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ABSTRACT

In this paper, the location of the zeros of generalized Bessel polynomials is studied, leading to
many improvements of previous results.

§1. INTRODUCTION

In a paper published in 1949, Krall and Frink [9] studied properties of the so-
called Bessel polynomials (BP), and they defined a generalization which has
become known under the name of generalized Bessel polynomials (GBP).

In his recent monograph, Grosswald [5] has given a systematic treatment of
the GPB, including a chapter on the location of their zeros. Because of the still
growing interest in GBP for their many applications, it is important to study the
location of zeros of GBP even more closely than has been done by Grosswald
[5] or [6].

The aim of this paper is to improve upon previous results concerning the
location of the zeros of GBP, using techniques developed in a series of papers
by Saff and Varga [14-18] for i) studying the zeros of sequences of polynomials
satisfying a three-term recurrence relation, and for ii) studying the zeros and
poles of Padé approximants to the exponential function €. In particular, we
will prove (cf. Theorem 4.5) a conjecture of Grosswald on the stability of GBP,
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and will disprove (cf. Theorem 7.3) a conjecture of Luke on the asymptotic
behavior of the real zero of odd degree GBP.

The outline of this paper is as follows. In Section 2, the definitions and
notations for the GBP (using notations and normalizations appearing in
Grosswald [5]) are given, along with some of their known properties (Theorem
2.2). In Sections 3, 4, and 5, we respectively treat cardioidal regions, infinite
sectors, and annuli and rectangles containing all zeros of GBP. In Section 6, the
results of the previous sections are combined with differential equations techni-
ques, leading to even better bounds for the zeros of ordinary Bessel poly-
nomials. In Section 7, new asymptotic results for the zeros of normalized GBP
are determined, as n— oo, which generalize results of Olver [12] for the special
case a=2.

As a consequence of our results on the location of the zeros of GBP, another
proof is given, in Section 8, for the result of de Bruin [2], concerning conver-
gence of certain sequences of Padé approximants taken from the Padé table for
the confluent hypergeometric function (Fi(1; ¢; z) with ¢#0, -1, —-2,.... In
Section 9, we then present the proofs of our new results.

Finally, because Professor Grosswald’s excellent monograph [5] has both
enlightened us and inspired us, we respectfully dedicate this paper to him.

§ 2. NOTATIONS AND DEFINITIONS

The generalized Bessel polynomials (GBP) will now be defined by an explicit
formula. As usual, N denotes the set of positive integers, R the set of all real
numbers, and C the set of all complex numbers.

DEFINITION 2.1.  The GBP yu(z; a) with ne NU {0}, ae R, is given by

) L n n 3 i k
en s a= I (k)(n+a l)k(z).

In this definition, the Pochhammer notation for ascending factorials is used:

o=1, @r=x(x+1)...x+k—1) for ke N, where xeC,

and it is immediately clear that y.(z; a) is of exact degree n if and only if
ag{—-2n+2, —2n+3,..., —n, —n+1}. The cases where the degree is less than
n will be called degenerate.

On taking a=2 in (2.1), we are led to the ordinary Bessel polynomial, which
will be denoted by

2.2)  yu(@):=yul(z; 2).

Throughout this paper, we assume (in view of the applications), unless other-
wise stated, that n and a satisfy the restrictions

2.3) aeR, n+a-1>0.



Along with the GBP, we will use the reversed polynomials, defined by the
formula

(2.4) Oz a): =2z} @); 0n2):=2"yu(z D).
Finally, we list for future reference some of the known properties of the GBP
and their reversed polynomials (cf. Grosswald [5]):
THEOREM 2.2. The GBP yu(z; a) of degree n satisfies
2.5)  Zyi+(az+2yh—nn+a—1)y.=0,
and

) iy z 1-a/2 2
2.6) yu(z; @)=e £ Wi-@n),(a-1/2)+n —z' ,

where Wi, m(z) denotes the Whittaker function, satisfying the differential
equation

k 1—-4m? ~0
z a2

1
Q7  w+ [——4—+—+

Forae NU{0} and n+a—-2=0,

. @nta=2! [z \" 2
2.8) iz @)= “nia2) <2> Pn,n+a—2<z )

where the polynomial Pn (2) is the Padé numerator of the (n,v)-th Padé
rational approximant for e*, given by

2.9)  Pny(z)= éjo (n+v=)nlz/{(n+v)j{(n-)H}.

The reversed polynomial 8,(z; a) of degree n satisfies
2.10) z07—Q2z+2n-2+a)0,+2n6,=0,

and

Q.11)  Ou(z; @) =2Y2"127"* 2= VW _ (ar2), ((a= 1)/2) + n(22).

§ 3. CARDIOIDAL REGIONS CONTAINING ALL ZEROS OF GBP
The main result of this section is the known result of

THEOREM 3.1. (Saff and Varga [15, Thm. 5.2]). A/ zeros of the GBP
yu(z; a) lie in the cardioidal region

G.1)  Cnay=z=refec: 0<ra A28 =2 )
n+a—1 n+a-—1

Earlier, Doc¢ev [3] had shown that all the zeros of the GBP yx(z; a) lie in the
disk D(#n,a): = {ze C: |z| <2/(n+a—1)}. Since C(n, a) is properly contained in
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D(n, a) except for the point —2/(n+a—1), then Theorem 3.1 gives an improve-
ment over DocCev’s result. Related to Theorem 3.1 is the following result first
proved by Underhill:

THEOREM 3.2 (Underhill [19], Saff and Varga [17, Thm. 2.2]). For any
integers a and n=1 with n+a—2=0, the zeros of the GBP yn(z; a) satisfy:

(3.2)  |z|<2/[u@n+a-2)],

where u==0.278465 is the unique positive root of ye' *#=1.

It can be seen that, for certain rather restricted values of n, a, and z (i.e.,
n=4, a an integer, —n+2<a< —(1-2u)(n-1)/(1-p), z=re’ with 0 suffi-
ciently close to 7), (3.2) can give partial improvements over (3.1). However, if
one considers the collection of all GBP for all n and all a, the cardioidal region
of (3.1) is sharp, in the following sense.

Let ¥denote the set of all zeros of the normalized polynomials

{h(——zz—; a>: neN,aelR, n+a—1>0}.
n+a-1

Then, by Theorem 3.1, ¥is contained in the normalized cardioidal region

U{-1}.

(33 C= {z=rei9€ C:0<r< 1—_005_2}

Our new result (whose proof is given in Section 9) is

THEOREM 3.3. Each boundary point of C of (3.3) is an accumulation point
of the set Yof all zeros of the normalized polynomials

{yn(—i———; a): neN, aeR, n+a—-l>0}.
n+a-—1

§ 4. INFINITE SECTORS CONTAINING ALL ZEROS

In this section, we give sectors with vertex at the origin which contain all
zeros of the GBP. In Theorem 4.5, a conjecture of Grosswald [5] concerning
the stability of the GBP will be settled.

The basic result of this section is the new result of

THEOREM 4.1 (i) For n=2, all zeros of yn(z; a) belong to the sector

4.1)  S(na):=)z=reeC:|0| >cos! — 1 , where —n<f<n!.
2n+a-2
In particular, if n and a satisfy

“.2) ﬁ;’;#"—;—iza (n=2)



for a fixed real number g, 0<ag <o, then all zeros of the polynomial yu(z; a)
belong to the sector

4.3) Sa= {zzre""eC: |6] >cos‘1<i—+%), where —7z<95n}.

(ii) The sector Sg from the first part of the theorem is sharp in the following
sense. Consider any sequence {an}7~1 of real numbers satisfying (4.2) and

dn

4.4 n+a,—2=0, lim =0—1.

n—o N

Then, all zeros of the sequence of polynomials {yn(z; an)}7-1 belong to Ss, and
any smaller infinite sector with vertex at the origin (i.e., an Ss+ ¢ with 0 <¢) fails
to contain all zeros of the polynomials mentioned. In fact, for each € >0 suffi-
ciently small, there are infinitely many zeros of this sequence in Sq\ So +¢.

It is obvious that Theorem 4.1(i) also holds for n=1 if one replaces the
inequality sign in the definition of S(n,a) in (4.1) by ‘‘=’’. Furthermore,
Theorem 4.1 implies immediately a result on stability for the GBP:

COROLLARY 4.2. For n=2, a=0, all zeros of y(z; a) are in the open left
half-plane.

This corollary improves upon the result by Bottema [1], Wimp [21] and re-
establishes the result of Martinez [11], in that they proved stability of the GBP
with n=2 for a=2, for a=1 and for a=0, respectively. "

Further improvements on Corollary 4.2 are given in the following two new
results.

THEOREM 4.3. For n=2, a= —1, all zeros of yn(z; a) are in the open left
half-plane. This result is sharp in the following sense: for a< —1, the poly-
nomial y»(z; a) has at least one zero in the right half-plane.

THEOREM 4.4. For n=4, a= -2, all zeros of yn(z; a) are in the open left
half-plane. This result is sharp in the following sense: y3(z; a) does not have all
its zeros in the open left half-plane for all values of a with a= —2. (In fact, for
a> —1.75 and in the degenerate case a = — 2, the zeros are in the open left half-
plane; for —2<a< —1.75, they are not).

The preceding theorems are in fact special cases of the following, which
proves a conjecture of Grosswald [5; page 162, number 6]:

THEOREM 4.5. For each a€ R, there exists an integer ny = no(a) such that all
zeros of yn(z; a) are in the open left half-plane for n=ng. For a< —2, one can
take no(a) =1+ [23~9), where [+] denotes the greatest integer function.




Knowing the existence of an integer no(a) from Theorem 4.5, we can then
define Ny(a) to be the smallest positive integer no such that {ym(z; a)}s-n, has
all its zeros in the open left-half plane. Numerical evidence, as given in table 1
below, supports the conjecture that Ns(«) is a nonincreasing function of a.

Table 1

a -4.5 -3.5 ~2.5 - 1.5 -0.5 >0

Ny(a) 11 8 4 3 2 1

§ 5. ANNULI AND RECTANGLES CONTAINING ALL ZEROS
Using differential equations techniques, we arrive at the following new result:

THEOREM 5.1. Forn=1, n+a—1>0, all zeros of yn(z; a) lie in the annulus

|z] =

2
5.1 A(n,a).—ize@. nta—t <|z| = n+a——1}'

We remark that the outer radius for the annulus A(n,a) of Theorem 5.1
comes from the result of Docev [3], as well as from the cardioidal region (3.1)
of Theorem 3.1. Our essential contribution in Theorem 5.1 is the lower bound
2/(2n+a— %) of (5.1) for the moduli of the zeros of yn(z; @) (which is of order
n~1for n large). This is a considerable improvement over the known (cf. Gross-
wald [5, p. 82]) lower bound 2/[n(n+a—1)] (which is of order n~2 for n large),
this latter bound having been derived by applying the well-known Enestrom-
Kakeya Theorem [4, 7] to y.(z; a). In this regard, this improvement in the lower
bound of (5.1) can be viewed as giving a partial answer to Problem 5 in Gross-
wald [5, p. 162].

A certain refinement in the proof of the lower bound of (5.1) shows that, for
each £>0, there exists an integer mo(¢) such that the term — 2 may be replaced
by —1+¢ for n=mo(¢). Numerical evidence, however, seems to indicate that
—%in (5.1), may be replaced by — 1 without any further restrictions on n and a,
i.e., n=2and n+a-1>0.

Next, on combining the cardioidal region of (3.1), the sector of (4.1), the
result of Theorem 4.3, and the annulus given in (5.1), we easily deduce the
following:

COROLLARY 5.2. Let zo=E&+in be a zero of yu(z; a) where n=2,
n+a—1>0. Then,

33 -2
G2 Inl< T aranr S¢S




where

~2a/{@n+a-2)(2n+a-%} fora=0,

0 for —1=a<0,
(35.3) &ma)= —2a/Qn+a-2) for —in+i<a< -1,
1/{4(n+a-1)} for —n+l<a<—3%n+4.

§ 6. THE ZEROS OF THE ORDINARY BESSEL POLYNOMIALS
As was pointed out in Section 2, the choice a=2 in the GBP leads to the

ordinary Bessel polynomials

L n n i k
6.1) n(z):= kgo <k>(n + l)k( 5 > .

Putting @ =2 in the results of the previous sections and refining the argument
using differential equations techniques, we arrive at the new result of

THEOREM 6.1. For n=1, the zeros of yn(z) belong to #:=A1UA2UAs,
where

Ap= z=re"f’:]9|z~gf—, ! <r<—1-:~c~c3—s——9—,
3 n+4% n+1

Az:={z=re"":—2312|012cos“<— i>, ! <r< l—cose}

n) ynn+1) n+1
A3:={— 2 }
n+1

For n=2, any zero 20=¢£+ in of yn(2) satisfies

WL 2 =L
4n+1)’ n+l ~ yr3mn+1)

In fig. 1 below, the symmetric region Z is sketched only in the upper-half
plane. '

6.2 Inl=

Cir= 1—cos @
\ n+1
Diy:r=
\ Di 1 n+s
2 1
Diy: r= ————
\ 2 Yn(n+1)
Cr o] \ 1
\ cosQ:i=— —
\ n
Di A .o
1 ~R =73
X :
b= n+1
F’l E2 1
Coi= P
Fig. 1.




To indicate how the results of Theorem 6.1 compare with known results
about zeros of ordinary Bessel polynomials, we first remark that Wragg and
Underhill [22] have given the following upper bound for ¢:

6.3) &<-2/{@n-3)2n-1)}.

A short calculation shows that the related upper bound in (6.2) is an improve-
ment over the above inequality (6.3) for all n=35.
Next, Wragg and Underhill [22] have also given the following upper bound:

6.4) |n| <8/15%0.533 333 (for all n=3),

a bound, independent of n, which was derived using determinantal represen-
tations for Bessel polynomials. The corresponding upper bound in (6.2) is an
improvement over (6.4) in two ways: first, it has a dependence on n which
makes this upper bound strictly decreasing with »n; second, this upper bound in
(6.2) gives that

|| =31/3/160.324 760 (for all n=3),
which is better than that in (6.4).

§ 7. ASYMPTOTIC BEHAVIOR FOR n LARGE

In Olver [12], it was shown that the zeros of the normalized ordinary Bessel
polynomials y«(z/n)=y.{z/n; 2) tend, as n—oo0, to a curve I" in the closed left
half plane, defined by

(7.1) TI'={zeC:|w(z)| =1and Re z<0},
where

T72
Z{l+Y1+z72%}

so that { + i} are the endpoints of I'. The representation (7.2) is derived in Saff
and Varga [18]. Using results of [18], Olver’s result can be both substantially
sharpened for the case a=2, as well as generalized to any real a.

7.2) w(z):=

THEOREM 7.1. For any fixed a€ R, Z is a limit point of zeros of the normal-
ized GBP yn(2z/(2n+a—2); a) as n— iff e I. Moreover, if y is a closed arc
of I'\{ = i} with endpoints u; and p» (with n/2 <arg ui <arg u» <3n/2), where
() =e%, j=1,2, (n/2< ¢pr<¢1<3n/2), let 1.(y) denote the number of zeros
z of yu(z; @) which satisfy arg uy <arg z<arg ua. Then, '

llm T"(y) — ¢1—¢2'

n—oo n 4

7.3)
Further, again using results of [18], it can be shown that the zeros of
yn(2z/(2n+ a—2); a) must, for fixed e=2 and » large, approach the curve I

from the inside, i.e., through points with |w(z)| > 1. More precisely, we have
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THEOREM 7.2. For any fixed a=2, there exists an integer j(a) such that for
each n>j(a), any zero z of the normalized GBP y,(2z/(2n+a—2); a) satisfies
|w(z)| >1 and Re z<0.

To indicate the results of Theorems 7.1 and 7.2 for several different values
of a, we have included in figs. 2-5 the zeros of the normalized GBP
yn(22/@2n+a—2); a) for n=2,3,...,15, in relation to the curve I" of (7.1).

Next, for a any fixed real number and for n any odd positive integer, let ax(a)
denote the unique (negative) real zero of the unnormalized GBP yx(z; a). Then,
we establish the new result of :

THEOREM 7.3. For any fixed ae R,

(7.4) =Q2n+a-2)f+K(F; a)+ ﬁ( ), as n— oo,

2
an(a) 2n+a-2

where F is the unique negative root of

(7.5) — /TP =1 4T+ 72 (F+=—0.662 743 419),

and where

(7.6)  K(F; a):= YT+ + (2;% (f+1/ﬁ_ff)}.

Note that 1/7 is from (7.5) just the real point of the curve I"of (7.1) and (7.2),
and hence, the result of Theorem 7.3 can be regarded (after the appropriate
normalization) as a sharpened special case of Theorem 7.2.

With the approximate value of 7 from (7.5), we can express the result of (7.4)
as

(7.7)

2 =2nFf—1.006 289 950a + 1.349 836 480+ ﬁ(——l——->
an(a) 2n+a—-2

In this regard, it is interesting to remark that, based on the examination of
numerical results, it had been conjectured by Luke {10, p. 194], as well as
Grosswald [5, p. 93], that

(7.8) ~2nf—a+(n+1)/n, a>0, as n— oo,

An

Now, the dominant term, i.e., 2n7, in both (7.7) and (7.8) comes (cf. Theorem
7.1) directly from the known real point 1/7 of the curve I'. Thus, the essence of
the conjecture (7.8) concerns the accuracy of the next two constant terms of
(7.8), as they compare with the corresponding two terms of (7.7). Of course, as
(m+1)/m=1.318 309 886, neither of these terms of (7.8) is correct, but these
conjectured constants nonetheless had a maximum relative error of only 2%.
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Next, on deleting the term #(1/(2n+a-2)) in (7.7) and denoting the re-
sulting approximate value of ax(@) by @«(a), i.e.,
-2
{1.325 486 838n+ 1.006 289 950a — 1.349 836 480} °

then é@x(a) is a surprisingly accurate approximation of an(a), even for very small
values of n, as table 2 below, for the special case @ =2, shows.

(7.9) @n(a) =

Table 2

n an(2) @n(2)

1 -~ 1.000 000 000 —1.005 919 708
3 —0.430 628 846 —0.431 108 446
5 —0.274 217 626 -0.274 341 739
7 —0.201 134 930 —0.201 183 942
9 -0.158 805 297 —0.158 829 428
11 -0.131 193 311 —-0.131 206 918
13 —0.111 760 443 —-0.111 768 857
15 —0.097 341 509 —0.097 347 068

From (7.4), we obtain the representation

(7.10) Q2n+a-2)an(a) _ iﬂ _ K(7; a) + (

2 F 2@2n+a-2) Q2n+a-2)*
the left-hand side being the real zero of the normalized GBP y.(2z/
(2n+a—2); a). Noting that K(7; a) is linear in a, let a* be the unique value of a
such that K(#; a*)=0. Then, we see from (7.10) that this choice @ = a* produces
a second-order correct approximation to 1/7=—1.508 879 562. From (7.6), we
find that

>, asn—roo,

(7.11)  a*=0.070 877 276,
and in table 3, we give values of

@2n+a* -2)an(a*)

(7.12)  Bui= 5

Note that the last column of table 3 indicates the #(1/(Q2n+ a* —2)?) conver-
gence of f,to 1/7, as n— o, Note moreover from fig. 4 that this choice of a = a*

Table 3

n Bn @n+a*—-2)AB,—1/7)
3 —1.508 922 977 —0.719+10-3

5 ~1.508 911 191 —2.060¢10-3

7 —1.508 896 790 —2.510-103

9 —1.508 890 144 —2.733.10-3

11 —1.508 886 676 —2.866.10-3
13 —1.508 884 660 —2.954.10-3
15 —1.508 883 390 —3.01710-3
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is such that not only the real zeros, but all the zeros of the normalized GBP
yn(22/(2n +a* — 2); a*) are amazingly close to the curve I'.

Finally, on the basis of further computations, it appears that a considerable
improvement over Theorem 7.2 is possible. With the notation

A;={z=iy:—1=<y=<1},
so that 'U A is a closed curve in C, we make the following two conjectures.
CONJECTURE 1. There exists a real number @=% such that for all nz1 and

all a=a4, every zero of the normalized GBP y.(2z/(2n+a—?2); a) lies inside
ruA.

CONJECTURE 2. For all n=2 and for all a<a* (cf. (7.11)) so that
n+a—1>1, every zero of the normalized GBP y.(2z/(2n+a-2); a) lies
outside F'UA.

In this regard, figs. 2-5 give some indication of the validity of these con-
jectures.

Fig. 2. Zeros of Normalized GBP; a=4. Fig. 3. Zeros of Normalized GBP; a=2.

Zeros of Normalized GBP y,(z; a) for n=2,3,...,15.
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Fig. 4. Zeros of Normalized GBP; a=0.070 877 276. Fig. 5. Zeros of Normalized GBP; a= ~0.5.

Zeros of Normalized GBP y,(z; @) for n=2,3,...,15.

§8. AN APPLICATION TO THE PADE TABLE FOR (F(1; c; z)

We will show that the preceding results can be used to give an alternate proof
for the convergence properties of the Padé table for the confluent hypergeo-
metric function

8.1) Fi(l;¢z2):= ¥ /(o c#0, -1, -2, ...,
k=0

as given in de Bruin [2].
For any ordered pair (v,n) of nonnegative integers, the (v, n)-th Padé
approximant 7y, »(2) = pv,«(2)/qv,n(z) of 1F1(1; c; z) is defined by the conditions

[ degree py, n(z) < v; degree gy, x(z) <n;
gv {2 F1(1; ¢; 2) —pun(z) = 0(|z|" 1)), as z—0.

The doubly infinite array {7y, »(z)}=0, 7=o is called the Padé table (cf. Perron
[13)) for 1Fi(1; c; 2).

For v=n -1 and the normalization g,,»(0) = 1, one easily derives (cf. de Bruin
[2]) that

) ) (=2) 2
B.2) gunz)=1Fi(—n; —c—n—-v+1; —z)= yo|l ——;v—-n+l+c),
(V+On z

which, from Theorem 5.1, immediately implies

12



THEOREM 8.1. Forany v and n with v=n—1and v+ c>0, the zeros of the
Padé denominator q,,n(z) for 1F\(1; ¢; 2) satisfy

8.3) v+ce=s |zl <v+c+n+i.

The fact that 1F1(1; c; z), withc#0, — 1, —2, ..., is an entire function, and the
fact that the poles of its Padé approximants r, (z) tend to infinity as v— oo,
together imply, by a simple application of the Hermite formula (cf. Karlsson
and Saff [8]), the result of

COROLLARY 8.2. Let {ry,n(2)}j=1 be any sequence of Padé approximants
for \Fi(1; ¢c; 2) (c#0, —1,...), satisfying

8.4 vi=n;—1 for all j large, and lim vj= + oo,

i

Then,
8.5) lim ry;n(2) =1F1(1; ¢; 2),
J—o

uniformly on compact subsets of C.

(To be continued)
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§ 9. PROOFS OF NEW RESULTS

Because it is fundamental in deriving Theorem 3.1 of this paper, we state for
completeness the following result of Saff and Varga [15]. (Note that y.(z; a) of
this present article (cf. (2.1)) corresponds to Y¥~?(—z) of [15].)

THEOREM 9.1. Let {pi(z)}i-o be a sequence of polynomials of respective
degrees k which satisfy the three-term recurrence relation

z

O  pdr)= (—z— +1>Pk—1(2)— Zpiaz) (k=1,2,...n),

bk Ck
where the bi’s and ci’s are positive real numbers for all k, 1 <k <n, and where
p-1(2): =0, po(z): =po#0. Set
(9.2) = min {b(1 —bx—1cy "): k=1,2,...,n}, bo:=0.
Then, if a>0, the parabolic region
9.3) Py ={z=x+iyeC: y»<da(x+a),x> —a}

contains no zeros of pi(z), P2z), ..., Pn(2).

To give the reader more insight in the connection between the GBP and
Theorem 9.1, it first can be verified from the definition of 8,(z; a) in (2.4) that,
for n+a—1>0, the sequence
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I'n+a-1) xa [ 2. _ n
©-4) {F(n+a—1+k) 20"(2’"” k)}k:l

satisfies the recurrence relation (9.1) with

br=n+a-2+k, k=12,...,n;c1=1,

_ (n+a-2+k)n+a-3+k)
- k-1 ’
Thus, it follows in this case from (9.2) that a=n+a—1>0, so that the poly-
nomials in (9.4) have no zeros in % +q-1. With the transformation z—2/z, we
see from (2.4) that all zeros of the GBP yn(z; ) lie inside the cardioidal region
(3.1), as proved in [15].

Before proceeding to the proofs of our new results, we first establish a slight
generalization of a lemma in [14].

k=273,...,n.

Ck

LEMMA 9.2 Let the sequence {pi(2)}x-o be as in Theorem 9.1 with po=1,
and let the real numbers Ao: =1, A1, A2, ..., An Satisfy

9.5 O<h<lfork=12..,n-1;0<i,<1.
Then, p.(z) is different from zero at any point z which satisfies the n inequa-
lities

=12,...,H

R _1—bg- by -
9.6) 2+ ez {bk(2Ck/1k 1—bx z)z bibi -1

|z] 2¢kAk—1(1 = Ak) 2ckAk—1(1 = A)

PROOF. This follows by imitating the argument in the proof of Lemma 3.1
of [14] which uses special values of by, ck (viz., those for certain Padé approxi-
mants to €°). In the proof, one needs the fact that pa(z) and pr-1(z) have no
zeros in common, which follows, on assuming the contrary, from using the
recurrence relation backwards to establish the contradiction that po(z) =0. O

We now apply Lemma 9.2 to the polynomials given in (9.4) to reach the inter-
mediate results of

COROLLARY 9.3. The polynomial 6,.(z/2; a) has, for n+a—1>0, no non-
real zeros in

(9.7  9:=lz=re?eC: r>22n+a-2)— 2nta-1)7
1—cos @

PROOF. Putting Ax:=(1 +cos 6)/2 for k=1,2,...,n, then the inequalities
(9.6) show that any non-real point z=ree C satisfying (9.7) is not a zero of
0,(z/2; @). O

With the preceding result, we then come to the
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PROOF OF THEOREM 4.1(i). As the sector S(n,a) of (4.1) is invariant under
the transformation z—2/z, it suffices to prove the assertion for the polynomial
04(z/2; a), instead of for the polynomial y.(z; a). First, consider the following
set of points

Gi=lz=rePeC: r>2n+a-2,0<|0| <cos~! — =2 )\l
2n+a-2
One easily verifies from (9.7) that Gi1 C 2, which establishes that 6,(z/2; a) is
zero-free in G,. From (9.4) and Theorem 9.1, it follows that 8.(z/2; a) is also
zero-free in % 44-1. Rewriting %, ,-1, we obtain that

Prra-1DGr=z=refeC: r<2n+a-2,0< 6| <cos! —=2 L
2n+a-2

Combining these results, we see that 8,(z/2; a) is zero-free in G1UG,, or,
equivalently, all zeros of 8,(z/2; a) lie in C\(G1U G2) =8(n, a).

The second assertion of Theorem 4.1(i) follows from the fact that (4.2)
implies (1-g)/(1+0)=(—a)/2n+a-2), and hence, S(n,a)CS,; for those
values of n and g which satisfy (4.2), as wellas n+a—1>0and n=2. []

The proof of the sharpness result in Theorem 4. 1(ii), along with the proof of
Theorem 3.3, will be given after the other theorems of Section 4 have been
established. Now, we give the

PROOF OF THEOREM 4.3. As the open left half-plane is itself a sector,
namely the sector S; from (4.3), we shall prove the result for 6,(z/2; a), since,
after the transformation z—2/z, this will imply the assertion for y.(z; a).

As in [14, p. 9], we apply Lemma 9.2 to the polynomials of (9.4). For the
choice Ak =14, k=1,2,...,n—1, A, =0, the inequalities (9.6) imply that, for n=3,
the polynomial 8,(z/2; a) is zero-free on

Bi:={zeC: Re z=0, |z|>2(n—-2)}.

Again invoking the result of Theorem 9.1, we also find that 8.(z/2; a) is zero-
free on

By:={zeC: Re z=0, |z| <2(n+a-1)}.

Thus, for a= ~1, we find that all the zeros of 6.(z/2; a) belong to
C\(B1UBy)=851. ‘

For n=2, one directly verifies that y»(z; a) has all its zeros in the open left
half-plane iff a= — 1. (It should be remarked that the case = — 1 is degenerate,
with y2(z; —1)=1.) For a< — 1, one similarly verifies that y»(z; a) has a zero in
the right half-plane. [J

By yet another choice for the Ax’s in Lemma 9.2 and by treating particular
cases by the Wall criterion for stability, we can give the
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PROOF OF THEOREM 4.4. For n=7, a= -2, we use a method of proof,
similar to that of {14, p. 10], by choosing, in Lemma 9.2,

n—1
3n-5

A.k= H An=0.

o

Jk=1,2,..,n-2; An-1=

This time, Lemma 9.2 implies that the 8,(z/2; a) are zero-free in the closed right
half-plane, outside a disk with radius 2(n—3). Using ¢= -2 in combination
with the zero-free parabolic region, we find that 6.(z/2; a) is zero-free in the
closed right half-plane for n=7. Next, for n=6, we use the following values of
A¢ in Lemma 9.2:

M=ha=% A3=% =2, As= 5, 46=0,

127

oo

and the proof proceeds as above, with the radius of the disk from (9.6) now
being 6.

The remaining cases, n =3, 4, and 5, then follow, together with the sharpness
result, by applying the Wall criterion [20] and checking degenerate cases sepa-
rately. [

PROOF OF THEOREM 4.5. To prove the Grosswald conjecture [5, p. 162,
number 6], concerning the stability of the y.(z; @) for arbitrary (but fixed) a and
sufficiently large n, it suffices, in view of Theorem 4.4, to restrict ourselves to
the case a< — 2.

This time, Lemma 9.2 will be applied using

9.8) In-j=@ -1/ 1-1),j=01,..,n—1.
With the well-known inequalities
2n+2%p 2"tS=p2foralln=1,2,...,

one can easily show that the coefficient of Re z/|z| in (9.6) is nonnegative for
n=2-%and k=1,2,...,n. Lemma 9.2 then leads to a zero-free region in the
closed right half-plane, outside the disk of radius R given by

R:=max {m k=2, ...,n}.
Inserting the values of A« from (9.8), we find that
R=max {2-2"7"Yn-j-1):j=0,1,..,n-2}.
Now, for n=32, it is easy to show that the maximum of the function
f)y=2-27""NHn-x-1)

on [0, n—2] occurs at a point £ with n—2>%>log; n—3, and, furthermore,
that f(£) <2(n— £ —1). Hence, 0,(2/2; a) is zero-freein {ze C: |z| 22(n—X— 1),
Re z=>0}. Combining this result with the zero-free parabolic region, one finds
that all the zeros of 6n(z/2; a) lie in the open left half-plane if logon+a—3=0,
from which the bound no(a), given in Theorem 4.5, follows. [
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We now return to the sharpness results that have been left unproven up to
now.

PROOF OF THEOREMS 3.3 AND 4.1(ii). The proof follows by imitating the
argument given in Saff and Varga [16] for establishing Theorems 2.2 and 2.3 of
[16]. It depends heavily upon the existence of zeros of a certain form for yx(z; a)
which can be proved by adapting the proof of Theorem 2.1 from [16] by re-
placing the parameter v; appearing there by n + a, — 2. Specifically, let {an}7=1
be a sequence of real numbers satisfying

n+an—220(neN), lim -2 =g—1 (e (0, o).

n—o

Then, yn(z; ax) has zeros of the form

ZZ—:LIT exp [ii cos™! <—2——2:——a"—1>} + 0(Rn+ap,—1)"3) as n—oo.
n-+dn— n+an—

The proof then continues as in [16]. [

For the proof of the main result of Section 5, we can again refer to a
technique developed for the study of the zeros of Padé approximants to the
exponential function e*.

PROOF OF THEOREM 5.1.  As previously stated in Section 5, the upper bound
of (5.1) is a known result. To establish the lower bound of (5.1), it suffices to
imitate the method of proof in [17, Theorems 2.1 and 2.2}, using now the poly-
nomials I(n+a—1)2"0,(z/2; a)/I'2n+a—1). To this end, one has to replace
the parameter v in [17] by n+a—2. [

PROOF OF THEOREM 6.1. ‘Apart from the upper bound for ¢ in (6.2), the
only part of this theorem that does not follow from the preceding sections on
taking @ =2, is the lower bound for the modulus of the zeros appearing in the
set A,, defined by

2 —
9.9 Az:={z=re“’:—3—n2|0]zcos“l(— —1—>, ! re cos@}.

n ya(n+1) n+1

To establish this lower bound, we recall from (2.6) of Theorem 2.2 that

2
(@) =yn(z; 2)= el/zWO,n-»%(;),

which leads to the fact that the function

2
Wn(Z)Z =" (z/z)yn (“_)
b4
satisfies the differential equation

d*w(z) 1 nan+1)
G e
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Using a path of integration wholly within C\ {0}, one can easily show that
any solution of this differential equation satisfies

2¢1  n(n+1) dw _ |2 2| dw |*—
9.10 2 wz)|dz=—w]| - |—] dz.
©.10) 51{4 2 }l @[dz=-% |

Now, let 7= g€, with /2 < ¢ <, be any zero of wx(z) and consider the path
of integration given by the half-line

7-(1+e %), 0<x<oo,

which is the same path of integration as employed in [17, Theorem 2.2].

Because of the restriction on ¢, it is easy to prove that the integrals in (9.10)

converge. Also, since (dw/dz)w |¥ =0, we find that
n(n+1)

« 2_,' _1_ oy 2 =__,°° _d.ij?._
9.11) %re w{4+————-—-—~KLW(x)ldx %I ax

- dx
X1+ e~ #/2%x)? ’

where Ww(x) is given by
W(x): = wal(t(l +e7%%x)), 0<x< oo,

Taking imaginary parts in (9.11), we deduce, using A:=n(n+1), that

=(0* 9 x+cos (¢/2) 2
©-12 %i% €2 T T+ axcos (¢/2)+1)2} |PEOdx=0.

As the limit as x—o of the expression in braces in (9.12) is positive
(n/2< @ <n), the minimum of this function on the real axis must be negative.
Making the restriction 27/3 = ¢ >n/2, this leads to the fact that the integrand
must be negative for x=0, i.e.,

—Qi cos 2 - COs 2 <0,
41 2 2

or, equivalently
Q<21/71.
This shows that the zeros of yx(z) with 2n/3= | 8| > n/2 must satisfy
2
—— <2)4,
2]

which gives the desired lower bound for 7 in (9.9).

To complete the proof of Theorem 6.1, it remains to establish the upper
bound for ¢ in (6.2). However, this upper bound for ¢'is a simple consequence
of the first part of this theorem when n=3. For the remaining case n =2, this
upper bound follows by direct computation. [J

Finally, we sketch the proofs of the theorems in Section 7.

19




PROOF OF THEOREM 7.1. First, one can directly verify from (2.1) and (2.4)
that the following integral representation is valid:

9.13)  TUi+a—1)2"0u(z/2; @)= | e~ (t+2)""*9-2dt, (n+a—1>0),
(4]

the path of integration being the nonnegative real axis. Similarly, it is known
(cf. [18, eq. (4.7)]) that the Padé numerator Py, () of the (n, v)-th Padé rational
approximation to e® of (2.9), has the integral representation

9.14) (n+w)! Puu(z)= ojc e (t+z)'tdt.
0

Because of this, the asymptotic methods of [18], based on steepest descent
methods applied to the integral of (9.14), can be analogously applied to the
integral representation of (9.13) for any fixed real a. More precisely, with

9.15) vii=n+a-2,
then

lim v,/n=1 for any fixed real a.

n—oo

Thus, we deduce, as similarly in the special case o =1 of [18, Theorem 2.2], that
Z is a limit point of the zeros of the normalized polynomials

0.(2n+a—-2)z/2; a)
iff
ze]/l+22
1+y1 +z2

For any fixed real a, it then follows, by means of the inversion z—1/zthatzisa
limit point of zeros of the normalized GPB y.(2z/(2n +a —2); a) iff ze I', where
I is defined in (7.1) and (7.2). This establishes the first part of Theorem 7.1.
The second part of Theorem 7.1 similarly follows as in the special case g =1 of
[18, Theorem 2.3]. [

2€D1:={ZECZ =1, |z] =1, and Rest}.

PROOF OF THEOREM 7.2. To establish Theorem 7.2, we again apply the
asymptotic results of [18], and, for convenience, we use the same notations and
definitions as in [18]. We further set

9.16) Ap= AT

for any 0st<oo.
+7

As shown in [18, eq. (4.2)], for any 7 with 0 <7< oo,

9.17) ﬁ"—((f))— =2:z): =T+ 22 =24, for all ze C\ %,
wi<
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from which, after some calculations, it follows that for any fixed z with
0< ]zl <1,

d 2 Z— /11
9.18) — In|w(z)|= ——=In|{+}1+ 2| where (1= ——=.
Setting ¢={+)/1+ (2, so that {=4(—(1/1)), it can be verified that any { with
Re (<0 has its image in the z-plane in the open unit disk. Consequently, from
(9.18),

9.19) —;i In | w«(z)| <O for any fixed z with 0< |z| <1, and Re z< Ar.
T

This can be applied as follows. If
(9.20) Di:={zeC:|wAz)| =1, |z| <1, and Rez=A:}, 0=7< 00,

it is known from [18] that D- is a Jordan arc which lies interior to the unit disk,
except for the points z; : = exp { £ i cos~! A;}. Thus, (9.19) establishes that D
lies ““strictly to the left’” of D, for any 0=<7<7'<0o, as indicated in fig. 6
below.

+ +
z , 2z
T T
N
-~ l \\\
N\
Y ' N
/ | \
/ | \
/ | \
{ | \
l 04 ?1
\D, | b
\Por | /
\ | /
\ } /
AN I /
’
| -
s ¥ + v’
-
z , z
T T
Fig. 6. T'>1>1.

Using the notation of [18], define

5 w7 @) )‘/2
9.21 NZ):=\—7F""" s
G20 Ndz) <h;'<t: @)

which is analytic and single-valued on C\(%£:U{0}) for 0=7<oo.
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It can be verified from (9.21) and the definitions of [18] that

1= 22

(9.22) Ndz)= » Vze C\(#:U{0}),

and that

923 N 1
N«(z) g2:(2)

, ¥2e C\(%U{0}).

Because (cf. [18], eq. (4.1)) Re g(z)>0 on C\ %, it follows from (9.23) that
|N{z)] is strictly decreasing, for any fixed 6, on the ray {z=re?: 0<r<o} in
C\(#:U{0}). Furthermore, as Im g.(z) <0 along the (open) arc of the unit
circle from z=z; to z= —1, it also follows from (9.23) that | Nx(z)| is strictly
increasing along this arc. (Similarly, |Ny(z)| is strictly decreasing along the arc
of the unit circle from z=—1 to z=z,.) These observations will be useful
below.

Considering now any zero zx,, of 6,((2n+a-2)z/2; a), we must show that,
for all n sufficiently large, zx » lies to the left of D; of (9.20). Since D) is a
Jordan arc in |z| <1, we may assume, without loss of generality, that |2k <1.
Next, from [18, eq. (4.30)],

. 1
(9-24) lwo(n)(Zk,n) VHV": INa(n)(Zk,n)’ {1 + 0( >}, as n—roo,
n+vu

where (cf. (9.15))

(9.25) a(n):=va/n=(n+a-2)/n, for all n sufficiently large,

and where the term ¢(1/(n+ vy)) in (9.24) holds uniformly on any compact
subset of C\(% U {0}). On the other hand, it follows from Theorem 4.1 that
this zero zx, . satisfies |Arg zi,n| >cos™! (—a/(2n+a—2)). Thus, it follows
from previous observations from (9.23) that, with g,: =cos™! (—a/Qn+a—2))
and pn: = exp (i),

(9.26) min {|Noemy(z)|:|z] =1 and |Arg 2| = an} = | Nom(un) | .

Furthermore, direct calculations with the right side of (9.26), using (9.22), show
that there exists a positive constant ¢ such that

!go'(n)(/ln)+ 1 —AU(”)OU”I >1+ __C__, as n— oo,

©-27)  |Nomun)| = -z, Vn

Thus, (9.26) and (9.27) together imply, with (9.24), that there exists a constant
¢’>0 such that

’
s
n n

(9.28) ;w,,(,,)(zk,,,);"+Vnz<1 + 7%—) {1 + ﬁ(-—l—)} >1+ ——, as n—oo,
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so that zx » must lie strictly to the left of Do), for n sufficiently large. But, as
(cf. (9.25))
n+a-2 a-—-2

o= —— =1+ X
n n

then o(n) strictly decreases to unity as n—oo, for any fixed a=2. Hence, from
our previous discussion, each zero zx» of 6.((2n+a—2)z/2; a) must lie, for
each n sufficiently large, to the left of Dy. Performing the inversion z—1/z, this
implies that each zero z of yx(2z/(2n+a—2); a) for n sufficiently large, must
satisfy (cf. (7.1) and (7.2))

|w(z)| >1 and Re <0,

which establishes Theorem 7.2. [J

PROOF OF THEOREM 7.3. For n a positive odd integer, let z.(a) denote the
negative real zero of 6,((2n+a—2)z/2; a) so that (cf. (9.24))

- 1
(929) l Wa(n)(Zn(a)) ! n+vy lNo(n)(Zn(a)) ! {l + ﬁ( )] ,as n—> 0o,
n+vp
where v, and o(n) are given respectively by (9.15) and (9.25). Then, let Zx(a) be
defined as the unique negative real number such that

(9.30) [ Worn(Zn(@)|" 7= | Nom(Zn(@)) |,

for each n=1. That Z,(a) is uniquely defined for each n=1 follows from the
fact that !N,(z)l is, from (9.23), strictly decreasing on the ray {z=-r,
0<r<o}, while |wi(z)| is, from (9.17), strictly increasing (from zero to
infinity) on this same ray. Next, by means of Taylor series expansions and
identities involving wo(m)(z) and Ny(m)(z) (Which we omit for reasons of brevity),
it can be verified that

5 1
9.31)  zn(a) =Zn(a) + ﬁ< o) >, as n—oo,

Thus, if we can express Zn(@) as

©932) H@=F+ 2D ) as n— oo,

(n+vn) ( (n+vn)?

where 7 is defined in (7.5) and y1(a) is independent of n, then a consequence of
(9.31) is that

n@ <
(n + Vn) (n + Vn)z

To establish (9.32), we have from (9.30) that

(9.33) zl@)=F+ >, as n— oo,

9.34) | Wom(@n(@)| = | Nam(Zn(@) |72
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Assuming the form (9.32), it follows from (9.17) that

Lo 11(@)gotn(F) 1 )} R
(9.35)  wom(Zn(a)) = wo(n)(r){l + Y + (0’( /S as n—oo,

Now, from (9.18), it can be verified that

(@=2)|wi(A)|- In F+Y1+7?) +ﬁ<—-—l—~> as n— o
2 ) )

2n n

But as |wi(#)| =1 from [18, eq. (4.40)], the above reduces to
9.36) | won(F)| =14 GZDIMETYIHF) ﬁ(%), n—oo.

[Wom)(F)| = | wi(F)| +

2n n

Similarly, using the definition of g«(z) in (9.17), it can be shown that

0.37) 1+ 21(@)go)(F) +ﬁ< 1 >=1+ n@yL+7 1A+f + ﬁ(——l—>, n—oo,

(n+vn)f (n+ vn)? 2nf n?

Thus, combining (9.35)-(9.37) yields

[ Won)(Zn(@)) | = ‘1+ % {(a_.z) In (F+ YT+ 7
(9.38) _
+ JM;@} + (ﬁ(-{-) }

n

Next, using (9.23), it can be verified that

(9.39) [ Nomy(Zn(@)) |/ +vw =1+ -@ + {ﬁ<—nl?>, as n—oo,
Thus, on combining (9.38) and (9.39) in (9.34), we deduce that
(9.40) y@=* {m*"(zf]/ﬁ_l;lz(”m)},

Now, as n+vs=2n+a-2, it follows that the negative real zero of
On((2n+a—2)z/2; a), for n odd, is given by

., y1(@) ( 1 )
9.41 zn(@)=F+ +0 , @S n— 0o,
@41 (@ Qn+a-2) Qn+a-2)? *
Recalling (2.4), then (9.41) implies that the negative real zero an(a) of the non-
normalized GBP yx(z; a), for n odd, satisfies the desired result (7.4) of Theorem
7.3. O
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