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This paper studies the interpolation at equidistant nodes
of a given function and certain of its derivatives by trigo-
nometric polynomials. Essentially, unique interpolation is
possible only if even derivative values and odd derivative
values are used in equal quantities (cf. Theorems 1 and 2).

In addition, explicit forms for the fundamental polynomials
are derived.

1. INTRODUCTION

We shall say that an inte;polation problem is regular on
some given nodes if it is uniquely solvable on those nodes.
Recently, we have shown (11 that.the problem of (O’ml""’
mq)—interpolation by algebraic polynomials is regular on the
n-th roots of unity with some natural growth conditions on the
mi‘s. Our object here is to solvé the problem of regularity
of (0, My, -eey mq)—interpolation by trigonometric polynomials
on the equidistant nodes X:=={xk}n61, where xk::=2§£,
k=0, 1, ..., n-1.

For our problem, it is convenient to distinguish between
the following two classes of trigénometric polynomials: For

m a positive integer,
m
+ ¥ (a cosvx+b sinvx): a , b are
v v v v

v=1

mel complex numbers},
+ I (a, cosvx+b sinvx) +

vl VY v

(1.1) :rm: = {T(x) =a,

(1.2) :rm et = {T(x) =a,

TE
a cos ““x"'if): bv are complex numbers},

a
\)’
where ¢ =0 or 1. For m a positive integer, the inclusion

jﬁ,e c I, < Tm+l,e. evidently holds.
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We propose to solve the following problems:

PROBLEM A. Given g positive integers m;, m,, ..., mq and the
2km

nodes X=={—H—}n61, n > 1, determine conditions on the mi's

which will guarantee the existence of a unique trigonometric

polynomial T (x) of the appropriate type and order (depending

on n and gq) such that

(m )
(1.3) T Y (x) =a.; k=0, 1, ..., n-1; v=0, 1, ..., q

with mO: =0,

for any given data {akv}'

For example, it is easy to see that if g > 2, then all
the mi's cannot be even, nor can they be all odd if the
interpolation problem A is regular. For, if all -the mi's
were even, the functions sin nx and the identically zero
function would both satisfy all the conditions of (1.3) with
zero data, thereby contradicting the uniqueness of interpola-
tion. Similarly, if all the mi‘s are odd, the function

l-cos nx satisfies (1.3) with zero data.

PROBLEM B. If Problem A has a unique solution, find an

explicit form of the interpolatory polynomial. 1In other

words, find the explicit form of the associated fundamental

polynomials, defined by ~

(m.)
(1.4) p; 2 (x):=64 & ;i i, k=0, 1, ..., n-1;
. LAV

j, v=20, 1, ..., gq.

In order to solve these problems, we shall denote by o
and e _the number of odd mi‘s and even mi's, respectively, in
{m

of the real number T, we shall use throughout the notation

10 Mor aeey mq}, and, with [[t]] denoting the integer part

(1.5) M: =[[(ng+1)/21] .

With this notation, we shall establish the following two

theorems:

THEOREM 1. If n=2r+1 is odd, the problem of (0, Mys «ve

mq)—interpolation by trigonometric polynomials is regular on

X = 3%3 nal, precisely when
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o —e_ =20 if = 2p,

q g q p
(1.6) -+ 1 if g=2p + L.
Moreover, when q = 2p, interpolation is within the class Ty’
while if g = 2p + 1, interpolation is within the class:rM+r c
where € = 1 or 0, according as Ogq ~ eq ~ +1 or -1, respect-
ively.
THEOREM 2. If n = 2r is even, the problem of (O,ml,~",mq)—
trigonomeﬁric interpolation is regular on X precisely when

o —-—e =20 if = 2

q q q P

(1.7) =1 if g = 2p + 1.

Moreover, the interpolation is within the class TM+r c where
14

e = 0 or 1, according as q is even or odd, respectively.

only special cases of Theorems 1 and 2 are known in the
literature. The simplest case of Lagrange interpolation,
i.e., g =0, on X, as well as the Hermite interpolation case
of g=1andm =1onX, can be found in Zygmund [11, p. 1
and p. 231. 1In (5], Kis settled the (0,2) case on X, the
first lacunary case so settled. The results of Kis were
subsequently extended by Sharma and Varma (7, 8], Varma (91,
'éuprigin [2], and Zeel' [10]. The results of these authors
are all pérticular cases of Theorems 1 and 2.

. Certain determinants, analogous to Vandermonde determi-
nants but bearing on our lacunary problem, occur in our
proofs, and a discussion of these determinants is relegated
to §2. In §3, we prove Theorem 1 by establishing two lemmas
which formalize an inductive proof of Theorem 1. The proof
of Theorem 2 is along completely similar lines, and will not,
for reasons of brevity, be given. Problem B is finally
addressed in §4.

It is worth remarking that our work here has been
recently extended by A. Sharha, P. W. Smith, and J. Tzimba-
lario ([67.

2. SOME DETERMINANTS

Ve

In order to facilitate matters later, we show in this
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section that certain determinants are nonzero. We begin with
the following known result:
LEMMA 1 (cf. Gantmacher [3, p. 99]). Let my< My< c < Mo be

distinct real numbers, and let t) < ty < < tq be positive

numbers. Then, the determinant

m m m

1 2 q

£y £ £

m m m

1 2 . q

(2.1) | %2 t) t)
m m nm
e L2 L £ 9

q q q

is positive.
Next, we need an analogous result, which is formulated

as
LEMMA 2. Let my< m,< «--< My be distinct positive even

integers, and let My < Mo < mq be dl?tlnct positive odd
integers, where 0 < k < g. For any g+l positive numbers

tl < t2 < eee< tq+1, the following determinant,

m m
_ 1 k m
| ,G_ (-t)) et (-t (—tl)mk+l ... (-t 9
(2.2) B:= my m m m
1 t, ... t, e £,9
™ m ™ Joom
1 (-t,) (-t (~ty) **1 (-ty 9
g+l my a+l. ™ g+l ™1 . "
\c.(< DI DT e D F DT e T en T e ) 9

is nonzero. More precisely,
)(q—k)(q+k-l)/2.

(2.3) sgn B = (-1

In addition, the determinant in (2.2), in which the (j+l)—gt
jT
) I}

column is replaced er{th, (-t,) ], t33, , ((-1) tq+l

for each j=1, 2, *°*, g, is similarly nonzero, with sign

(_l)(q—k)(q+k+l)/2.

Proof. We shall use the Laplace expansion of B of (2.2) in
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terms of the first k+1 columns of B. Then (cf. Karlin (4,

p. 6]1 . .
- il+iz+...+ik+l+ 1Eil%§5i2l. b A s W |
(2.4) B=1r(-1) B X
1,...,k+1
Beeeeigx ;
B ‘
k+2,...,9g+l
i,,...,1
1’ fTk+1
where B 1, ..., k+1 is the determinant of the rows 11,...,
.k+l and columns 1, 2, ..., k+l of B, andB kiz §+§ is the
determinant formed from the complementary rows ll""’lq K

and complementary columns k+2, ..., g+l of B. Here, the sum
" (2.4) is taken over all integers il’ .oy ik+1 for which
< 1. < ... < 1

1<i < g+l. By definition,

1 2 k+1 —
L . gt Sy
.(2.5) 1l+12+...+1k+l+1l+12+.-.+1q_k—1+2+...+q+1
= (g+1) (g+2) /2.
. Tpeeeerdpy
Now, applying Lemma 1, sgn B 1 K+l =1 for all

1 < i, < ... < 1 < g+1. Next, note that the j-th row of

k+1

ll,...,lq_k

Blk+2,...,q+1

contains all negative (positive) entries if

i3 is odd (even). Then, multlplylng each element of row i
il

by (-1) Viin thé’determinant B

! v
11,...,1

g-k
k+2,...,g+1 for each

v=1l, 2, ..., g-k, gives a determinant which is positive

from Lemma 1. Consequently,

Iyreeendgx bop v
sgn B = (-1) .
k+2,...,g+1
Thus, each term of the sum (2.4) is nonzero and has the same
sign, namely,
k+1 a-k
{z 1v4-(k+l)(k+2)/24— T 1 '}

(-1) v=1 v=1

which, using (2.5), is equivalent to the desired result of
(2.3). The proof for the alternate form of the determinant

B is completely similar. ®
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Now, with My, My, "7y mq any distinct, not necessarily
ordered, positive integers, and with (1.5), let
m m
1 (M-§) T cee (-9 @
my m

1 (M-j-n) (M-j-n) <
2.6 A . =
( ) M-3.,9 . . :

. - ml : m

1 (M-j-gn) <o+ (M-j-gn) ¢

Similarly, let Ag_j q denote the determinant obtained by

4

deleting the last row and last column in AM—j . Then, as

14

applications of Lemma 2, we have

LEMMA 3. For n > 3 and q = 2p,

*

2.7 A 0 d A .
( ) d ?{ ans M-3j.,q

M—g # 0 for all j=1,2,---,[(n-1)/2 T

Similarly, forn = 2r > 4 and q = 2p+1,

2.8 A . 0 and AX .
( ) .q # 0 and M-

M-j q # 0 for all j=1,2,---,[(n-1)/27),

7
while for n=2r+l > 3 and g = 2p+1,

* o JR _
(2.9) AM—l—j,q#o and AM—j—l,q#O for all j=0,1, [L(n-1)/2T

Proof. To establish (2.7), assume n > 3 and g = 2p, so that
(cf. (1.5)) M = np. Then, the numbers {M—j—kn}ki0 form a
strictly decreasing sequence, of which the first p terms are
positive and the remaining terms negative, for any jJ with

1 < j < n-1. These numbers can be arranged, in order of

increasing absolute values, as follows:
-j, n-j, -n-j, 2n-j, *°°, -pn-j.

Setting tl’ t2, e, tq+l to be their successive absolute

values, i.e.,

t2£+l = &n+j for 2=0,1,* - ,p; t22 = ¢n-j for 2=1,2,--°,p,
then, with the hypothesis that 1 < j < [(n-1)/2]), it follows
that 0 < ty < ty, < ooe < tq+l' Now, the determinant AM—j,q

of (2.6) in this case, is, after a suitable interchange of
rows and columns, just the determinant B of (2.2) which is

nonzero from Lemma 2. Thus, AM—j q # 0 and similarly
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A& i ,q # 0, establishing (2.7). Establishing (2.8) and (2.9)
- j . -
is similar, except that the latter part of Lemma 2 1s applied

in each case. g

Another determinant, which closely resembles that of
(2.6) when j=0, must also be considered. It is the occur-
rence of this type of determinant which is responsible for

the conditions on o —e in (1.6) and (1.7) in Theorems 1 and

q
2. With My, My, *°°y m_ distinct positive integers and with
(1.5), define
(2. 10) (I) M,q:z
my m, m
1 M cos %nml M cos !gum2 M 9 cos ‘qnmq \
m m, m
1 {M~-pn) cos !ﬂml (M-pn) cos 'ﬂmz (M-pn) 9 cos %ﬂmq
my m, m
0 (M-(p+l)n] “sin 3nml {M-(p+1)n] “sin !ﬂmz ... [M-(p+1)n] Y9sin '*iﬂmq
my m, m )
0 (M-gn) sin l‘§ﬂm1 {(M-gn) sin !ﬂmz (M-qn) 9 sin ‘ﬁlmq

Similarly, let @; q denote the determinant obtained by de-
14

. We next

leting the last row and last column of ¢M g
4

establish

LEMMA 4. Let ml, 2;

integers, and let mp+l, mp+2, s, mq be distinct positive

m

°y mp be distinct positive even

odd integers. For q = 2p+l and n > 1, then

*
(2.11) QM,q # 0 and ¢M,q # 0.

Further, if n = 2r and if ¢ and ¢* are defined
—— M+r—-n,q M+r-n,qg
by (2.10) with M replaced by M+r-n, we similarly have that
*
(2.12) ¢M+r—n,q # 0 and ¢M+r—n,q # 0.

Proof. First, note that ¢M q'of (2.10) is a determinant of
order g+l = 2p+2. From the hypotheses on the positive
integers {mi}izl’ it follows that the matrix in (2.10) re-

duces to block-diagonal form, so that

M, = £ V1 V2

where Vl and V2 are generalized Vandermonde determinants of
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order ptl, given by

m m
1 m m
1 M ... P (M-(p+)n) P*1 . (M-(p+])n) ¢
m m

1 m m
T (M-n) P v, = | tete2n PHLo . M-(p+2)n] @

m m m m

1 (M—pn)l ... (M-pn) P {M-gn]) p+l w.. [M-gn) 9

Applying Lemma 1 with n > 1, then vy # 0 and vV, # 0, whence

¢ # 0. Since o* has the same structure as that of ¢ P
M,q * N M,q . . ) b ) ) M,q
then QM,q = V1V2, where V2 is obtained from V2 y omitting

its last row and last column. From Lemma 1 again, @; q # 0.
14

In the same way, (2.12) follows. =
3. THE CASE n ODD: n = 2r+l

Theorem 1 is an easy consequence of the following two
lemmas. Here, my . m, cecy, mq are again distinct, not
necessarily ordered, positive integers.

LEMMA 5. If n = 2r+l, g = 2p+l, and if (0, my, mq_l)—

interpolation is regqgular on X with respect to TM—l' then
(0, my,
to trM+r,e'
even.

ceey, mq)—interpolation is regular on X with respect

provided that e=+1 if mq is odd, and €=0 if mq is

LEMMA 6. If n = 2r+l, g = 2p, and if (0, my, *y mq_l)—

interpolation is regular on X with respect to T, . where € 1is
,e === F =2

as in Theorem 1, then (0, my, *°°, mq)—interpolation is

1 < wi . _ —
regular on with respect to TM+r’ provided that oq eq 0.

We first outline the proof of Theorem 1, assuming the
validity of Lemmas 5 and 6, and then we shall turn to the
proofs of these lemmas. Since Lagrange interpolation, corre-
sponding to the case q = 0, is evidently regular on X with
respect to T, We may apply Lemma 5 to deduce that (0, ml)~

interpolation is regular on X with respect to 7T , where

2r+1,¢e

e = 1 if my is odd and € = 0 if my is even. Now, applying

Lemma 6 with g = 2, we deduce that (0, my . m2)—interpolation
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is regular on X with respect to 33 provided that o

r+1" 27€5=0,

i.e., my and m., are of different parity. Thus, by repeated

2
alternate use of Lemmas 5 and 6, we see that (O,ml,"-,m ) -

interpolation is regular on X as described in Theorem l,q
provided that Wy, My, “°7, mq satisfy (1.6).

Before we turn to the proofs of Lemmas 5 and 6, we
observe that in each of,these lemmas, it is assumed that
(0, n,. A
to an appropriate Ts or TS e° This implies that there exists

7

a linear operator £n of the form

e, mq_l)—inte:polation is regular on X with respect

g-1 n-1 (mv)
(3.1) £ (x; f):= o X f

(X )D (x)l (m = O)I
v=0 k=0 k*Tk,m,

0°

mapping any sufficiently differentiable function of period 2w

into a trigonometric polynomial, where the °k m (x) are the
'
v
associated fundamental trigonometric polynomials of

(0, my ., mq_l)—interpolation on X, i.e., (cf. (1.4)),
(mj) . .
(3.2) pk,mv(xi) = 65 8,37 s k=0,1,--un=1; 3,v=0,1,--,q-1

Proof of Lemma 5. As the problem in (1.3) is linear, we con-

sider instead of (1.3) the associated homogeneous system
defined by
(n) .
(3.3) T (xk) =0, k=0,1,"*",n-1; v=20,1,"°°,n-1,
where T (x) € jﬁ+r . The lemma is proved if we can show that
[4

T(x) = 0.

First, for any T(x) € TM+r,€' we can write T(x) as the

sum

(3.4) T(x) = A(x) + B (x),

M, r
where A(x)¢ TM-1* and where

r-1
(3.5) By (x) = >3 {a.cos(M+j)x+ b.sin(M+j)x} +
T j=0 J J

e
<. cos [(M+r) x 5—],

with € = 1 or 0, according as mq is odd or even. Now, by the

regularity hypothesis, the linear operator £n of (3.1) is a
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projection on Typr and (3.3) gives £n(x; T(x)) = 0. Thus,

applying ih to (3.4) gives

A(x) = —i%(x; BM,r(X))’

so that from (3.4),

(3.6) T(x) = BM,r(x)-ih(x;BM,r):

1]
™

{ajwj(X)+bjuj(X)} +

c W (x),
rr,ec
where we set

wj(x):= cos(M+j)x—£h(x; cos(M+j)x), j = 0,1, ,r-1,

0,1, -°,r-1,

(3.7) “j(x)‘= sin (M+j)x-< (x; sin(M+j)x), J
w, o (x) 1= cos [(M+r)x-T5]-4 (x; cos [(M+r)x - T3]).

We claim that
e

(mq) T N
W (xk)zAM_j_l qcos[(r—j)xk+—fg]/AM—j—l,q’
j=0,1,---,r-1,
() Tm
(3.8) < q - : -5 _9q /0¥
uj (Xk)“AM_j_l,q sin [(r ])xk+ 2 ]/AM_j__llql
j=0,1,---,r-1,
(mq) T %
“r,e (xk) - AM—r-—l,q cos[(mq_e)f]/AM—r—l,q'
for k = 0, 1, *°°, n-1, where AM—j—l,q and A;—j—l,q are de-

fined in 82 (cf. (2.6)). We shall establish (3.8) later in
this section, and we continue with the preceding argument.

Applying the remaining conditions of (3.5), namely
(m )

T 9 (x) =0, k=0,1, -°, n-1,

K

to the representation of (3.6), we see from (3.8) that the

sum
r-1 mm
(3.9) jE%[AM—j—l,q{aj cos[(r—j)x+—§9{ﬁbj sin[ (r-j)x+
mm % - T *
2 ]}/AM—j—l,q] * CrAM—r—l,qCOSL(mq-E)fj /AM—r—l,q'



LACUNARY TRIGONOMETRIC INTERPOLATION 73

which is a trigonometric polynomial of degree r, vanishes at
all n nodes of X. Since n=2r+l, this means that this sum
must vanish identically. Since, by (2.9) of Corollary 3,

Ab&“j"]-rq
(cf. Theorem 1) by dgfinition, even, it follows that all the

# 0 for all j=0, 1, ..., r-1, and since m, - € is,

coefficients a., bj' and c, of (3.9) are all zero. But then,

from (3.6), T(x) = 0. =

proof of (3.8). To calculate the aj's of (3.5), we observe

from the definition of M that, since n and q are both odd,

cos (M+j) x = cos [M-j-1-gnlx, so that from (3.1), we have

g-1 m
(3.10) ih(x; cos (M+j)x) = £ (M-j-1-gn) VI, (x),
v=0 3V
where
n-1 ﬂmv
(3.11) Ijlv(x):=:kiocos{(M~3—l)xk4——§—]-pk’mv(x),

j=0, 1, ..., r=1.
Next, we further observe that, as 2M = ng+1, then
-M < M=j-1-An < M, for j =0, 1, ..., r; x=0, 1, ..., a1,

so that by the reproducing character of the operator £n on
TM_l,we further have the identities

a-1 m

(3.12) cos(M—j-l-An)x= I (M-j-1-an) " T. (x);
v=0 ‘
5-0, 1, ..., r: A=0, 1, ..., g-1.

Combining (3.12) for the cases j =0, 1, ..., r-1 with (3.10),

this implies that the following determinants are zero:

m

. 1 ma-
1 (M-3-1) (M-j-1) 9 1 cos (M=j-1)x
m
. 1 -
1 (M-3-1-n) (M-3-1-n) 971 cos (M-j-1-n)x
(3.13)
. my g m
1 [M-3j-1-(g-1)n] - [M-j-1-(g-1)n]} q-1 cos [M-j-1-(g-1)nlx
m
. 1 . M-
1 (M-3j-1-gn] «-- [M-3-1-gn] q-1 i;(x: cos (143 x)

=0, j=0,1,...,r-1.

Expanding this determinant in terms of its last column and

. i ) . . .
notina that the cofactor of £h(x, cos (M+j)x) 1s Jjust AM—j~l,q
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from the definition of wj(x) in (3.7) that

= * ] = RN "ll
mj(x) A/AM_j_llql J Olll r

where is the determinant obtained by putting cosM-j-l-gn)x in
the determinant of (3.13) in place of i%(x; cos (M+j)x). Then,
since all columns of A, except the last, are independent of

x, we see that differentiating mj(x) mq—times and putting Xy
M-§-1,q P (2.6), the

desired first equation of (3.8). The second and third.

for x gives, with the definition of A

equations of (3.8) are similarly deduced, the derivation of
the third relation in (3.8) making use of the fact that (3.12)

is valid for j = r. =

In a similar fashion, we give the

Proof of Lemma 6. Here, n = 2r+1 and q = 2p, so that M=np.

Again, we consider the homogeneous system defined by

(m,_)
(3.14) T V (x,) =0, v=0,1, =+, gi k=20, 1, ==, n-1,

where T(x) € T Mere By hypothesis, the linear operator i; of

the form (3.1) exists and maps f into T . where each

M,e

(x) of (3.1) is now in T . Also, since we require that

pk,m M, €
V

o —e = 0, we may suppose that ml,"‘,mp have the same parity

as €, while mp+l,“',m2p have the opposite parity to €.

For T(x) € 7T
A(x) € TM,

, we write T(x) = A(X) + B r(x), where

M+r
and where

M,

e
r

BM,r(X)=b0 sin(Mx—E%) + j%ﬁfaj cos(M+j)x+bj sin (M+j)x}.

Following the method of proof of Lemma 5, we see again that

the conditions v=0,1,-:-,g-1; k=0,1,--+,n-1 of (3.14) imply

that

(3.15) T(x)

Il

B ,r(x)4£h(X; BM,r(X))

=

I
I ™M=

{a.w.(x) + b.pu.(x)} +Db X
where

wj(x) cos(M+j)x - £n(x; cos (M+3j)x), j=1,2,+-+,r,

(3.16) uj(x) sin(M+j)x - £n(x; sin(M+j)x), j=1,2,---,r.

. _me, L _ TE
uore(x) = sin{(Mx 2) ih(x, sin (Mx —5)).



LACUNARY TRIGONOMETRIC INTERPOLATION 75

We shall show that

(mq) Tm .
mj (xk)zAM—j,q Cos(]xk——fg)/AM—j,q’ i=1,2, -, T
(mq) T .
(3.17) My (xk):AM——j,q sm(jxk———q2 )/AM—j,q’ j=1,2,°°".,x,
(m )
q

- : Ty/e*
Mo e (xk)— QM,q 51nKmq+e)2L@Mlq,

where AM—' is given in (2.6), ¢ is given in (2.10), and
*

J.q M,q
AD L
M-3J.,q

and ¢ are obtained from A and ¢ , respect-
M,q M-1,9 M,q
jvely, by omitting their last row and last column.

We shall establish (3.17) later in this section, and we
continue with the preceding argument. Applying the remaining

conditions of (3.14), namely
(m_)
T T (x) =0, k=0, 1, ", n-1,

to the representation of (3.15), we deduce from (3.17) that

the sum
. r T
_boéM'qsin[(mq+e)—2—]/<1>;‘4’q+ -E;fAM—j,q{aj cos (jx - ——Z—q-) +
(3.18) o .
by sin(ix - —0) /by 5 1

which is a trigonometric polynomial of degree r, vanishes at
all n = 2r+1 nodes of X, and thus vanishes identically. By
Lemmas 3 and 4 (cf. (2.8) and (2.11)),the various determinants
which appear in (3.18), i.e., AM—j,q’ A&-j,q’ ¢M,q’ and Q;,q'
are all nonzero. In addition, the hypothesis of Lemma 6 and
the condition o —eq = 0, together imply that mq+e is odd, so
that sin(mq+e)% is nonzero. Thus, as the trigonometric
polynomial in (3.18) vanishes identically, then the aj‘s
(j=1,2,---,r) and the bj's (3=0,1,---,r) are all zero, whence
T(x) = 0 from (3.15). =

Proof of (3.17). Since q = 2p, then 2M = ng, sO that

cos (M+j)x = cos(M-j-gn)x for all j=1,2,°"°,r. Thus, with
(3.1), we can write
gzl m,
2 (x; cos(M+j)x) = 2 (M-j-qn) ~ I. (x),
n v=0 3
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where
N n-1 'n‘m\)
Iy y ()= kzg cos L=3) 3T oy gy ()4 5=1.2,7 .

Since ih reproduces the functions cos(M-j-An)x and
sin(M-j-An)x for A=0,-°-,g-1l, we can use the resulting iden-
tities similar to (3.12) to obtain w.(x) as (Altl_l,q)—l times
a determinant, defined by adjoining the following extra row
. to A;—j,q’ namely,

{1, (M-j-qn)mlxM-j-qn)er"(M—j—qn)mq_l,cos(M~j-qn)x},

and the following extra column:
{cos (M-j)x, cos(M-j-n)x, ---, cos(M—j—qn)x}T.

Then, on differentiating mq—times this resulting expression
for wj(x) and putting x equal to Xy the first relation of
(3.17) is obtained. The proof of the second relation in
(3.17) is similar and is omitted.

In order to derive the last formula in (3.17), we observe

that
. TE ~1lm, T
(3.19) £ (x; sin(Mx-—)) = M “sin(m —-€)=-J (x),
n 2 V=0 v 2 Vv
n-1
where J (x):= 2 »p (x). We also note the identities
Y — k,m
k=0 V
-1 m
(‘
cos(Mx—EE) = %2 M vcos(m —e)E-J (x),
2 v 2 v
v=0
g-1 m,, LA
(3.20) 4005(M—Kn)x = (M-An) “cos —E—-Jv(x), A=1,2, " .,p,
v=0 )
g-1 m, LEUN
sin(M-An)x = (M-2An) sin —5—J (x), A=p+1l,°"°,2p-1.
L v=0 v

Since my, cccy mp have the same parity as € and since
mp+l,"',mq have the opposite parity, we shall treat the case
when € = 0 and ml,-'~,mp are even; the other case is anal-
ogously treated.

Thus, we assume that € = 0, and that ml,---,mp are even.

Now, the q identities given in (3.20) are linearly independent
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since the associated coefficient matrix is exactly X q of
Lemma 4 (cf. (2.10)), and is thus nonzero. On combining the
g+l equations (3.19) and (3.20), and setting Hy O(x)

sin Mx—i%(x; sin Mx), we obtain

(x) =
Ho0,0
™ "q-1
1 -
M cos Bnml M cos %nmq_l cos Mx
™y L
1 (M-n) cos Buml . (M-n) T cos xjrrmq_l cos (M-n) x
-1 my g-1
G 1 (M-pn) cos lﬂml (¥-pn) 9 cos %nmq_l cos (M-pn) x
M,qgq o o
1 . -
0 (M-(prlin) ‘sin fmm; ... (1-(p+1)n) 97 lsin snm ) sin(e-(prD)n)x
™y Tq-1
0 (M-gn) sin Ymm, (M—qn) 9% sin %nmq_l sin{M-gn) x

From this, it is easy to see that

(mq) ™
(xk) = ¢M'q sin —59/¢ k=0,1, -+, n-1.

H0,0 M,q’
Similarly, if € = 1 and my, "7, mp are odd, we have
(mq) Tm N
“0,0 (Xk) = ¢M,q cos —fg/QM,q' k=0,1, °°°, n-1,

which completes the proof of (3.17). =

4. EXPLICIT FORMS FOR THE
FUNDAMENTAL POLYNOMIALS

The determinant A of (2.6), which occurred in the

M-llq
solution of Problem A, can also be effectively used to

answer Problem B. We assume that the conditions of Theorem 1

or 2 are satisfied, so that the (O,ml,~--,mq)—interpolation

problem is regular on the nodes Xy = Z%E. Then, the linear

system given by (1.4) has a unique solution °i m (x) within

’

the proper trigonometric class as defined by our’Theorems .
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As our nodes x, are equidistant, it is clear that
Pi.m (x) = pO,m (x—xi) for i =1, ---, n-1.
v Y
It is therefore sufficient to give explicit forms for the

function °0 . m (x) which is defined by the linear system
v

(mj) 7
pO,mv(Xk)

Il

0' k=0, l, '.', n—landj#\),

(4.1)

(m,,)
V — PRI -
po’n\)(xk) (Solklk = 0' l, s l.

I

Using the determinants AM—j,q as given in (2.6), we define
certain trigonometric polynomials NM_j(x; mv,q) which, for
each v = 0,1,---,q, are obtained from AM—j,q by replacing its
(v+1)-st column by

™, ) T
{cos[(M-3) x-—=1, cosl (M-j—n)x=——=1, ", cos (M-j-gn) x-——]}".

With these polynomials, we have

THEOREM 3. Let n = 2r+l1l, and let ml,mz,---,mq be positive

integers which satisfy condition (1.6) of Theorem 1. Then,

for v = 0,1,---,q, we have
—_— N, .{(x; m, q)

(1 Ny (xi m, q)‘+ 2 r M—;A
n AM,q n 5=1 M-j,q
(4.2) polmv(x) =§ for q = 2p,
1 Mg (87 Mye@ g I Ny (5 mye 9
\» AM-r-1,q nso1 o Aueg.q

for g = 2p + 1.
Proof. The proof follows easily by observing that 0 m (x),
as given by (4.2), satisfies (4.1). 1Indeed, we observe'that

(m_)
N Y (xk; m

M-3 o q) = cosRM—j)xk}AM_

j.q
and so, if g = 2p, then M = pn and it follows that
(mv) 1 4 .
P0,m (x, ) = H[l+2 'Z)cos j xk]
v j=1
0 if k # 0;

1 if k = 0,
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as desired. If q = 2p+l, then M = pn + m + 1, so that

(mv) 1 %3 .
Po () = E{l + 2 - cos(r + 1 - 3)x.]
v j=1 .
_J0 if k # 0;
1 if k = 0.
Thus, Theorem 3 is verified directly. The case when n = 2r

is exactly similar, and we can give

THEOREM 4. If n = 2r and if ml,"~,mq are positive integers

which satisfy condition (1.7) of Theorem 2, then for

v=o0,1, -, g-1,

, ~ 5 r-1 NM_j(x; m q)
Po,m (X) =5 A *h A
v M,q j=1 M-r,q
(4.3) .
. 1 NM__r(x, m q)
n AM—r,q
5. CONCLUSION

A natural problem which now arises is the problem of

convergence; more precisely, as the number of nodes is allowed

to increase, how well do our interpolating trigonometric
polynomials approximate the function we interpolate?

We fix g positive integers My, =y mq which satisfy
condition (1.6) or (1.7), according as n is odd or even.
Then, according to our theorems, there are defined linear

operators in(x; f), given by

n-1 ;\ n-1
(5.1) £ (x; £) = T f(x)e () + L T 8

P
k=0 v=l k=g KV okem, ()

where °x 0 and P m are the fundamental polynomials given in
[4 14

§5, and the {8 v}n:l, ? are certain given numbers. If
k,v k=0, v=1

f is continuous and periodic with period 2w, we are interested

in finding conditions on the Bk v which will ensure that

q

1lim £ (x; f) = f£(x).
n4o n

We hope to return to this problem.
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