theory of nonsingular M-matrices, and many equivalent
conditions for a matrix AeC™" to be a nonsingular H-matrix can be found
there, and also in Berman and Plemmons [2].

If AeC™" is a nonsingular H-matrix then, evidently, its diagonal entries are
nonzero, so that 4 may be split into

A=D—L-U:=D(I—B%), (1.2)

where D, — L and — U are diagonal, strictly lower triangular and strictly upper
triangular matrices, respectively. Furthermore, for any scalar o, we can form the
S.O.R. iteration matrix

L:=D—-wL) ' [(1-w) D+ U].
It is well known that the iterative scheme

x;=%2x, +toD-wl)"'bh, i=12, ..,

t

will converge to the unique solution of the system (1.1) from any starting vector
X, if and only if the spectral radius of L2, p(£3), satisfies p(£4) < 1. We further
remark that the matrix B* in (1.2) is known in the literature as the point Jacobi
iteration matrix associated with 4, and as shown in [10] (see also [12]), if 4 is a
nonsingular H-matrix, then p(|B*|) <1, where for T=(t; )eC"", |T|:=(|t; ;).

In Kahan [6], Apostolatos and Kulisch [1], and Kulisch [7], it was
established that, for a nonsingular ‘H-matrix A,

) p&HZlo—1+wp(BA) for all 0<w=<2/(1+p(BA))
and furthermore, that for any 0<w <2/(1+ p(|B4))),
p(Zy) <L

The first objective of this paper will be to show that inequality (I) is sharp
for the class of all nonsingular H-matrices of arbitrary orders. This and some
resulting corollaries will be established in Sect. 2.

Generalizations of the ‘conventional’ splitting of (1.2) (where D, —L, and
— U are diagonal, strictly lower triangular and strictly upper triangular, resp.)
have been suggested and studied by several authors, e.g., [3, 5,10, 11, 13 and 14].
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The particular generalization which will concern us here was developed in [11].
There, AeC™" is assumed hermitian positive definite (that is, 4A=A4% the
conjugate transpose of A4, and the eigenvalues of 4 are all positive) and

A=D—L—-U:=D(I-B), (1.3)
where D is (also) hermitian positive definite, and
=3(D—A+5S) (1.4)

with S some skew-hermitian matrix (i.e., S = —8*). It follows from (1.3) and (1.4)
that U =L¥.

For the above generalization and for we[0, 2], Varga [11] considered the
S.O.R. iteration matrix

%y i=(D—wL) ' [(1-w) D+ wU]
=(D—wL) ' [(1-w)D+wl*].

Let
E,={veC": (v,Dv)=1, 2, ,v=C0,[E|=p(ZL,, 0}

where €" denotes the n-dimensional complex space and (., .) denotes the (usual)
inner product in €”", and set

1. =1inf {|(v, Sv)|: veE }. (1.5)
Under the assumption that
7,=0 (1.6)
for all we[0, 2], it was shown in [11] that for p(B) <1 and with
2

B

W=

then
201 - B)
(1) ple, gL @B bel0, o,
’ 2—wp(B)
and that
(I11) min{p(¥, ):0=w=2} =) 0,1

In Sect. 3, we shall prove that both (II) and (III) are sharp upper bounds (for
the aforementioned type of S.O.R. splitting satisfying the above requirements).
However, our approach here will not employ Rayleigh quotients which were the
main vehicle used in [11] for obtaining upper bounds (II) and (III), but rather,
we shall make a more direct use of the spectral mapping theorem.

Finally, for a matrix 4eC™", ¢(A) will denote the spectrum of A.
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2. The Sharpness of Upper Bound (I)

Let v be any number in [0, 1), and let #, be the subset of nonsingular H-
matrices defined by

H, ={4eC™", n arbitrary: A is a nonsingular H-matrix with p(|B4)=v},
where B* is given in (1.2). It follows from (I) that

sup {p(L2): Ae#} <lo—1]+wv, YOS Z2/(1 +v). 2.1

The sharpness of this inequality is established in
Theorem 1. For each 0<v<1, and for all 0w £2/(1+v),

sup {p(ZL4): Ade#)} =|lo—1|+wv. (2.2)

Remark. Although Kahan [6] originally established the case 0<w <1 of Theo-
rem 1, the remaining case | <w=2/(1+v) of Theorem 1 has remained open in
the literature. Because [6] is generally not accessible, we give a proof of (2.2) for
the complete range 0<w <2/(1 +v).

Proof. For w=0, (2.2) trivially holds for each ve[0, 1) since 1=p(I)=p(ZL4).
Next, fix v in [0, 1) and assume first that 0 <w < 1. For any positive integer p =2,
consider the p X p matrices

A:=]—B4, (2.3)
where
01 .. 0
BA:=V' : \
0 1
1 0 ... 0

Then, in (2.3), B* is an irreducible nonnegative cyclic of index p matrix (e.g.,
[10]) with p(B*)=p(|B4])=v, whence Ae#,. Because of the cyclic character of
B, the eigenvalues, /, of its associated S.O.R. matrix % 4 and the eigenvalues, g,
of B are related, e.g., [9, 10 and 8] by

A+w—-1)P=1w? u?.

More precisely, since v is an eigenvalue of B* by the Perron-Frobenius Theo-
rem, each solution 4, e.g, [9, 10], of

(ot m—1)P =) P v (2.4)

is an eigenvalue of #4. Now, because 0<w <1, it follows that, as p— oo, there
is, for p sufficiently large, a nonnegative solution A’ of (2.4) (which is an
eigenvalue of #4 and) which is given by

=8, v)——u——mln(i()w’ Do (%)
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where, for convenience, 6(w, v):=|w—1]+wv. Consequently,
p(Zo)z 4.
But since p(£2) < 6(w, v) by (1), then evidently
sup{p(£7): Ae A} =d(w, v)

for all 0=w <1, so that (2.2) is valid in this range.
For the remaining case 1 <w <2/(1 +v), for each positive integer p, consider
the (2p) x (2 p) matrices

A=I—-B4 (2.5)
where

0 1 0

so that, in this case, Biisa weakly cyclic matrix of index 2p (e.g., [10]), with
p(IB*)=v. Thus, Ae#, for every p=1. Here, —v?? is an eigenvalue of (B4)??,
and, as before, any solution 1 of the equation

(A+o—1)P= —Aw?Py?? (2.6)
is an eigenvalue of fﬁ. But then, we can again verify that for large enough p,
-1
el )
is a negative real solution to (2.6), so that with (I),
— 1 Zp (L= 6(.v).
Thus, (2.2) is also valid for we[1,2/(1+v)] ®
Theorem 1 yields several corollaries.
Corollary 1. p(L2)<1 for all AeA#, if and only if O0<w<2/(1+v).

As an illustration that the conclusion of Corollary 1 is, indeed, not valid for
the case when w=2/(1 +v), consider the 2 x 2 matrix

o 1 0 0 v 7
— — :=]— B4
4 (0 1) (——v 0> !

where 0<v<1. Clearly, 4 is in #,. Next, since B4 is weakly cyclic of index 2
with ives(B*), any solution . of the equation

(A+o—1)72=—w?v? 2.7
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is an eigenvalue of fff:. Rewriting (2.7) as a quadratic equation in A, one obtains
P20 -+ v ]+(o—1)2=0,

which, for w=2/(1+4v), has two real roots ;,=—1 and 1,=—[(1-v)/(1 +v)]>%
Thus, p(& 5,1 ) =1
Next, since 2/(1 +v)—1 as v—1, we may further state

Corollary 2. p(Z4 <1 for all

if and only if 0<w=1.

Moreover, since in the proof of Theorem 1 only strictly diagonally dominant
matrices were used, Corollary 2 may be strengthened, so as to provide an answer
to Professor Scott’s question, as follows.

Corollary 3. Let SDD be the set of all complex strictly diagonally dominant
matrices of all orders. Then p(F#)<1 for all AeSDD if and only if 0<w=1.

The authors wish to remark that R. Scott {in a personal communication) has
now provided a different proof of the result of Corollary 3.

3. The Sharpness of Upper Bounds (I1) and (III)

We shall approach the problem of showing that the remaining upper bounds
(namely (II) and (II1)) are sharp by considering a special type of splitting for
nonsingular matrices in €*" which are not necessarily hermitian positive
definite. It should be remarked, though, that the sharpness of these upper
bounds could be inferred from the material developed in [11].

Let AeC™" be a nonsingular matrix, and consider the splitting of 4 into

A=D-L-U, (3.1
where D is some nonsingular matrix and where
L=U:=(D—A)2. (3.2)
Set
A:=D(I—B), | (33)
and define the following set
Qp:={w=*0 real: det(D—w L)+ 0}.

It is easy to verify that with L and U chosen as in (3.2) and with B’ given by
(3.3), the point S.O.R. iteration matrix associated with any weQ, has the
following representation

L =(I-wB2) '[(1-w)I+wB/2] (3.4)
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Before proceeding to establish the main objective of this section, we present
several noteworthy facts concerning the S.O.R. iteration matrix of (3.4). First,
since 1¢0(%)) for any 0eQy,, -2 is nonsingular, and we find that

I-2) ' (I+2)= (2_7“’) A-1D. (3.5)

Recall that a matrix in €*" is called positive stable if all its eigenvalues have a
positive real part. Thus, we have

Proposition 1. Let A and D be nonsingular matrices in ©" and consider the set
Qp. Then, for each weQ, for which the r.h.s. of (3.5) is positive stable, we have

p(L)<1. (3.6)

In particular, if A='D is positive stable and (0,2)=Q,,, then (3.6) holds for each
we(0, 2).

Proof. The proof follows at once from Theorem 6.3 in [14,p.82]. &

Corollary 4. If A is an hermitian positive definite matrix and D is a matrix in €™ "
such that D+D* is (hermitian) positive definite and such that (0,2)=Qy,, then
(3.6) holds for each we(0, 2).

Corollary 5. If A is a nonsingular M-matrix and D is a diagonal matrix whose
diagonal entries are all positive and (0, 2)=Qy,, then (3.6) holds for each we(0, 2).

Remark. For the definition and the many pertinent properties of a nonsingular
M-matrix, see Berman and Plemmons [2].

The next proposition is a Stein-Rosenberg type result. Its proof requires
simple use of the spectral mapping theorem and is therefore omitted.

Proposition 2. Let A and D be nonsingular matrices in C"", and define B, :=(1
—w) I+wB' to be the Jacobi overrelaxation matrix, where B’ is given by (3.3). If
p(B) <1, then (0, 2)eQ,, and

p(L,)=p(B,)  for all we(0,1],
with strict inequality holding if p(B')=0.

We now return to the main theme of this section. Suppose then that Ae ™"
is a nonsingular matrix and that DeC™" is a nonsingular matrix such that p(B')
(see (3.3)) is less than unity. Then, as indicated in Proposition 2, (0, 2)eQ,, and it
follows that for each we(0, 2), i, ea(£!) implies that A,*+ — 1. Thus, by (3.4) for
each we(0, 2), pea(B') if and only if

2k, to—1)

o(d,+1) (37

for some 1,e0(¥,), in which case each i, e0(%), we(0,2), has the repre-
sentation
_ou=2w+2

/ 2—wpu

w

(3.8)
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for some uca(B'). Furthermore, if we assume that
vi=p(B)*0,

then 4, given by (3.8) satisfies

_om+emi-o)

Fo = o = ()

Hence, for we(0, 2),

o(u/v)+2/v) (1 —w)
w(u/v)=(2/v)
The next lemma will allow us to obtain a more explicit expression for the

spectral radius of %/ than that of (3.9). Its proof, being straightforward, is
omitted.

p(¥,)= max (3.9

wneo(B)

Lemma 1. Let o, § and y be real numbers with |y|>|a|>0. Then,

2zt p :max{ “—-—ﬁ—l} (3.10)
wz+7y o—7y

a+f
o+

>

max
lz|s1

In addition to our previous assumptions (that 0 <v=p(B’)<1), suppose now
that +vea(B’). Then since 2/v>w for all we(0, 2), Lemma 1 has the implication
that the Lh.s. of (3.9) can be (further) determined from the expression

) w—(2/v)(1—co)‘}
’ o+ |

w+(2/v) (1 —w)
2h)—-o

p(,?éj):max{‘ (3.11)

for each we(0,2). To establish the precise behaviour of p(#,) as a function of @
in the interval (0, 2), we make use of the following (technical) lemma.

Lemma 2. For we(0, 2), define
_o+2/h(1-ow)

M, (w):= -0 (3.12)
and
o=2H1-w)
M, (@)= em+o
Then:

(i) M (w)=|M(w)|>|M,(w)], w0, 1],
(i) M,(w)=|M,(w)|>|M(w)|, we(w’, 2),

where

oo V)
2m-1
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(iii) In the interval (0, w'], the function M (w) is nonnegative and strictly
decreasing.
(iv) In the interval [ 1, 2), the function M,(w) is positive and strictly increasing.

Proof. The proof is obtained by verification. &

The findings in Lemma 2 together with (3.11) imply that there exists a point
w,€(1, @) such that as w varies in (0,2), p(Z)=M (w) in (0, w,) and p(Z.)
=M, () in (w,. 2), while M ,(w,)=M,(w,) and

p(L,)= min p(ZL).

we(0, 2)
To find w,, consider the set of we(0, 2) for which
2[w* @) o+@EN]
[2/V)—wl[2/v)+w]

Since the denominator of (3.13) is nonzero for all we(0, 2), the set of points in
(0,2) which satisfy (3.13) are the solution in that interval of the quadratic
equation

M ()~ M, () (3.13)

w*—(4/v%) @+ (4/v2) =0. (3.14)

Of the two solutions to (3.14), the only one which lies in (0, 2) (and, indeed, as
can be verified, belongs to (1, ®') ) is given by

(3.15)

Wy =— 1

] e

(which coincides with the optimal relaxation parameter in the classical S.O.R.
theory, e.g., [10] and [14]). We may now prove

2 24/1 2
N 2

Lemma 3. For o, given by (3.15),

p( &)=Y w,—1. (3.16)

Proof. Since p(<Z,, ) =M (w,) from our comments following Lemma 2 and (3.13),

we have that ‘
@, +(2/v)(1 —w,)

2/v) -,
Substituting the r.h.s. of (3.15) in (3.17), we obtain that

Y (1—v)—(1—v)

(&)= (3.17)

p(Z,,)= .

(s e

But then 5
PHLL)+1 = ~o,

1+7/1—=v*

by (3.15), establishing (3.16).
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Theorem 2. The upper bounds (I1) and (111) are sharp.

Proof. Let Be©™" be an hermitian matrix with ¢(B)= {4}, where 0 <V <1, and
consider the matrix
Ai=D—B:=1-B. (3.18;

Let L=4(I—A)=14 B, so that on setting
A=I-L-U, (3.19

we have that U=L. From the definition of B, it follows that O +i=
ip(lﬂea(lﬂ, while p(B)<1. Thus, L, U and B satisfy all the various require
ments leading up to and including those of Lemmas 2 and 3. Hence, by (3.13
and the interpretation of the results of Lemma 2 (see immediately below th
proof of this lemma), the splitting (3.19) satisfies

| _otQMi—0)_wi+20-0)
ML= 0w 2-0F

in the interval (0, »,), where w, is given by (3.15). Moreover,

p( L) =V o1

by Lemma 3.

Next, from the construction of B and the definition of A, A is hermitia
positive definite. Furthermore, because of the definition of L, L=3(I—-A+S
where S=0 is (obviously) skew-hermitian and U=L=1I* Thus, the splittin
(3.19) (also) satisfies the requirements of (1.3) through (1.6). Hence, by obse
vations made in the preceding paragraph, the upper bounds (II) and (I11) as
sharp. @
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