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Interpolation in the roots of unity: An extension of a theorem of
J. L. Walsh :
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Dedicated to Professor Alexander M. Ostrowski

§1. Introduction

Let A, denote the collection of functions analytic in |z|<p and having a
singularity on the circle |z| = p. (We assume throughout that 1<p <.) Next, for
each positive integer n, let p,_,(z; f) denote the Lagrange polynomial interpolant

of f(z)e A, in the n-th roots of unity, i.e.,

Pa-1(w; f) =f(w) (1.1)

where w is any n-th root of unity, and let

P(zif)i= Y azt (1.2)

be the (n—1)-st partial sum of the power series expansion for f(z)=Z,:°=o a.zk.
Then, a well-known and beautiful result of J. L. Walsh [20, p. 153] can be stated
as

THEOREM A. Let f(z)e A,. Then

lin; (Pu-1(z; f)—P._1(z; f)) =0, V|z|<p?, (1.3)

' The work done by this author was performed at Kent State University, while he was on leave
from the University of Alberta.

2 Research supported in part by the Air Force Office of Scientific Research, and by the Department
of Energy.
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the convergence being uniform and geometric for all |z|=Z<p?*. Moreover, the
result of (1.1) is best possible (in the sense that (1.3) is not valid at each point of
|z| = p? for all fe A,).

What is surprising in Walsh’s Theorem A is that the difference of p._1(z; 1)
and P,_,(z; f) converges to zero on a larger set than the domain of definition of f.
Because of this, one is motivated to ask if it is possible to modify the polynomial
P, .(z;f) in a systematic way from the power-series for f to produce a new
polynomial in m, 4 (where ,_, as usual denotes all complex polynomials of
degree at most n— 1) such that the difference between the Lagrange interpolation
polynomial and this new polynomial converges to zero on a larger set than |z|<p?
for all functions in A,.

Our object in this paper is to examine other interpolation processes and
certain linear projection operators, all in the spirit of Theorem A of Walsh.
Section 2 deals with Lagrange interpolation, and gives a simple extension of
Theorem A. Section 3 is devoted to Hermite interpolation. Somewhat surpris-
ingly, it turns out that in Hermite interpolation, the region of convergence to zero
of the difference of the Hermite interpolant and the corresponding Taylor
polynomial, becomes smaller than that of (1.3) of Theorem A for the case of
Lagrange interpolation. This naturally leads one to ask if similar shrinking takes
place when one uses lacunary (Hermite-Birkhoff) interpolation in the roots of
unity. We then examine in detail three cases of such lacunary interpolation in
§5-7. Building on results of Motzkin and Sharma [11], “next-to-interpolatory”
polynomials are considered in §8 in relation to Theorem A, while in §9, we deal
with interpolation by polynomials in z and z' (cf. Sharma [16]) in relation to
Theorem A.

In §10, we return to Walsh’s Theorem A and give another extension of this
theorem. It appears that the results of earlier sections have similar extensions.

Walsh’s Theorem A can also be extended from polynomial to rational interpo-
lations, and will be treated elsewhere.

§2. Lagrange Interpolation
The following new result giveé Walsh’s Theorem A as the special case I=1.

THEOREM 1. Let f(z)€ A,. If

n—1 .
Py i(z: )= L @z J=0 10 2.1
k=0
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then, for each positive integer I,

-1
iim {pa sz 0= L Pz} =0, Vizl<pt (2.2)
n—»o0 ]‘=0
the convergence being uniform and geometric for all |z|<Z <p'*'. Moreover, the
result of (2.2) is best possible.

We remark from (2.1) that each P,_,;(z;f) is in m,_;, and is formed by
summing the n consecutive terms Y32} a,,,z*™ of the power series expansion
for f, and then multiplying this sum by the factor z™™. In this way, P, _,,(z; f) and
the sum YZ¢ P,_,(z; f) are systematically determined from the power series
expansion for f.

Proof. From the definition of p,_,(z; f) in (1.1), it can be directly verified that
Pn-1(z; f) has the integral representation:

o L[ fO0"=z")
Pa-1(z:f) =5— L (-0 =D dt, (2.3)

where I' is any circle |t|= R with 1<R < p. Similarly, from (2.1) and the Cauchy
integral formula, P,_, ;(z; f) has the integral representation:

o L[ fOE—-2") o
P,y ,(z;f)= 2771'L e dt, j=0,1,.... (2.4)

Thus, it follows for each positive integer | that

! J o=z, (2.5)

pnﬁl(’z;f)-igo RIS vy [ P v S T

To bound the integral in (2.5), let |[f(t)]=M on |t|= R. Then, we have for |t|= R
and for all z with |z|=pu, (u=p), that

t"—2z"

t—z

SM + R ,
n—R
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and the integral in (2.5) is bounded above in modulus by

MR(u" +R")
 (k—R)R"-1R"™’

On taking nth roots.

1/n
lel=u} =2k

lim sup {max R

n—o

Pocr(z: = L Pasy(23 )

]

and, as quantity on the left is independent of R, we can let R tend to p, whence

1/n
n
el <} =t

lim sup {max

n—soc

-1
Pui(z:f)= L Pacj(z:f)
i=0
Thus, for any positive number 7 with p'=7<1, we have

1/n
:|z|§7p'+1} =7<1,

poi(zif)= L Puy(251)

lim sup {max

n—oo

which establishes the desired uniform and geometric convergence of (2.2) of
Theorem 1. ’

To show that the result of Theorem 1 is best possible, consider the particular
function f(z):=(p—z)_1eAp, which was also used by Walsh [20, p. 154] to
establish the sharpness of his Theorem A. In this case, it can be verified that

n n

e P 72
pn-l(z>f) (p_z)(pn__l)v

pn — "
j+n

PRSP 2o

Pn‘l,j(z; f)=

whence

pn — Z"
p—2z)p"(p" 1)

paa(zi )= »‘;O P, .z f)= (

For |z|=p'"", the above expression yields

. -1 N . . 1
st D= T P i) lzl= 0 | 2o =0,

]

lim [min {
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showing that (2.2) of Theorem 1 is not valid at any point of the circle |z|= p'*! in
this case. W

It is natural to ask if this phenomenon of “overconvergence” of Theorems A
and 1 extends to polynomials of best approximation on the closed unit disk.
Specifically, for any f(z)e A,, let p,_,(z; f) be the unique best uniform approxi-
mation to f from m, ; on |z|=1: '

”pn—lf”[zlsl =inf {|q _f”|z151 (g€ 1},

where |g|4:=sup{g(z)|:z€ A}. Then, with P,_,(z;f) of (2.1) denoting the
(n—1)-st partial sum of f(z)=Y%_, a,z", one can ask if

lim (ﬁn—l(Z; f) - Pn—l,O(Z 5 f)) =0,

n—s>co

in some set which is again larger than the domain of definition of f, for all fe A,.

The following negative answer to this question was kindly pointed out to us by

Professor D. J. Newman. For f(z):=(p—z)‘1, it is known (cf. Rivlin [13]) that
n—1__ zn~1 Zn—l

£ n—1 + 2 n—2

(p—2)p (p>—1Dp

pn~l(2; f) =
for all n=2, so that with (2.6),

(PP (el (2
Prs(z: )= Pucrol23 1) (p*=1p <p) '

In this case, it is evident that

lim {pn—1(2§f}_Pn—1(Z§f)}:0 only for [z|<p.

n—oo

Returning to Theorem 1, we see from (2.2) that, on letting [ — <,

porzif)= ¥ Poyy(z: £, 27

i=0
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for any f(z)e A,. If we set
n—1
Pai(z:f)= L a2, (2.8)
k=0 .

where ¢, éck(n, f), then, with the definition of P,_,;(z;f) in (2.1), we deduce
from (2.7) the known formula (cf. Gautschi [4], Meinardus [10])

&= o,  k=0,1,...,n-1. (2.9)
j=0

It is also natural to ask if a sharpening of (2.2) of Theorem 1 is possible if the
stronger hypothesis, that f in A, is continuous in |z|=<p, is made. The affirmative
answer to this question, posed by Professor J. Szabados, is given below in
Theorem 2. For notation, C(D,) denotes all functions continuous in the closed
disk D,:={z:|z|=p}.

THEOREM 2. Let f(z)e A,NC(D,). With the definitions of (1.1) and (2.1),
then, for each positive integer I, '
o \ e
tim {p, (2 )= L Paas(2:0} =0, Vizl=pt, 2.10)
n—>o0 i=0
the convergence being uniform and geometric for all |z|=Z <p'*'. Moreover, the

result of (2.10) is best possible (in the sense that (2.10) is not valid at each point of
|z|>p""" for all fe A, N C(D,)).

Proof. For any f(z)e A,NC(D,), let s,_,(z; f) be the best approximation to f
from m,_, on D, i.e.,

E,_(f):=inf{|f— ‘I“D,, rqem, _=|f- Sn—1||Dp~ (2.11)

It.is known (cf. Walsh [20, p. 89]) that

lim E,_,(f)=0. (2.12)

n—o

Next, it is evident from (1.1) and (2.1) that

-1

'pn_l(z; Sp_1) = Z P,_.(z;s,_,) foreach I=1,2,....

i=0
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Because of the linearity of the operators involved, this implies that

Pz )= L Psy (2 0) = puoae3 5,0~ L, Pacay(i f=s0m0),

so that from (2.5),

A p (F() = 5,1 (t; (" — 2") dt
Ptz )= L Py (2= IL el

(2.13)

Now, using (2.11), this integral can be bounded above by

E,..(f)p""""+R")R
(pl+1_R)(Rn _ 1)Rln ’

max{ Hz|l=p l+1}<

por(z = L Poyy(z3 )

and, as the quantity on the left is independent of R, we can again let R tend to P,
whence

E,_(f)1+p™™)
p'(1-pHA-p™)"

max{ :]z[s;)’“}s

por(z: )= % Puyy(zi )

But, as the right side, from (2.12), tends to zero as n — %, we have the desired
result of (2.10). That the convergence of (2.10) is uniform and geometric on
|z|=Z<p'*! follows of course from Theorem 1.

Finally, concerning the sharpness of (2.10), consider the specific function

which is in A, N C(D,). It can be verified that (2 10) fails for this specific function
g(z), for any real z with z>p'*. W

We remark that the result of Theorem 2 is valid under even somewhat weaker
hypotheses on f. Specifically, consider the subset of functions f(z) in A, for which

c7|f(pe™®)| d6 is finite. As Professor R. A. DeVore has kindly mentloned on
deﬁnmg

E, i1(f; 7):=inf {—21-; J " If(1e*®)—q(e®)| d6:q e 17,,_1}
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for 0=17 =y, then, by means of Cesaro (C, 1)-means of the partial sums of f, it can
be shown that

sup{E,_1,(f; 7):0=7=<p}—>0, as n—w,

From the proof of Theorem 2, one then easily sees that the result of Theorem 2
applies equally well to this subset of A,.

In subsequent developments and extensions of Theorem 1, it will be clear that
analogous improvements can be made along the lines of Theorem 2 with the set
A, NC(D,) or with the subset of A, for which [3" |f(pe™)| d is finite. For brevity,
these improvements will not be stated.

§3. Hermite Interpolation

The result of Theorem 1 can itself be generalized using Hermite interpolation.
Let r be a fixed positive integer, and let n be any positive integer. We shall denote
by h,.1(z;f) the Hermite polynomial interpolant to f,f’,...,f" " in the nth
roots of unity, i.e.,

hi (o f)=fw), j=0,1,...,r-1, (3.1
where w is any n-th root of unity. If f(z)=Yr_, a.z*, we set
: m-—1 V
H, _10(z;f):= Z a, z* (3.2)
» © k=0
to be corresponding (rn —1)-st partial sum of f, and we set

n—1
H, 1 ;(z:[):=B,(2) )} Gsntsjony 2%  j=1,2,..., (3.3)
i k=0

where B;(z) = B,;(z; n, r) is defined by

Bi(z):= k; (’J“{(_ 1)’(7." S0, =12 (3.4)

We can now formulate

THEOREM 3. Let f(z)e A, and let h,,_,(z; f), H, _10(z;f) and H,,_, ;(z, )
(j=1) be polynomials defined by (3.1), (3.2), and (3.3), respectively. Then, for each
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positive integer |,

-1
hm {hrn~1(2;f)_ Z Hm—l,j(Z;f)}=07 V’Z|<p1+l/'a (3'5)
ji=0

n—o

the convergence being uniform and geometric for all |z|<Z < p'*"". Moreover, the
result of (3.5) is best possible.

We remark from (3.2)-(3.4) that each H,. _,;(z;f) is in m,,_,, and, as in the
Lagrange case of §2, is formed in a systematic way by summing the n consecutive
terms YiZ0 Guangej-12" "7 of the power series expansion for f, and then
multiplying this sum by the rational function B;(z)/z""*/~?, this rational function
being independent of f.

We further remark that the case r=1 of Theorem 2 gives Theorem 1. Note,
moreover, that, contrary to what one might expect, the case r>1 of Hermite
interpolation gives a smaller region (i.e., p'*" vs. p'*') of convergence to zero in
(3.5) than the case r=1 of Lagrange interpolation in (2.2). Even on comparing
the Lagrange and Hermite cases on the basis of the number of coefficients a, of
f(z) =X%_o axz" used by both interpolation schemes, the domain of convergence
to zero in (2.2) of the difference of the polynomials of Theorem 1 in the Lagrange
case still exceeds that of (3.5) of the Hermite case for r>1. To see this,

20 P, 1;(z; f) depends from (2.1) on the coefficients a, of fforO0sk=In-1,
while Y/=g H,,_, ;(z; f) from (3.3) depends on the coefficients a, of ffor0=k=
n(r+1'=1)—1. On equating the number of coefficients of f used, we have
I=r+1'-1,0or I'=1+1-r. Thus, the bounds for the radii of convergence to zero
for the Lagrange and Hermite cases are, respectively,

I+1

o and p+or,

For the proof of Theorem 3, we require the following two lemmas.

LEMMA 1. For all t with [t|>1, the following identity holds:

z" ("=1) ("-z") i B(z) (3.6)

i ([" _ 1)r - i sn
Proof. First, we observe from the definition in (3.4) that

Bi(z)=z"—(z"-1).
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With this observation, it can be verified, by easy manipulations, that (3.6) is
equivalent to

(z'=1)_ ("1 1 & (2"B(2) = Bira(2))
(=1 T " " s‘él " '

Multiplying both sides by t™ and expanding (1-t)"" on the left in powers of
", it is sufficient to show that the coefficients of t~°" on both sides are the same.
For s =0, this is obvious, while for any s=1, this requires that

(7T -1 = 22— Buea2)

But, this now follows directly from (3.4). | |

Next, for any a(x)e m,, Yi_o a(s)z’ is analytic in |z| <1, so that for any given
s with 0=8 <1, there exists a constant N = N(8; @) such that Y7 o als)z’|=N
for all |z|=8. Applying this to the particular polynomial Y and to z=t"
with |t|>1, gives

LEMMA 2. For any integers | and r and any integer k with 0=k =r— 1, and
any |t|>1, there exists a constant N = N(|t|; L r, v) such that

{Z <r+s;{-l—1)tvsn

s=0

=N, Vn=1. (3.7)

Proof of Theorem 3. The Hermite interpolant h,,, (z; f) satisfying (3.1) can be
verified to have the following integral representation

fOLE = 1) = (z" = 1)']
or-n“

hm_l(Z;f)=-1—jr

2l

(3.8)

where I' is any circle |{|= R with 1<R<p. Similarly, from (3.2) and (3.3), we
have

o L[ f@m—2")
H,H,o(z,f)—%n.jr (= dt, (3.9)
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With this observation, it can be verified, by easy manipulations, that (3.6) is
equivalent to

(z" - 1)’= (z"— 1)’+

(z"B,(2) = B;+1(2))
-1 g '

1 t

s

1
trn

N

Multiplying both sides by ™ and expanding (1—-¢")"" on the left in powers of
" it is sufficient to show that the coefficients of 1" on both sides are the same.
For s =0, this is obvious, while for any s =1, this requires that

(r+§_ 1)(2" - 1)r = ZnBs(Z)— Bx+1(z)‘

But, this now follows directly from (3.4). W

Next, for any a(x) € m, Yoo a(s)z® is analytic in |z| <1, so that for any given
& with 0=8 <1, there exists a constant N = N(8; &) such that [¥7_, a(s)z®|=N
for all |z|=6. Applying this to the particular polynomial (" " and to z=1t""
with |t|>1, gives

LEMMA 2. For any integers | and r and any integer k with 0=k =r~— 1, and
any |t|>1, there exists a constant N=N(|t|; |, r, v) such that

z <Y+S';<'l_‘1)t_sn

s=0

=N, Vn=1. 3.7

Proof of Theorem 3. The Hermite interpolant h,,_(z; f) satisfying (3.1) can be
verified to have the following integral representation

1 j fole -y =" -1 (3.8)

hm—l(z;f)z_z—;r_; . (I—Z)(tn"‘l)' ?

where I is any circle |f|= R with 1<R <p. Similarly, from (3.2) and (3.3), we
have

H, _10(z;f) =—1—L

2

foem=2")

(t—z)ym 7 (39
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and

m 11( f)_

2mi ). (t—z)n dt.

Bl(z)J f@" -z (3.10)

Then, from (3.8)—(3.10), we have

mluﬁ—z H, (2 )= 1j(ﬂoxuaa (3.11)

27 t—2z)

where

z" (2t -1) (=2t ’ZI B;(2)

ooty A e ELZe (3.12)

K(t, z):=

(where we use the convention Z,’;llso throughout if [=1). Using Lemma 1,
K(t, z) can also be expressed as

K(t’ Z) - (tt(y:l)zn ) Z Bs+l(z "

"z & (rs+l-1
_(t(mfn)z(n 1)kz(’ sk .>'t_sn’

s=0

using the definition of B;(z) in (3.4). Now, since |t|= R>1 on [} it follows from
Lemma 2 that

(R +]z[)(z|+ D"
R(r+l)n

K(t, z)|=M , where M is independent of n. (3.13)

Using (3.11) and (3.13), we see, as in the proof of Theorem 1, that

-1

M 1(z3 f) = ZHa“&ﬁ

j=

1/m

e Bt

lim sup {max

n—>o0

where 7 is any positive number with p™/" <7 <1, which again gives the desired
uniform and geometric convergence of (3.5).

Finally, direct computation with the function f(z):=(p—2z)"! again shows that
the result of (3.5) is best possible. W
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As in §2, letting [ —  in (3.5) gives that
hrn-l(z;f)z Z Hrn—l,j(z;f) (3'14)
j=0

for any fe A,. If we set

m—1

r—1
hoi(z; )= 2 cz% and Bi(2)= ) y,z™ j=1,2,..., (3.15)
v=0 v=0

where ¢, =c,(r,n, f) and where v;, =v,,(r, n), then from (3.14) we obtain, in
analogy with (2.9), that

Cj+kn = aj+kn + Z Yi,kai+r(n+i~1)’
i=1

forall 0=sk=r—1andall 0=j=n-1.

§4. A Different Approach to Hermite Interpolations

It is not at all transparent how the polynomials B3;(z) in (3.4) are arrived at. In
order to bring this out more clearly, we shall now derive the auxiliary polynomials
H,, 1;(z;f) of (3.3) from a different point of view which will prove useful in
Hermite-Birkhoff interpolation, to be encountered in later sections.

For any f(z)=Y7_, a,z* in A,, we can write from (3.2) that

f(z)zHrn—l,O(z;f)+S(Z)5 (4'1)
where
o © n—1 ‘
" S(z)= ), azk= Z ) Qi g2 7O (4.2)
k=rn s=0 j=0

Now, h,,_, is a linear projection mapping from A, into m,,_;, so that applying
h.._1 to (4.1) gives

hrnfl(z;f)=Hrn—l,0(Z;f)+hrn—l(2; S) (43)

In order to determine h,, ,(z;S), we first determine h,,_,(z;z/*"**"), where
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0=j=n-1 and where s=0. Writing
r+s
Zi+(r+s)n = Zj Z ("+S>(zn _ 1)k
K=o \ k
A'"‘l r+s k "+S r+s n—1\k G,r,s) G,r,8)
aEAPIN U (GRS VRS )) L JETY =) +g02),
k=0 k=r

where g{"(z) € m,,_,, then applying h,,_, to z/**" yields

H1(25 277079 = g979(2) + b, (25 g87) = g¥79(2),

167

since gJ"(z) vanishes in the n-th roots of unity, along with its first r—1
derivatives, whence h,,_,(z;gy"”)=0. Recalling the definition of (3.4), we

further see that

Mo _i(z; 2707 9") = 218, (2). ‘ (4.4)

Now, applying h,,_, to (4.2) and using (4.4),

o n-—1
hm—l(Z; S)= Z Z aj+(r+s)nhrn—1(z; zj+(r+s)n)

s=0 j=0

oo n—1 oo .
=2 B2 Y anmz' = Y Hyy (23 f),
s=0 j=0

s=1

the last equality following from the definition (3.3). Hence, with (4.3), (4.5) yields

hrn-l(z 7 f) = Hrn—l,O(Z; f) + Z Hrn—l,s(z; f)'
s=1
which establishes (3.14) in a different manner.

§5. Some Hermite-Birkhoff Interpolation Schemes: the (0, m) Case

From the foregoing, it is not clear a priori whether theorems analogous to
Theorem 3 will hold when we replace Hermite interpolation in the n-th roots of
unity by general Hermite-Birkhoff interpolation (called H-B interpolation for
brevity) in the n-th roots of unity. It may be remarked that H-B problems of
interpolation for real nodes has a considerable literature (cf. Lorentz and
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Riemenschneider [8], Sharma [18], and van Rooij et al [19]), but when the nodes
are on the unit circle, much less seems to be known (cf. [1]). However, as a
consequence of the approach used in §4, we have been able to prove a general
result on the unique solvability of a class of H-B problems in the roots of unity.
More precisely, we have established the following result (cf. [1]):

THEOREM B. For any nonnegative integer q, let {m;}{_, be any nonnegative
integers satisfying

O=meg<m;<m,<---<m,,

and let n be any positive integer for which
=kn forall k=0,1,...,q.

Then, the H-B problem (0, my, m,, ..., m,) in the n-th roots of unity is uniquely
solvable for any given data.

In this section, we examine the extension of Theorem 3 to the particular case
(0, m) of H-B interpolation in the n-th roots of unity, the case q =1 of Theorem
B. (For this particular case, we remark that the unique solvability was first
established by Kis [6] for the case m =2, and then by Sharma [17] for the general
case.) Because of unique solvability, for given positive integers m and n with
n=m, and given any f(z)€ A,, there is a unique polynomial b$;™}(z; f) in 75, 4
which interpolates f in the n-th roots of unity, and whose m-th derivative
interpolates f™ in the n-th roots of unity:

b (w; f)=f(w) and (b5 (w; )™ =f"(w), (5.1

where w is any n-th root of unity. Of course, if m=1, then b (z; f) =
h,,_.(z;f), where h,,_,(z;f) is the Hermite interpolation polynomial of 3.1)
with r=2. An integral representation for b$;™}(z; f) can be found by exhibiting a
function K$:™(t; z), which, as a function of z, is in ,,_;, and which interpol-
ates (t—z) ' and whose m-th derivative, as a function of z, interpolates
m!(t—z) ™, in the n-th roots of unity, for all |¢f/>1. Thus, by the Cauchy

integral formula,

bz =5 = j FOKRS™M(, 2) d,



v
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where I' is any circle |z] = R with 1<R <p. For example, when m =2, a direct
computation shows for n =2 = m that

"=zt "+z"=2) _(z"-Dn"gt
(t—z)(t"—1)? +2(t"—1)3,§(,(3n—2v—3)'

K532t 2) =

However, for m =2, this method of finding K$;™(t, z) becomes complicated and
tedious. We shall circumvent this difficulty by using the method of §4.
For any positive integers m and n with n=m, set

bSOz f) = Z flo") e o(z) + Z F (0" (2), (5.2)

=0

where o is a primitive n-th root of unity, and where {a, o(z); @ . (2)}i_5 are the
fundamental polynomials of this interpolation, i.e.,

ao(w)=8,; and a(w)=0; & m(0)=0 and a("‘)(w")=8k’j,

for all 0=k, j=n—1.If f(z)=Y7_, a,z" is in A,, set

2n—1
BSMo(z: 0= X @z, (5.3)
k=0
and set
(2(::1'"{ v(z f) - Z a‘]+(v+1)nz q]u(Z) v= 17 2’ ) (5'4)

where g;,(z)=gq;,(z; n, m) e m, is defined by

(vn+n+]) —(n+j)
(n+)m=(m

q,:(z) - m(zn—i), j=0, 1,...,n_‘1, (5.5)

where we use the standard notational convention that

{(i)m=j(i~1) o (j-m+1), m=j, and
()m =0, m>j.

Note that the denominator (n+j),, —(j),. in (5.5) is positive for all 0=j=n—1
since n=m.
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We now prove

THEOREM 4. Let f(z)e A,, and, for each fixed positive integer m and all
positive integers n with n=m, let b$™)(z; f), Boo(z;f), and BS™ (z;f)
(v=1) be the polynomials defined in (5.2), (5.3), and (5.4), respectively. Then, for
each positive integer |,

tim {57123 )~ Z B‘2°n'l‘{,,~(z;f)}=0, Viz|<p'*"2, (5.6)
the convergence being uniform and géometric for all |z|<Z <p'*"?. Moreover, the
result of (5.6) is best possible.

We remark from (5.3) and (5.4) that each B$;™ (z;f) is in m,, 4, which is
formed in a systematic way, for v=1, from the n consecutive terms
YI20 Qe TP of the power series expansion for f. We further remark that
the bounds for the radii of convergence to zero for the Lagrange case (2.2) and
the (0, m) H-B case (5.6), on equating the number of coefficients of f used, are
now respectively

1+1

p and pd+D2,

In order to prove Theorem 4, we shall need

LEMMA 3. The following identity holds:
bz )= BO™ oz: f)+ 2 BS™ (23 6), (5.7)
v=1
where the BS;™! (z; f) are defined in (5.3) and (5.4).

Proof. b$;™ is a linear projection mapping from A, into m,,_,. Thus, for any
f(z)=%7"0az' in A, we have that

o n—1
b (z; ) =B o(z3 )+ X L @bz 270). (5.8)
s=2j=0
On the other hand, from (5.2) we obtain

b (z; 21 = Z w¥ay o(z) +(j+ sn),, Z 0Tk (2). (5.9)

=0 k=0
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Putting f(z)=z' and f(z)=z/(z"—1) in succession in (5.2) easily yields, with
0=j=n-1, that

n—1

Z' = Z wjkak,o(z),
k=0 (5.10)

D= D= {0+ = (Db T, @0 (),

so that the sums Y Zb w0, o(z) and Y324 0" ™" qy ,,(2) are each determined in
terms of z' and z/(z"—1). Substituting for these sums in (5.9) and using (5.5)
gives

(ZOrtmi(Z Zl+sn)_ijs 1(2)

From this, using (5.4) and (5.8), (5.7) then follows. W

Proof of Theorem 4. Denote for convenience the expression in braces in (5.6)
by A{®™(z). Then, from (5.7), we have for any /=1 that

A©™(z)= ), BEM Uz f).

v=I

1
Replacing a, by its integral representation E_lj f(t>'dt, we see that
il Jr

AP™(z) = ——J FOKL™(t, 2) dt, (5.11)

where, from (5.4),

K(O "')(t Z) - Z Z t]+1+(r+1)n q]r(z)

r=1j=

Using (5.5), however, it follows that

zZ"(t"—z")

(0 m) —
()= (t —z)t(’”)”(t"—l)

K™, z), (5.12)
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where
- 2 (r+Dn+j),, —(n+j)
(0 m(f z) = -1 { m "'}, 13
R W NS 49
Now, the difference (n +j),, —(j),. strictly increases as j increases, so that
+D)n+j),, —(n+j +
max {((r l)n ])m (n ])m}<((r 2)n)m<(r+2)m (514)
O=j=n-1 (n +])m _(])m (n)m

Next, a short calculation using (5.14) shows that |[K$;™(t, z)| can be bounded on
the circle ]t|—R<|z| by

(z"[+D(z]"+R"™)
(2~ R)RT?"

[KSm™(t, )| =< (5.15)

Thus, if |[f(t)]=M on |t|= R <|z|, then from (5.11)——(5.15);

A©0™(2)] = |z|*(R™ +|z|") MR N (z"|+ 1(z]" + R")MR
I —(!ZI_R)R(I+1)n(Rn__1) (IZI_R)R(H-Z)n
Consequently,

lim sup {IAgo,m)(z)l . |Z| <= Tp1+l/r}1/2n =r< 1’
n—sco

where 7 is any positive number with p~/>=<7 <1, which gives the desired uniform
and geometric convergence of (5.6). That (5.6) is best possible again follows from
considering the special function f(z)=(p—z)~' in A, B

§6. Some Hermite-Birkhoff Interpola;tion Schemes: the (0, 2, 3) Case

In this section, we study the particular H-B interpolation problem (0, 2, 3) in
the n-th roots of unity. In this case, it is known (cf. Theorem B of §5 and Sharma
[15]) that this problem is uniquely solvable for all n=2, i.e., given any f(z)€ A,
and any n =2, there is a unique polynomial b$;*>?(z; f) in m5,_, which interpo-

lates f in the n-th roots of unity in the following sense:

(bS2V(0 ;N = f(0*), v=0,2,3; k=0,1,...,n—1, (6.1)
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where o is any primitive n-th roof of unity. This polynomial can be expressed as
—1 n—1 n—1
b2V (z; )= Z floao(2)+ 2 f@)aa(2)+ ) (0 )as(2), (6.2)
=0 k=0 k=0

where @, o(z), a;,(z), and o 5(z) are the fundamental polynomials for this
interpolation. These polynomials are explicitly given in Sharma [15], but their
explicit form is not needed here. We do need, however, the result of

LEMMA 4. For any integers r and j with r=2 and 0<j=n-—1,

b92P(z; 21ty =2 Z (:)(Z"—l)”

. (6.3)
r 6n’(n+2j-1)Q,(z) - 2’
<3>(n+2j—1)(2n+j)2—(3n+2j—1)(j)2’
where
(e 30 F2—1
Q(2):=(z 1){2 n+2j_1} 6.4)

FProof. Expressing z'™™ =2z'Y"_,(;)(z"—1)" and noting from (6.1) that
b$27(z; 27(z" ~1)")=0 for all v=4, the linearity and reproducing character of
the operator b;>? gives

b 20 = ¥ (16922 21 17)
=53 (e (vt 2.

From (6.1) and (6.2), we easily deduce that

n—1

bO2V(z; 2 (2" = 1)) =61 ) o "V, (2). (6.6)

k=0

Next, with (6.4), simple manipulations show that the polynomial z/Q;(z) satisfies
the following conditions for k=0,1,...,n—1:

szj(Z) k=0, (Zij(Z))" k=0’

Z=w Z=w
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and

(Bn+2j-1)

Q)" (n+2j—1)

(a7,

= n[(2n +j)p—

so that from (6.2),

Bn+2j—

b2V (z; 2/Q,(2)) = [(2n+j)2 12— 1) ( >2]Z o "I 4(2). (6.7)

On the other hand, since z'Q;(z) € m5,_;, then b$;>P(z; 2/Q;(2)) = 2’Q;(2), so that
combining (6.6) and (6.7) gives

6n*(n+2j—1)z2'Q;(z)
(n+2j—D2n+)—Bn+2j-1)(j),

bS2P(z; 2 (2" — 1)) =
Then, substituting the above in (6.5) gives the desired result of (6.3). W

If f(z)=Y%_0 az" is in A, set

3n—1
B2z f) = Z a,z%, (6.8)
and set
B2 (25 )= Z b2z 2Py =12, .., (6.9)

With this notation, we come to

THEOREM 5. Let f(z)e A,, and, for each integer n=2, let b$x*?(z; f),
(30,,2 Yo(z; f), and B> (z; f) be the polynomials defined in (6.1), (6.8), and
(6.9), respectively. Then, for each positive integer I,

tim {b29(2; 1) - Z B‘a‘ii’f?j(z;f)}=0, Viz|<p™*, (6.10)

n—so

the convergence being uniform and geometric for all |z|<Z <1+ p'*"?. Moreover,
the result of (6.10) is best possible.
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Proof. It follows, as in the reasoning in the proof of Theorem 4 (cf. (5.8)) that

bS2P(z; f) = B2 (z; )+ Z Z Oj42nb$ 27 (25 277 C2M),

r=1j=0

Replacing a;(,.,), by its integral representation, we have with Lemma 4 that

b2V (z; f) - Z B2V (25 f)

“5m) O[22 Z e A0+ ()G o
where
A,(z):=éo('+2)< "~1)", and o

6n*(n+2j—1)Q,(z)
(n+2j-1D2n+j),-Bn+2j-1)(j),

G(z):=

are polynomials of degree 2n.
We first estimate the quantity in square brackets in (6.11) by splitting it into
two parts, namely I, and I,, where

_v Yy _ZAZ)
- Z Z fH1FG+2n
and
i "Zl r+2 2'C(z)
L= fHIFon
r=1lj=

With (6.12), we then have

<r+l+2>

Z (z"=1) Z (r+l+3)n Z Zin

j=0

G-z 1

(1—2) t(l+3)n Z (z"=1)"S, (1),




176 A. S. CAVARETTA JR, A. SHARMA, AND R. S. VARGA

where

<r+l+2>
S,(1):=Y ——tl’—— »=0,1,2.
r=0

For any ¢ with [t|>1, Sy(t), S;(1), and S,(t) are bounded above from Lemma 2 by
a fixed constant N,, independent of n, so that

3 @ -0s0|=N L (2,

from which it follows that

2o (z"+1)”
‘tl(l+3)n

IL|=N,

tn_zn
t

-z
In order to similarly bound |I,| above, we observe that the denominator in
(6.12), namely

(n+2j—1D2n+)),—Bn+2j—1)()
is an increasing function of j for all 0=j=n— 1, so that from (6.12),

18n°|Q;(2)]
2n(2n—1)(n—1)

|Ci(2)|= =18|Q;(2)|. (6.14)

Next, from (6.4),

+2j—-1 +2j—
Qj(z)=22"—(1+3n 2j >2"+3n 2j—1

n+2j—1 n+2j-1"
and as (3n+2j— D)/(n+2j—1)=5 for all 0=j=n—1, n=2, we have that
|Qi(2)|=|z>" +6]z|" +5. (6.15)

Combining the inequalities of (6.14) and (6.15), we obtain for |z|>t|

|I|=18

(e +|z)( 2" +6lz]" +5) & (r+1+2\ 1
(z] =Dl ;0( 3 >|t|'"‘
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This last sum is again uniformly bounded above for all n=2 from Lemma 2, so
that for some constant N,, indepedent of n,

(" +]z[")(z[" +6]z|" +5)
(z[=[ehle =

|L|=N;, (6.16)

Then, with (6.13) and (6.16), we can bound the integral in (6.11) for |z|>p>R=
1] by

-1
B2 )~ 8BS0 )]
v=0
(RE2) [ 3

SMRW vagoqzl +1) +N2(|Z|2 +6!ZI +5)¢,
which tends (uniformly and geometrically) to zero when |z| < R'"3><p'*3 This
establishes the desired result of (6.10). Again, the sharpness of this result is
provided by the function f(z)=(p—2z)"'. W

We remark that the bounds for the radii of convergence to zero for the
Lagrange case (2.2) and the (0, 2, 3) H-B case (6.10), on equating the number of
coeflicients of f used, are now respectively

I+1

P and p3,

§7. Some Hermite-Birkhoff Interpolation Schemes: the (0,1,...,r—2,r+m—2)
Case

In this section, we study the particular H-B interpolation problem

(0,1,...,r=2,r+m=2) in the n-th roots of unity, where r and m are arbitrary
positive integers with r=2 and m =1. Note that when m = 1, this reduces to the
Hermite interpolation problem (0, 1,...,r~1) in the n-th roots of unity which

was treated in §3, while if r=2, this reduces to the H-B interpolation problem
(0, m) in the n-th roots of unity which was treated in §5.

For this H-B problem (0, 1,...,r—2, r+ m—2) in the n-th roots of unity, we
know from Theorem B of §5 that this problem is uniquely solvable for any choice
of m=1 and r=2, provided that r+m—2=<(r—1)n, i.e., given any f(z) € A, and
any n sufficiently large, there is a unique polynomial b","3™(z; f) in ,,_, which
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interpolates f in the n-th roots of unity in the following sense:

(BO A (0"; P =D 0,  j=0,1,...,r=2,r+m—2;
k=0,1,...,n—-1, (7.1

where w is any primitive solution of w™ = 1. In analogy with (5.2), we can exprass
b 3™ (z; f) as (assuming n sufficiently large)

r—2 n—1

U Az )= ) Y f 0"y, (2)+ Z FOm 20 ) gy o m—a(2), (7.2)

v=0k=0

where {a,,(2)}i2b "2 and {a,.m_o(2)}iZh are the associated fundamental

polynomials for this interpolation. Since b%_3™ reproduces polynomials in ,, ,,
we have
b 3™ (z; 2y =2z forall 0<s=r—1,0=j=n—1. (7.3)

Next, for s =r, we use the identity
) o (s
an+]:z;Z ( )(Zn_l)v’
v=0 \V

and observe, from the linearity and reproducing character of b"~%™ and also
(7.1), that

—1

R O () G e o (1= S P e (e}

v=0
(7.4)
Using (7.2) gives that
) n— dr+m 2
S bz 2 (2 =1 = Z ['d‘m{z (z" - )”*’}] " rm—2(2)
n—1 I
=Nv+r,i Z w(n+i‘rim+2)kak,r+m—2(Z)a (75)
k=0
where N,,,;=N,.,(n) is defined by
v+r V+r .
Nei= 3 (700 (7.6)
n=0 12
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using the convention (j),, of §5. Now, if v=-1 in (7.5), the polynomial
z/(z" —1)""! is reproduced by the interpolation operator b 3™ of (7.1), so that
in this case, (7.5) reduces to
) n—1
Z](Zn _ 1)r-1 =N,,, Z w(n+j—r—m+2)kak‘r+m_2(z)‘ (7.7)

k=0

Combining (7.4)—(7.7) then yields

) .r—l N .
r=2,m)( . o sn+iy — i —1) + —1)1 ( s )——m 7.8
b Z™(z; 2" )=z Vgo < )(z Y +2/(z" - 1) Z vir)N, (7.8)

Now, for any f(z)=3},_,a,z" in A,, we define the polynomials

m—1
BG AWz )= Z a,z", _ (7.9)
=0
and
BU2A(23 )= ) Geurripnb ™ (z; 2700, v=12,.... (7.10)
j=0

With these polynomials, we state

THEOREM 6. Let f(z)e A, and, for any fixed positive integers r=2 and
m=1, let b, 3™(z; f), B4 35 (z; f), and BS3™(z; f)(v = 1) be the polynomials

rm—1 m—1,v

defined in (7.2), (7.9), and (7.10), respectively. Then, for each positive integer 1,

lim {b&:. 2z ) Z BS- 21',">(z;f)}=0, Viz|<p'* (7.11)

n—soo

the convergence being uniform and geometric for all |z|<Z <p*"". Moreover, the
result of (7.11) is best possible.

We omit the proof of this theorem which follows along lines similar to the
proofs of the previous sections. In particular, as in (5.14), we need upper bounds
for the quantity

N,..;
max ——==4L
O=j=n—-11Ny,_1;
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in order to bound B{,"37(z; f) for all s = I. These estimates follow easily as N, ;
is, for sufficiently large n, a positive increasing function of j (which is analogous to
the statement preceeding (5.14)). This last property of N,.,; is proved by treating
the sums of (7.6) defining N,.,;, as divided differences and using results of
Kloosterman [7].

We remark that the bounds for the radii of convergence to zero for the
Lagrange case (2.2) and the (0,1,...,r—2,r+m~—2) H-B case (7.11) on equat-
ing the number of coefficients of f used, are now respectively

1+1

p"*! and pton. (7.12)

Thus, in using either (7.11) or (7.12), we see that the (0,1,...,r—2,r+m—2)
H-B case behaves precisely like the Hermite case (0, 1,...,r—1), in comparison
with the Lagrange case, with respect to the domain of convergence to zero of the
associated differences of interpolatory polynomials. In the same manner, we see
that the (0, m) H-B case and the (0, 2, 3) H-B case behave respectively like the
Hermite cases r=2 and r= 3. Similar analogies can be drawn from the results to
be derived in §8§8-9.

It may be thought that the statements of Theorems 4-6 are quite similar,
although the proofs differ considerably in detail. In view of this, Theorem B of §5
suggests a unification of the three special cases of the H-B problem treated in
Theorems 4-6. However, we were not able to achieve this. Instead, we offer the
following conjecture. : '

CONJECTURE. Consider the H-B interpolation problem (0, m;, m,,..., m,),
where my_<kn for all k=0,1,...,q (cf. Theorem B of §5). For any f(z)=
Yioaz' in A, let byiy.—1(z;f) be the associated unique H-B polynomial
interpolant in 1. 1ym-1, and let

(g+1)n—1
B(q+i)n~1,0(2; f) = Z a,z’, (7.13)
v=0 -
and
n—1 )
B(q+1)nv1,v(z; f) = Z aj+(u+q)nb(q+1)n~1(z; z]+(v+q)n), v= 19 2’ c v (7'14)
j=0

Then, for each positive integer |

-1

im (b 153 )= L Bonnns(5: D) =0, Vlzl<pie™, 1)
n—oo j=0 .
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the convergence being uniform and geometric for all |z|<Z <p'*"@*D_ Moreover,
the result of (7.15) is best possible.

§8. Next-to-Interpolatory Polynomials
We shall now show that Theorem A of Walsh can be extended to polynomial

operators which are not necessarily interpolatory. Given f(z) € A,, and given any
n=2, let s,_,(z; f) denote the polynomial in r,_, which minimizes

max |Pa—a(@0®) = f(0")],

over all polynomials in ,_,, where w is any primitive n-th root of unity. Based
on a result of Rivlin and Shapiro [14] which involves the concept of extremal
signature, it can be verified that s,_,(z; f) in m,_, is given by

L5 D) —da™) (8.1)

n—o (z-w") ’

Su—2(z; )=
where
1 n—1

A== o*f().
n-o

From (8.1), it then follows that s,_,(z; f) has the integral representation

L[ fore—z"""
3 [)=0— | —/ = dt. 2
snf2(z«7f) 27” J'F (l—Z)(I"—l) dt (8 )
On setting, as in (2.1),
’ n—2
Pn-2,j(z;f):: Z ak+j(n—1)zka ]=0’ 1, 2a ceey (8'3)
k=0

we next establish

THEOREM 7. Let f(z)€ A,. Then, for each positive integer I,

lim {s,_,(z;f)=P, ,4(z; /)}=0, V|z|<p?, (8.4)

n—oo
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the convergence being uniform and geometric for all |z|<Z<p?. Moreover, the
result of (8.4) is best possible.

Proof. The proof follows along the lines of that of Theorem 1, on observing
that

1 J‘ fO@E =z dt

Snvi(Z;f)an~2,O(Z;f)=§7—T; (t“‘Z)(t"_l)tn_l ’

from which (8.4) easily follows. W
The integral formula (8.2) for s,_,(z; f) can be iterated, leading us to define

L[ fwre =z
s""""(z’f)'_zm,[r (t—2)(t"-1)

dt, r=1,2,...,n—1, (8.5)

a polynomial in ,_; ,. This polynomial does not possess any approximation-
theoretic interpretation for r=2, but does give rise to the following analog of
Theorem 7, which for convenience is stated without proof.

THEOREM 8. Let f(z)e A,, and for each positive integer r set

n—1-r

Setn(Zf)i= Y Grawn?s  v=1,2,...5n>r (8.6)

i=0

Then, for each positive integer I,

1-1
lim {snﬂ_,,,(z;f)— » -s,,_l_,,k(z;f>}=o, Viz|<p' (8.7)
k=0

n—o

1+l

the convergence being uniform and geometric on all |z|<=Z <p'*'. Moreover, the

result of (8.7) is best possible.

We remark that the polynomial s, ;. (z;f) of (8.5) also arises from a
different derivation in (9.7) of §9.

Motzkin and Sharma [11] have considered next-to-interpolatory polynomials
on sets with multiplicities. We shall consider, for the sake of brevity, only the case
of multiplicity r =2, though higher-order multiplicities can similarly be treated.

To begin, let w denote a principal n-th root of unity, and denote by ﬁzn_z the
polynomial in ,,_, which interpolates f in the n-th roots of unity, and which
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simultaneously minimizes
A k. k
max lh’2n-—2(w ’ f) _f’(w )L
k

among all polynomials in ,,_, which interpolate f in the n-th roots of unity.
Again, from Rivlin and Shapiro [14], it can be verified that

n

hano(z:f)= X fl@"){1=(z=0")(n—1)0 2}i(2)

+ 2 {f (0" = ro Nz - 0")IX(z),
k=0
where
1/z"—1
e (ot

and where

R COEp |

k=0

By elementary calculations, it turns out that

__n f(0)
A= J'r -1 %

It is also easy to verify that

dt

1 J fOLE" = 1)>~(z" - 1)"]

th—Z(Z;f)z-z—ﬂ_; (t_z)(t"_l)z

_z"‘l(z"—l)J’ £(0) dt
2ri (" =1)%"

(8.9)

Since h,, ,(z; f)€ 7y, _, We can rewrite (8.9) as

X o L[ @ [rerT =2 23 =2
hz,ﬂ(z,f)—zmjr (t_z)[ L (tn_l)z]dt

U0 f) di
N L (t"—1)%
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On setting

1 j foer =z

I:IZn—Z,O(Z;f):zP2n72,0(z;f)=_2777i (t—z)t2"”1

we easily see that

lim {ﬁznﬂz(z',f)‘Hzn—z,o(Z;f)}z()’ Vlzl<p2.

n—w

Similarly, if we set for k>1,

2n—2
Ay (23 )= (1HK) L G2’ + GucreinZ”
n—2
+(1-K) Y, Gyrknz’s (8.10)
v=0

then we can analogously establish the result of

THEOREM 9. Let f(z) € A,. Then, for each positive integer |,

-1
lim {ﬁ2n~2(z§f)‘ Z H2n42,k(z;f)}=0$ V|Zl<Pl+la 8.1
n-—> k=0

the convergence being uniform and geometric for all |z|=Z<p'*". Moreover, the
result of (8.11) is best possible.

§9. Interpolation by Polynomials in z and z!

For each ordered pair (m, n) of- nonnegative integers, and for any f(z)=
Yooaz in A, let q™"(z;f) be the Lagrange interpolant of z"f(z) in the
(m+n+1)-th roots of unity. Then, 27"q"™"(z; f) can be uniquely expressed as
the sum of a polynomial in m,, in the variable z and a polynomial in m, in the
variable z 7%, ie., if ¢™™(z; f)=2 0" o;z', then

2q (2 f) =1 (zs ) s ), ©.1)

where r™™(z; f): =Y ;. ,z' and where stz f) =Y ez’ " Now, plmm
can, in the spirit of Walsh’s Theorem A, be compared with the m-th partial sum
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of the power series expansion of f. Thus, we define

Pm,n,O(Z; f) = Z ajzj; Pm,n,k(z; f)= Z ak(m+n+1)+jzj, k = 1’ (9‘2)
j=0 j=0
and
n—1 ) ‘
Qm,n,k(z_l;f):= Z ak(m+n+1)~n+j—~1zlwn, kZ ]-7 (9'3)
j=0

and establish the following analog of Theorem 1.

THEOREM 10. Let f(z)e A, and let {(m;, n;)};=, be any sequence of ordered
pairs of nonnegative integers for which there exists an a with 0 <a <% such that

lim m;=+o and lim (n/m,)=a. 9.4)

With the definitions of (9.1) and (9.2), then for each positive integer I,

-1
tim [ 707005 £) = P25 1)= L Pz )] =0 ©.5)
j—>00 k=1

for |z|<p'""*'*, where the convergence is uniform and geometric for |z|<=Z<
p' "1 Moreover, the result of (9.5) is best possible (in the sense that (9.5) is not in
general valid on |z|=p'"""" for all fe A, and all sequences satisfying (9.4)).
Finally, if a >0, then for each positive integer I,

lim [sx:vwz—l;f)— Y Quulz'5)|=0 9.6)
k=1

i—>00

for all |z|>p~"*~“"_ where the convergence is uniform and geometric for |z|=Z>
p """V and the result of (9.6) is best possible.

Remark. For the case | =1, Theorem 10 was given by Sharma [16]. For =1
and for n; = 0 for all i, we note that Theorem 10 again gives Walsh’s Theorem A.

Proof. The Lagrange interpolant §(z; f) of z"f(z) in the (m + n+ 1)-th roots of
unity can be expressed from (2.3) as

tnf(t)[tm+n+1 _ zm+n+1]
(=)™ = 1)

iz f) == j d,
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of the power series expansion of f. Thus, we define

Ponolz;)i= 2 @25 Prni(2: )= X Gemensnnzs k=1, (9.2)
j=0 i=0
and
n—1 ) V
Qm,n,k(zvl; f) = Z ak(m+n+l)~n+j—1z}_n7 k = 1’ (93)
j=0

and establish the following analog of Theorem 1.

THEOREM 10. Let f(z)€ A, and let {(m;, n;)}i_; be any sequence of ordered
pairs of nonnegative integers for which there exists an a with 0 <o < such that

limm; =+o and lim (n/m;)=a. 9.4)

With the definitions of (9.1) and (9.2), then for each positive integer I,

-1
i [ #7025 )= P31~ 3. Prve(23)] =0 9.5)
j—>0 k=1

for |z|<p'*'*'*  where the convergence is uniform and geometric for |z|=Z<
p' 1t Moreover, the result of (9.5) is best possible (in the sense that (9.5) is not in
general valid on |z|=p""'"" for all fe A, and all sequences satisfying (9.4)).
Finally, if a >0, then for each positive integer I,

-1
lim [svawz*;f)— L Qa5 0] =0 9.6)
k=1

i—>00

for all |z|>p~"*~9"", where the convergence is uniform and geometric for |z|= Z>
p "~V and the result of (9.6) is best possible.

Remark. For the case | = 1, Theorem 10 was given by Sharma [16]. For =1
and for n; = 0 for all i, we note that Theorem 10 again gives Walsh’s Theorem A.

Proof. The Lagrange interpolant §(z; f) of z"f(z) in the (m + n + 1)-th roots of
unity can be expressed from (2.3) as

1 tn t tm+n+l_ m+n+1
J f(ol z 1, ‘.
r

Q(Z’f):——_ (t_z)(tm+n+l_1)
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and on writing [t = zm T = (¢ = 2™ )z + (" — 27), it follows from
(9.1) that

ez =5 |

n m+1__ ,m+1
[ rfourt-en
2

=)= @

and that

sz ) = 9.8)

R A (OIGt2))
2ri L (1—2) (" T 1)z dt.

With (9.7) and the definitions of (9.2), it is readily seen that

r(rﬁ"’")(Z; f) - Pm,n,O(Z; f) - i P'"'"'k(Z; f)
k=1

1 j fO™ —z™) dt

- '2_7;; (- Z)(tm+n+l — 1)tm+l+(l~1)(m+n+1) ’
from which the result of (9.5) easily follows for any sequence of pairs of integers
satisfying (9.4).

To show that the result of (9.5) is best possible, choose fz)=(p—2)"in A,
and let {m,}7_, be any sequence of nonnegative integers with lim,_,.. m; = +o. For
anyreal a =0,setn; :=[am,], theinteger partof am;, foralla =1, so that (9.4)is valid.
In this case, itcan be verified that the resultof (9.5) fails to be validfor z = pliitle,

Continuing, we can equivalently express s\™™(z7"; f) of (9.8) as

1 @t —-z")ydt 1 H"—z"

ety = [ L= L f =z dt
2mwi ) (t—2z)z" 2mi Jr (t—z)(mT T =1)z"

But, for |z|> p, the first integral above vanishes by virtue of analyticity, whence

| s (275 f) - L L

27ri

f@O@" —z") dt

(t—2)(¢™ ™ =1)z"

(9.9)

Then, with (9.9) and the definitions of (9.3), it is readily seen that

sslm,n)(z—l;f)_ iw Qm’",k(z_q;f):_l_“r ( f(t)(t" —-Z") dt

2ari t__z)t(lvl)(m+n+1)(tm+n+l__1)zn 4
(9.10)
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from which the result of (9.6) easily follows for the case a > 0. That the result of
(9.6) is best possible follows from a construction similar to that above where it was
shown that (9.5) is best possible. Finally, we remark that, in the case that a =0,
(9.6) is valid for all |z|> ¢, where £>0 is arbitrary. W

§10. Concluding Remarks

In previous sections, the emphasis has been on generalizations of Walsh’s
Theorem A, involving interpolation only in the n-th roots of unity. There is
considerable literature, however, on interpolation (and/or approximation) in
points other than the n-th roots of unity (cf. Curtiss [2], Gaier [3], Kakahashi [5],
Okada [12], Walsh and Sharma [21] and Baishanski [22]) which give the mechan-
ism of extending our previous results beyond simply the n-th roots of unity.

To indicate one such extension, consider any sequence {w,, (z)};=; of polyno-
mials w, (z) with lim,_,.. n, = % such that

-1

w, (2):= 2"+ ‘ZO YinZh  Viz1l. (10.1)
f

If w,(z) has all its zeros in |Z|=1+¢, then for any f(z) € A,, set

24 . .____1_ wni(t)-wni(z)
iz Ni=g s | 10 2B (10.2)

where I is any circle |t|= R with 1+& <R <p. Clearly, p,_,(z; f) is the polyno-
mial interpolant of f in m,_, which interpolates f in the zeros of w, . Note that the
particular sequences {z"—1};;_, and {z"};;_, respectively generate, from (10.2),
the polynomial interpolants p,_,(z;f) and P,_,(z;f) of f(z)e A, in (1.3) of
Walsh’s Theorem A, and note, moreover, that these sequences have correspond-
ingly many zero terms v, ,, in (10.1). As suggested by Professor E. B. Saff, suitable
restrictions on the magnitudes of the coefficients v;, in (10.1) would lead to
generalizations of Walsh’s Theorem A. Indeed, the condition that we impose on
(10.1) is that there is a number a with —eo<a <1 for which

ni—1 1/,1i
timsup (£ fyalel) " =p(<p) (10.3)
j=0

i—>00

where p, satisfying 1<p <, is the parameter associated with the set A,. The
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collection of all sequences (10.1) satisfying (10.3) for a fixed value of a with
—oo=a <1 will be denoted by (2,.
We next establish

LEMMA 5. If {w, (2)}=,€ Q,, then, given any >0 with p*+ ¢ <p, there is
an iy(g) such that w, (z) has all its zeros in |z|<p*+ & for all i=iy(e).

Proof. Since p* +¢ <p, it follows that
n—1 ) n—1 )

L il +e) = X [ynle’,

i=0 j=0

so that from (10.3),

. n—1 \ Un,
lim sup ( Z [Vjn (p* + e)’) =p°.

i—>0 j=0

Hence, there exists an iy(e) such that

-1

Y inlom ) —(p +) <0, Vizige).

i=0

By a classical result of Cauchy (cf. Marden [9, p.122]), w,(z) then has all its
zeros in |z|<p*+e for all i=iy(e). W

From the sequence {z"—1};_;, which is an element of (2, let us form the
sequence {(z" —1)"};_, where r is any fixed positive integer. This latter sequence,
when used with (10.2), generates the Hermite polynomial interpolants of order r
of f in the n-th roots of unity. We note, however, from (10.3) that this latter
sequence is contained in {2,_,,, but as the zeros of the polynomials of this
sequence all evidently satisfy |z| =1, Lemma 5 gives a weaker result concerning
the zeros of (z"—1)" when r>1. This suggests the following normalization to
conform to Walsh’s Theorem A. Define (. to be the subset of all sequences
{w, (2)}=; of Q, for which, given any & >0, there is an i,(g) such that w, (z) has
all its zeros in |z|<1+¢ for all i =i,(¢). Thus, {(z" - 1)"};-; € Q,_,,,, and we note
from Lemma 5 that , = Q, for all a=<0.

With this notation, we establish
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THEOREM 11. Let {0(2)}2, be in .Qa and {0@(2)}, be in Q,, both
having the same counting set {n;};_,, and let f(z) € A,. If {p¥_(z; )}i=1, i =1, 2. are
the associated interpolants of f of (10.2), then

m {p 1 (z; ) —p21(z; )}=0  V|z|<p?maxtenied) (10.4)

i—>»00

the convergence being uniform and geometric in |z| < Z < p>™(*:%)  Moreover, the
result of (10.4) is best possible.

We remark that since {z" —1};;_, € , and since {z"}>_, € {2_.., then Theorem
11 generalizes Walsh’s Theorem A.

Proof. The sequence {z™};_; is, be deﬁmtlon in O_., and its associated
polynomlal 1nterp01ants of f(z)=)7oaz" in A, are from (10.2), just

P, . o(z;f) =21 a;z’ (cf. (2.4)). Thus, from (10.2),
O (. FY 1 f() [zh0p()—t™ w"”(z)
pfl)l(z’f) IO(Z f)"'27n J (Z—Z)[ Eff)(t) ]dl (105)

for k=1, 2. Thus, for i sufficiently large, and for 1< R <p <pu =|z|, the quantity
in brackets in the integral of (10.5) is bounded above (cf. (10.1)) by

I Bl o)
{Rn |,Y(k)|R }Rn

Since 1 <R <y implies that u™R’> R™u’ for all 0=<j=<n,— 1, the n;-th root of
the above quotient is bounded above by

In,

20 (S [YSIR)
{R™ =y [y IR - R

But as R <p, the above expression, coupled with (10.3) and (10.5), gives us for
p‘1 <7<1 that

lim sup {max [5.1(z; f) = P,y 0(z; f)]: 2] s 7p> <} m =<1, (10.6)

i—>0

for each k=1,2. Thus, with the triangle inequality applied to (10.6), (10.4)
follows.
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Finally, direct computation with the function f(z):=(p—2z)"! with particular
sequences of polynomials {w{’(z)};Z, in .., k=1,2, again shows that the result
of (10.4) is best possible. B

We further note that since {(z" —1)"}>_,€ 2,_,,,, Theorem 11 also generalizes
the case [ =1 of Hermite interpolation in Theorem 3. As an open question, we
can ask if assumptions analogous to that of (10.3) can be formulated to similarly
generalize previous results on Hermite-Birkhoff interpolation, etc.
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