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1. Introduction

It has long been recognized that the multigroup
diffusion theory approximations to the transport
equation give very useful information in the nuclear
design of many types of reactors. In recent years, the
solutions of these multigroup diffusion equations have
been attacked numerically by means of large-scale
digital computers.§ In this paper, mathematically
rigorous foundations are given for the time-dependent
and time-independent multigroup approximations, not
only for the discrete (space) numerical problem con-
sisting of a finite number of mesh (lattice) points, but
for the continuous space problem as well. In so doing,
the discrete numerical approximations to the multi-
group diffusion equations, as solved on digital
machines, will be shown to be well-set.

2. Statement of the Problems

Let the domain of the reactor R be a finite con-
nected region in #n-dimensional Euclidean space,
7 <3, with R equal to the union of a finite number
of disjoint convex sub-regions| R,, R, ..., R, Let
I" denote the exterior boundary of R, and let y denote
the internal boundaries of R.q If the number of
lethargy groups is m, then (Ref. 2, p. 291) the time
dependent multigroup diffusion equations are:

T&ﬁ 5 _

ot

ﬁ."% (Di(x). grad ¢,(x, ) — 0y(x)ghx, 8

* The theoretical work for Sections 3-5 is due jointly to
Professor Garrett Birkhoff of Harvard University and the first
author. The theoretical work for Sections 6-10 is due jointly
to Dr. G. J. Habetler} and the second author.

t Bettis Atomic Power Division, operated for the U.S.
Atomic Energy Commission by the Westinghouse Electric
Corporation,

1 Knolls Atomic Power Laboratory, operated for the U.S.
Atomic Energy Commission by the General Electric Company,

§ See Ref. 1 for the range of existing machine codes cur-
rently being used in the design of water-moderated reactors.

|| The assumptions here concerning the domain R of the
reactor are, for reasons of brevity, overly restrictive. For
example (Ref. 8), the results for thé discrete problem hold for
arbitrary dimension #. See also Ref. 20.

1 Precisely, y= U{R;— R} —T, where & denotes the
-1

closure of R;.
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0;(x) = a;¥ (x) + M ;" (x).

i=1

(2)

The quantity ¢;(x, #) is the neutron flux in the sth
lethargy group, and v; is the average velocity of the
neutrons in this group; D;(x) is the diffusion coeffi-
cient, g;(x) is the total cross-section, and 0, (%) is
the slowing-down cross-section from the jth to the
tth lethargy group. We have assumed that these latter
quantities are time-independent, so that changes in
these quantities due to depletion, poisoning, expan-
sion by fission heating, etc., are ignored. By virtue
of their physical definitions, we have, for 1 <7, 7 <m,

1. Dy(x)>6>0{forall xe R
2. o;(x)>0forallxe R
3. 0, ;%) >0 for all x e R.

@)

We further assume, for 1 <+ <, that

1. ¢;(x, #) is continuous in %, x € R, for all £ >0

Is continuous across any in-| (4)

2. Dy(x) %

ternal boundary, x ey, for all £>>0.

On T, the external boundary of R, we assume for
simplicity the extrapolated (homogeneous) boundary
condition** (Ref. 2, p. 103):

O;(x, 8) -

on -
where a;(x) is continuous and non-negative on T.

For the time-independent multigroup diffusion
problem, we have, for x Ry,

$ilx, 1)+ a(x) 0, xeT, (5

“ — div(Dy(x) . grad ¢y(x)) - oy (x)hs(x)

= M.Q@.;.S (%)¢;(%) +

J<i

1y ()
1

"
V 3
i=1

** The normal derivative here refers to the outward normal.
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where the fission source of neutrons, y(x), is defined

by:
p(E) = Y. 1oy (3)]hi(). )

The probabilities y; are non-negative scalars with
M %= 1. The quantity [vo,(x)]; is related to the mac-

roscopic fission cross section, and is thus non-negative.
The homogeneous boundary conditions of (5), and the
continuity conditions of (4), are also assumed to apply,
in the time-independent problem, to the fluxes
¢:(x), as well as to the fission source yp(x).

For the time-dependent problem, we seek solutions
of (1) for given initial conditions, and we are especially
interested in the behavior of ¢,(x, #) for large positive
values of £. For the time-independent problem, which
is an eigenvalue problem, we seek to determine solu-
tions of (6) corresponding to the largest (in modulus)
eigenvalue 4 of (6).

The theoretical results, and the methods for proving
these results for the discrete and continuous space
problems, are interesting in their own light, and will
be treated separately. The basic tools used in proving
the results in these different sections are, however,
quite similar. The Perron-Frobenius theory (Refs.
7, 9, 10) of non-negative square matrices (which
obviously leave the positive hyperoctant invariant)
s the basis for results for the discrete space problems,
whereas the abstraction of the Perron-Frobenius
theory by Krein and Rutman (Ref. 17) to linear
operators which leave a cone invariant in a Banach
space is the basis for the results for the continuous
space problems.

DISCRETE SPACE

3. Derivation of the Difference Equations and Proper-
ties of the Derived Matrices

For simplicity in exhibition, we now assume that
the dimension of the space is # =2, and that the sub-
regions R; are rectangles. This enables us to impose a
mesh A of horizontal and vertical line segments on the
plane in such a way that all interfaces between sub-
regions, and all external boundaries coincide with seg-
ments of A. The mesh spacings in the x and y direc-
tions need not be constant. With the mesh A, the
unknowns, numbering N, for the sth lethargy group
in the discrete case are then defined to be the values
of ¢, at the intersections of the horizontal and vertical
lines of A. By replacing the differential equations of
(1) and (6) with difference equations in the unknowns
of the discrete case, we define the discrete time-
dependent and discrete time-independent problems.

On the mesh A, the differential operator (in Car-
tesian coordinates), — div [D,(x) grad] -+ o;(#), is re-
placedtt explicitly (Ref. 3, pp. 53-54) with an N XN
matrix 4;. We now make the following

t1 The method described in Ref. 3 permits of an easy
extension to higher dimensions. The results of Theorem 1
apply to higher dimensional cases as well.

DEFINITION 1. A square matrix M = ||m, ]| is
trreduciblel if, for any ¢ and j, there exists a finite
sequence of integers k(0) =1, k(1), . . ., k(r) =7, such
that my g g4 #0for A=1,2, ..., 7.

THEOREM 1. The NXN matrix A= |a, ||
has the following properties:

L a;;%>0, a,; <0 for i+#7, and a; ¥ =a; ® for
1<i, j<N, I<k<m.
2. 4, %> |a; @] for all 1<i<N, with strict in-
i
equality for some 7.
3. A is irreducible.

Thus, each 4; is symmetric and positive definite, and
4,7 is a positive matrix, ie., each entry of A, 1is
strictly positive.

PROOF. The first statement follows by construction
(Ref. 3), utilizing the inequalities of (3). The boundary
conditions (5), coupled with the connectivity of the
reactor R, give the diagonal dominance of the mat-
rices Ay, as well as their irreducibility. Matrices satis-
fying statements 2 and 3 have non-vanishing deter-
minants (Ref. 4), and it follows that if 1 is any negative
real number, then A, — A7 is also diagonally domi-
nant, and hence has a non-zero determinant. Evi~
dently, 4, is then positive definite. The conclusion
concerning 4,7 is an extension (Refs. 5, 6) of an old
result due to Stieltjes. .

Further properties of the derived matrices 4, are
numerically important. For example (Ref. 2), it can
be shown that the matrices 4, satisfy Young's
property (4) (Ref. 12), and that the Young-Frankel
(Ref. 12, 13) successive overrelaxation method can be
rigorously applied to matrix equations of the form:

Ax=k. ®)

If &; represents a column vector with N com-
ponents, then returning to problems (1) and (8), we
have as their discrete matrix analogues:

AW%W = @.A! A+ M @.;&vvwﬂ ©)

pE
and

“}?NM@; hjrm%“wwn (10)

i<s
where

%mMSﬁ.. (11)

The quantities B;; and V; are (Ref. 8), by virtue of
derivation, diagonal matrices. Moreover, from (3), they
are non-negative diagonal matrices.

4. The Discrete Time-Independent Problem

We shall first transform our matrix equations (10),
(11) into a more compact form. From (10), we have:

11 This is also called indecomposable, and transitive. See
Refs. 9, 10, 11.
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=247 W) bo=A, )y By 1Ay 1 THP/A),

and, in general,
b= Li(/4),
If we define 7=} V,L; then, from (11), we obtain

T =i. (13)

We may assume, without loss of generality, that y, > 0.
Since the entries of the non-negative diagonal B,
7 <1, arise from slowing down cross sections, we are
led by the physics to assume that at least By
1 <i<m, is a positive diagonal matrix. Thus, since
A;7' is a positive matrix from Theorem 1, we can
inductively show that each L, 1<i<m, is also a
positive matrix. By definition, each matrix V; is a
non-negative diagonal matrix. We now assume that
at least one of the sub-regions R, contains some
{issionable material. By the same permutation of
rows and columns of the matrices V;, we have:

) 07
(1) |
V,= o o : . (14)

1<i<m. (12)

0 ay(7)

and there exists a non-negative integer » such that
d(i) =0 for 1<i<r, for all 1 <I<m, and for at
least one [, say /*, dju(i) >0 for » +1 <¢ < N. From
the definition of T, we then have

T | ——], (15)

where T, is an (N —7) X7 matrix, and T, is a square
(IV —7) X (N —#) matrix. It thus follows that T, is a
positive matrix, using the fact that each L, is a posi-
tive matrix. Now, the eigenvalues of T are the (N—7)
eigenvalues of T, and an 7-fold zero eigenvalue. By a
theorem of Perron (Ref. 7), 7, possesses an cigen-
value A* which is positive, simple, and greater in
modulus than all other eigenvalues of T,. Moreover,
to A* can be associated a unique§§ eigenvector (o*
of T, with positive components. This is the basis of
our

THEOREM 2. The largest (in modulus) eigenvalue
A* of T is positive, simple, and its corresponding
unique eigenvector W can be chosen to have non-
negative components. Furthermore, for any arbitrary
positive vector o, the iteration procedure:

N ey = AWS\TT L\SV .
)

...T§+~ = ms+~\m‘s+~.

N;L»s = w§+~ ;

n>0 (16)

§§ Up to scalar factors.

is convergent, and

lim §, =¥, lim A, =A%, (17)

==
where ¢ is some positive scalar.

PROOF. The first assertion isa direct consequence of
Perron’s theorem (Ref. 7). The convergence of the
iteration procedure is guaranteed by the fact that A*
exceeds in modulus all other eigenvalues of 7.

COROLLARY. If

- . m -+ i
ey = Max Am%riv and },.,=min A o va
‘ Vn,i i Ynai
where S,,; denotes the sth component of §,,,, and

the subscript ¢ varies over the range of 7, then

n>0 (18)

NS.,ru Am{l’m ANS.TM AN§+T

and ~
.\w3+H AN* A»ﬁuﬂf SVO G,@v

PROOF. That },.; < A* < 1,,, follows from a result
by Collatz|||| (Ref. 14). The nested property of (18)
follows easily from the fact that 7, is a positive
matrix.

We remark that Theorem 2 gives the well-set nature
of the discrete time-independent eigenvalue prob-
lems. Thus, machine computations based on (16) are
convergent. Equation (19) of the Corollary gives for
each iteration non-trivial upper and lower bounds on.
A*, which is of considerable practical use, since A*
corresponds physically to .

5. The Discrete Time-Dependent Problem
If N{) is a vector with m.N componentsqq

W&L.&v Ce, WA_VBS. then Eq. (9) can be written as:
Uy Uy,

an(y
a
where the entries of ) are determined*** from the

entries of the matrices 4, and B, ;. From Theorem 1,
it follows that the matrix Q == ||¢; ,|| is such that:

ON(), (20)

7:<0, ¢, >0 forizj 1<i,j<m.N. (21)

We shall call such matrices essentially non-negative
matrices. It is known (Ref. 8) that any essentially non-
negative matrix has a non-negative eigenvector. We
now define a matrix Q to be essentially positive if, and
only if, it is essentially non-negative and irreducible.
Thus, if we assume, as before, that each matrix
B;,-; 1<i<m is a positive diagonal matrix, and
that some diagonal element of B,, ; is positive, then
the matrix @ of (20) is essentially positive. This fact
depends on the irreducible nature of the matrices 4,
following from Theorem 1. We have (Ref. 8; p. 10)

[||| For expressions of the min-max nature of 1*, see Ref. 3,
p- 58, and Ref. 8, p. 28.

94l Thus, N(2) is related to the total neutron density in the
reactor. See Ref. 2, p. 47.

*** The velocity factors vi have been absorbed into the
entries of the matrix.
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THEOREM 3. The (essentially positive) matrix Q
has a unique strictly positive eigenvector @, with real,
and simple, eigenvalue u, = M. Moreover, u, > Re{u;}
for any other eigenvalue y; of Q.

-Obviously, (off-diagonal) non-negativity and irre-
ducibility are unaffected when a matrix Q is replaced
by its transpose (’. Hence, the transpose @’ of an
essentially positive matrix Q is also essentially posi-
tive, so that we can apply Theorem 3 to Q’. The
positive eigenvector F of Q' is called the importance
vector of (), and its corresponding eigenvalue is yuy = M,
since Q and Q' have the same characteristic poly-
nomial. We have (Ref. 8, p. 16)

THEOREM 4. For any essentially positive matrix
Q, if N(0) is a positive vector, then

N(f) = KeM'® +o(e), t-—>00, (22)

where @ and M are as in Theorem 3, x is some num-
ber strictly between M and sup Re{y}, and K=
j=>1
(F, N(0))/(F, @), F being the Mmﬁuoimbom vector of Q.
Thus, we have obtained, in the discrete time-depen-
dent case, the asymptotic behavior of N({¢) for ¢
large. This leads us naturally to

DEFINITION 2. For @ essentially positive, the
process (20) will be called subcritical, critical, or super-
cvitical, according as M <0, M =0, or M>0 in
Theorem 4.

COROLLARY. Let Q be any essentially positive
matrix. For N(0) a positive vector, if we define
[IN@) [ =Y N,(¢), so that |N()|| is the (expected)

1
total number of neutrons at time ¢, then

) -+ 00, if the process is supercritical,
lim [|N(#) || = finite, if the process is critical, (23)
b 0, if the process is subcritical.

CONTINUOUS SPACE
6. Definition and Properties of the Operators

In the analysis to follow, we shall assume that the
quantities D,(x), o;(¥), and o; /7(x) have continuous
and bounded second-order partial derivatives in the
interior of each sub-region R;, 1 <7</ Let D(x) =
(P1(%), Po(x), ..., ¢,(¥)), where ¢;(x) has bounded
second-order derivatives in the interior of each sub-
region R;. A function ®(x), satisfying these assump-
tions, as well as the boundary conditions of (4) and
(5), will be said to belong to class C, denoted ® e C.

We now define two operators, & and a:

D(x) = (0, (x), . .
SQARV =;b;(x) = div [ Dy(x) grad &“A“«:‘
ey Zg®), with

Zi(x) = —0y(x) ¢y (x) + WS;.SQV.&AS.

., Wylx)), with

The multigroup diffusion operator @, defined on C,
is:

Q0 =20 + ad, (24)
and the time-dependent (kinetics) multigroup diffu-
sion equations become:ttt

2D(x, 1)
o

where @(x, ¢) € C for each fixed £>0.

Concerning (25), two questions immediately arise.
First, for a given initial function ®(x, 0) satisfying
reasonable continuity conditions, does there exist a
solution of (25)? Second, if so, what is its asymptotic
behavior for large values of #2211}

By means of modern spectral theory for un-
bounded self-adjoint operators on a Banach space, a
complete answer to these questions will be given for
the general one-dimensional multigroup model and
for arbitrary dimension in the case of the homogeneous
reactor. A less complete theory covering special
®(», 0) will be shown for the general three-dimen-
sional case. The principal tool in this analysis is an
extension of Jentzsch’s theorem'® on integral
operators with positive kernels, obtained by M. G.
Krein and M. A. Rutman (Ref. 17) in their study of
operators leaving invariant a cone in a Banach space.
The result used here is:

THEOREM 5. Suppose the non-negative kernel
K(s, #) satisfies % % |K(s, {) |2dV dV, <+ o0, and that

R X R
K(s, £) > 0 except possibly on a set of measure zero.

Then, the integral equation:

r% 0G0 AV, =34(s) (26)

=0Q0(x, t), (25)

has a single non-negative solution, positive almost
everywhere, for some positive number 4 which exceeds
the modulus of all other eigenvalues of (26). For the
same value of 4 the adjoint equation:

% K 0 4V = ()

has a solution y(s) which is positive almost everywhere.

11t Problems involving the addition of an extraneous
source S:
00
= Q0+ S
are also treated in Refs. 8 and 20.
{11 A naive answer to the first question might be
bt HQE
O(x, t) =D (x, 0) = 2, nm%e? 0). (38)
k=0 """
Indeed, if ®(x, 0) and the coefficients of @ and a are suffi-
ciently regular, Eq. (38) will be a valid solution of (25). How-
ever, for a heterogeneous reactor model, the coefficients of Q
are generally discontinuous across material interfaces y so that
the terms of the series (38) do not satis{y the admissibility
conditions for C, and are lacking for physical interpretation.
Even in those special cases where (38) is valid, this form of the
solution does not offer a direct insight into the second ques-
tion.

I




574 SESSION A-13 P/1541

R. S. VARGA and M. A, MARTINO

The analysis of @ is carried out by imbedding the
class C in the Hilbert space H of complex-valued
functions @ = (¢, ¢,, ..., ¢,) defined on R almost

everywhere and for which “We__HM% [dsx) |24V,
1 R

is finite. Each of the differential omwgﬁoﬂm 8; is self-

adjoint on C and possesses a Green’s function G;(x, ).

The operator 2 defined on H by:

F-10(x) u@%é. NV,

[ Gt 1ty &sv

is inverse to & in the sense that 2-12® = for all
D eC. Since 2115 defined everywhere on H, & can be
extended to the range R of 21 by setting Z(Z1D)
=@ for all e H ; we assume Z is so extended.

&1 is self-adjoint and completely continuous (i.e.,
it maps every bounded set into a compact set) on H.
Hence (Ref. 18) 9! possesses a complete ortho-
normal sequence of eigenfunctions {Q,;(x)} where
D10, = (Yw;)<Y, with w; <0 for j=1, 2,.... The
negativity of the eigenvalues of 2-1 follows from the
negativity of the eigenvalues of each 6,72, 1 <k <m,
which in turn is obtained from Green’s Theorem as fol-
lows. Assume 0, =2A¢. Since 6, is self-adjoint, ¢(x)
can be assumed to be real valued. Thus,

\;%wg %&ur%vig av,

- i? Dy(%) | grad |2dV,

on

The positive nature of the D, and the boundary con-
dition (5) show that the terms of the right member of
(27) are non-positive, vanishing only if ¢ = constant.
In the latter case, the boundary condition (5) implies
that ¢ =0, contradicting the assumption that ¢ is an
eigenfunction. Thus, 4 < 0.

+ % Dy P ao. (27)
r

7. The Homogeneous Reactor

In the case of the single region reactor with con-
stant coefficients D,, o; ,, ¢;, with group-indepen-
dent boundary conditions (i.e., a;(#) in (5) is indepen-
dent of 7) the theory is particularly simple, and will be
given first.

THEOREM 6. For the homogeneous model, Q has
a complete sequence of generalized eigenfunctions
(Ref. 24, pp. 67-70):

Ocﬂ Gob
.,\UH.? eu.? R e:«.
Doy Diyy ..., Dy

corresponding to eigenvalues g, 4, 4, . . . . That is,
QGQ = ?0@..?

Q0 ;=40 ;+ P,y 1<i<k, i=12,.

There exists an eigenvalue, 4,, which is real, simple,
and algebraically larger than the real part of all other
eigenvalues: 1o>sup Re{4}. The adjoint equations:
i>1
Q*ﬂm&.o = M@.%.@.?
Q*—w.inms.%.i +¥-0 1<i<h,i1=1,2,...

have solutions. ®; and W =¥, are positive in the
interior of R and all the @; ; and ‘¥, ; belong to class

C. Every function ® € H has a conditionally con-
vergent bi-orthogonal expansion

O= M (@, %.s..ﬁ&v@e.;..

©J
The solution to Eq. (25) for
D(x, 0) =) a,;d; () eC
0]
is:

J
O, (x)
O, ) =0 D(x, 0) = Sa,, et S —na) gi-a (28)
(x, 1) = (x, 0) M 2 g
If ®(x,0)>0 and P(x,0)#0 then ay,>0 and
D(x, #) is asymptotic to g, 4P, for large 7.

PROOF. Let [y(x), {,(x), ... be a complete ortho-
normal set of eigenfunctions for the Laplacian opera-,
tor, satisfying the bouna.ry conditions

ol

Le(x) 4+ alx) .wlxﬂo onT"

V(%) = iz (%),

Define #, to be the subspace of H consisting of all
functions @ of the form @ =(a,l,, ayy, ..., ayl),
where the a; are arbitrary complex numbers. Each
M, is an m-dimensional subspace of H, invariant
under Q. Thus, the Jordan canonical form of any
matrix representation of Q restricted to .4, shows that
M, is spanned by m generalized eigenvectors of Q, say
0% = Wiabo - -, M), 1<j<m. Hence, every
® e H has an expansion ® =X, A,, where ¢ A, is the
k

Thus, xeR.

projection of ® on .#,, given by the usual bi-ortho-
gonal expansion in .. Since the A, are orthogonal,
the expansion for @ converges absolutely. However,

k.

each ¢A, is in turn expressible as a sum ‘M b, ;"
Jj=1

and the double series:

= Db n"

need not be absolutely convergent. The necessity for
the proper grouping of terms in the bi-orthogonal
expansions is accented in the general model.

The Laplacian operator, 2, with the given boundary
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conditions, has an inverse, V-2, which is an integral
operator with negative kernel. So, —V ~* satisfies the
conditions of Theorem 5. As far as real Smmmfﬁu
eigenvalues of V2 are concerned, V2 possesses a unique
largest, simple eigenvalue Ho ooﬁmmﬁcs%wm to an
eigenfunction, say /o, which is positive in the interior
of R. The eigenvalues of Q consist of the set of eigen-
values of the matrices:

My=wD +a

where D) is the (positive) diagonal matrix of (constant)
diffusion coefficients, and aisasbefore. Each M isessen-
lially positive (in the sense of Section 5), and hence
possesses a positive eigenvector vy= (vyq, Vg - - -
v, corresponding to a real, simple eigenvalue py
with maximal real part. If py>p,, £>0, then clearly
@, =vy.A, and Ay=p, satisfy the statements om
Hrmozwa 6. To show the dominance of po=4,, le

W, = (Wey, - - - » Wy, De the positive eigenvector moﬁ
the adjoint m@cwﬁon M *w, == pyw,. It easily follows

(o — i) (Vg, Dyy,)

(v, %)
v, and w, are positive vectors.
The validity of (28) and the differentiability claims
for the generalized eigenfunctions, as well as other
details of this theory, are in Refs. 19 and 20.

that py —pp = , which is positive, since

8. The Qm:mS_.Qm.,m-Omam:m_o:m_ Model
The supremum norm of an operator U on H will be

) ey, 100
denoted by ||U|||= wmmw o]

finite norm is termed “bounded”’. Returning to the
general Es:pmﬁoa@ operator Q = 2 - a, it is observed
that a is bounded. As before, we denote the cigen-
values of @ by {w;}, and we denote R,= (al —Q)*
for any complex dﬁzdww a. R, is termed the resolvent
of Q and is a bounded operator provided a is not an
eigenvalue of Q.

L2 "2 An operator with

LEMMA. For any complex number o, let d(a) =

minja—ay|. It () >2[|all, then [|R.||< >

j=l a)

PROOF. Let ® e H and let ®=2XaA; be its ex-
pansion in the eigenvectors of 2. Then

a,

(@l =) 0= - S0
S0 :
[—gapp=S 14/’ ! 2 I®1°
ol = 9013 2 o = s 2
hence

By assumption,

all —2)Hi<

el el —2)7|<

The Neumann expansion

Ule)= (I —afal — D))~

is therefore valid and

NU@ < N; (ol — D)1 AM

Rl =[] =2) V(@) | <

ll

Hence

We now consider the one-dimensional model. A
comparison of the Green’s function for

- MMWADEWV

&w
(200 )

and a straightforward computation of the eigenvalues
of the latter, shows the existence of a constant &g such
that the number of eigenvalues w; for which —aw; <¢
is no more than ky4/f. It follows from the above lemma
that there is a sequence of concentric circumferences in
the complex plane, €y, Cy, . . ., whose radii 7;, 7,, .
tend to infinity with # and such that:

with that for

“ey

lim Lub. || R,[|=0. . (29)

n—>c0  acC,
Now (), defined on R, is a closed operator (Ref. 21).
Also R,=(al — 2)"'Ul(a) is completely continuous
if 8(a VEQE so a theorem of M. A. Naimark (Refs.

22, uwu shows that the generalized eigenfunctions of ¢

span H. It also follows that there exist a sequence of
disjoint circles ¢;, ¢y, . . . in the complex plane such
that every eigenvalue of @ is interior to one of the ¢
and every ®e R has an absolutely convergent repre-
sentation:

= bﬁm R.®da. (30)

k= k

The terms of (30) are projections on to the subspaces
7, spanned, respectively, by the eigenfunctions and
generalized eigenfunctions corresponding to Qmmds
values interior to ¢,. Equation (30) can be written in
the form of a bi-orthogonal expansion:

¢ =X A@“ %.e..si.v@s.;. (31)

as in Theorem 8. Here it is necessary to group the
terms of (31) arising from a common ¢, in order to
ensure a convergent representation. Thus (30) is a
preferred form of the expansion.

THEOREM 7. The results of Theorem 6 extend to
the general reactor in the case of one dimension. An
absolutely convergent form of the solution of Eq. (25)
is:

Dx, NVHNM% CRD(x, 0) da. - (32)

PROOF. The proof of Theorem 7 can now be obtained

i
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by expanding @ in generalized eigenfunctions in (82).
The result is of the form:

D, 1) u% K (x, s)®(s, 0) ds. (33)
R
If (s, 0) >0, D(s, 0) # 0, we have from (24):
o®
= )
=IO, )

for all £>>0. It follows that ®(x, {) >®(x, t) where @
is the solation to the diffusion equation 09/0t = 2.
Thus ®(x, ) >0 for all £>0, x in the interior of R.
The kernel K, of (33) is continuous and therefore
positive for almost all x and s in the interior of R.
Theorem 5 can now be applied to (33) and Theorem 7
follows from the observation that the eigenvalues of
( and (33) are related through 4 and e/}, respectively.

9. A General Result for 4,

For the general multigroup operator in arbitrary
dimensions we can establish the existence of the
fundamental mode and importance function in the
following sense.

THEOREM 8. For general ( there exists a simple,
real eigenvalue A, > Re{4,} for all eigenvalues 4, of Q.
The corresponding eigenfunction and adjoint eigen-
function, ®, and ¥, respectively, are strictly positive
in the interior of R and are the only eigenfunctions for
Q, Q% respectively, which are everywhere non-
negative.

PROOF. We have already seen that R,= (ol —Q)™!
is completely continuous for sufficiently large positive
a. R, also has a positivity property. Let

y=— min glb. ¢;{x).

1<j<n 7eR

Then the matrix elements of a, =a -}yl are every-
where non-negative. Setting ¢y =a+7y,

R.=[le+yI—2—(a-+yl)]"

= (o — D) [ayloy] — D). (34)
)

Here (ol — @)~ is the integral operator with the
Green’s kernel for the diffusion-absorption operator

9 —al. Since this kernel is positive, the right member
of (34) is seen to be a positive integral operator for
which Theorem 5 applies. Let uo{a) be the eigenvalue

of R, given by Theorem 5. Then A, =a _ b is a real,

t1ol@)
simple eigenvalue of . Should there be another eigen-
value, say A,, for which Reld,;> 2, then, for a suffi-
ciently large positive a we will have:
1 1
la — 2| < (a—4), so _EA&_HEI[E VMHHVH\:Q
which contradicts Theorem 5 for R,. This proves
Theorem 8.

10. The Time-Independent Problem

The equations for the time-independent model with
no up-scattering§§§ are of the form

— (@ +9)0=7F0, (35)
where & is as before, and S=|S; (%)l is a lower
triangular matrix, with S;;(*) <0, S;;(x)>0 for
j<i, and S;;(*)=0 for j>i. The matrix F=
| F.;(x) |l is non-negative, and is in general singular
for certain values of .

It is easy to verify that £S5 has an inverse, so
that A is not infinite in (35); thus,

— (2 +S)FO =A®. (36)

Consider the range of F, i.e., the set H, of all images
®, = F®. In terms of ®;, Eq. (36) becomes:

— F(@ +5)®, =10, 37)

The operator — F(Z2 +S)~! leaves H, invariant, and
is positive on H,, in the sense of the Krein-Rutman
theory. Hence, we obtain:

THEOREM 9. Equation (37) has a dominant eigen-
value 4, which is positive and simple, corresponding
to a positive eigenfunction and positive adjoint
eigenfunction (in H,). For the general time-indepen-
dent eigenvalue problem (35) in arbitrary dimension,
Jo> | 4| for all eigenvalues 4; # 4.

§§§ For extensions to the case of up-scattering in the dis-
crete space problem, see Ref. 8, pp. 38-40, and in the con-
tinuous space problem, see Ref. 20.
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