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1. INTRODUCTION

In [2], results in ways similar to the classical Stein-Rosenberg
Theorem (cf. (1], [4], and [5]) have been obtained for arbitrary
splittings, and without the usual positivity assumptions. The main
purpose of this note is to extend the results of [2] by obtaining paths

of optimal relaxation, for small complex relaxation factors w = reie, for

the extrapolated Jacobi iterative method (JOR) and for the successive
overrelaxation iterative method (SOR).

By way of notation, let " denote the collection of all n X n
complex matrices B = [bi,j]' If B € ¢"*", its spectrum, 0 (B), is defined
as usual by

o(B):= {A: detA\I - B) = 0],
and its spectral radius, p(B), is defined as

P(B):= max{|A]: X € o(B)}.
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To review the relevant parts of fZ], suppose that A € cn.n admits
the splitting

A=D-1L-U. (1.1)
Here, it i{s assumed only that D {s nonsingular, with D, L, and U in ¢

satisfying (1.1). Associated with this splitting are the extrapolated

Jacobi matrix, J,» defined by
-1
J,i= 1 -wD A, (1.2)

and the successive overrelaxation matrix, .(m, defined by

£ = (D - wL)'l[(l-w)D+wu}. (1.3)
Note that J“J 18 defined for all complex numbers w, while 'Cw is defined for

all complex w for which D - wL is nonsingular. We further define

Qpi= {w € €: p@ ) <1}, (1.4)

Q= {w €€ peg) < 1], (1.5)
and

K(D-IA):- closed convex hull of O(D-IA). (1.6)

We next state some of the conclusions of (2, Thms. 3.1 and 34]

Theorem A. For the splitting of A in (1.1), assume that D is nonsingular.

Then,
-1
ﬂJno.c#a iff 0 € K(D "A). .7

Moreover, if O ¢ K(D-IA), then there exist a real § and an ry> 0 for

which

-

ie
2 - .
QJﬂO.C {w = re™: for all 0<r<r0]. (1.8)
Note that the results of (1.7) and (1.8) give the simultaneous
convergence of Jw and -q» (1.e., p(Jw) < 1 and p("’(u) < 1) for all w = re1é

with 0 < r < o which {8 reminiscent of the well-known Stein-Rosenberg

Theorem [4].
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2. OPTIMAL PATHS OF RELAXATION FOR .!‘n

Assuming 0 € K(D-lA), we see from (1.8) that

min PJ g) <1, and min PG g) <1, 2.1)
0<6=<2n Te o<e@<amn re

for each r > 0 sufficiently small. The first goal of thie section is
1) to show that there exists a unique a(r). for each r sufficiently small,

such that

pQ ) = min pQ ) (2.2)
1':4:1‘6 () 0<e<2m reie

and {i) to explicitly determine B(r) asymptotically, as r - 0, solely

from the geometrical description of K(D_lA). To our knowledge, the

existence of such an optimal path of relaxation and its geometrical
description has not been discussed in this generality in the literature.
Since 0 € K(D"1A), then
T:= minf{|E] : € € K(D-IA)] > 0, (2.3)
and there exists a unique point z € bK(D-lA) for which z = ‘re“ (where

BK(D-IA) denotes the boundary of K(D-IA)). Two cases arise:

Case 1. The circle‘ Izl = T intersects aK(D-lA) in a vertex of K(D-IA).
which implies that ‘rei* is an eigenvalue of D'IA, and that all other
eigenvalues § of D-IA satisfy

min(Re €Y : £ € o0 IAN(Tel¥}] > 7, (2.4)

as pictured in Figure 1 below.

Case 2. The circle [zl = T intersects aK(D~1A) in a point of a line
segment of BK(D-IA) which {8 perpendicular to the ray {z-re“: r 2 0},
as shown in Figure 2 below. 1In this case, {f we set

E:= (£ € 0(DA) : Re £e ¥ = 7], 2.5)

then E contains at least two eigenvalues of D—IA. Moreover, we set



Errata for '"Theorems of Stein-Rosenberg Type II. Optimal Paths of Relaxation
in the Complex Plane" by J. J. Buoni and R. S. Varga

P. 234. 1In "Figure 1: Case 1", read "Figure 1: Case 2'";
in "Figure 2: Case 2", read "Figure 2: Case 1"

line -2, read "(cf. (2.7))" for "(cf. (2.6))".

line -2, read "(ct. (2.7))" for "(cf. (2.6))".
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€ E}; Hy:= min{la ge 1V, € € g}, (2.6)

and it is evident {n this case that oy 20, Hy S 0, with 'ul'-+[u2[>'0,

ind that §j:“ (r + 1u1)0i*

are in c(D-lA) for § = 1, 2.

i
Next, it is convenient to define E:= {re ‘] for Case 1, 80 that

“y ot My = 0 for Case 1. 1Inp either case, we further set

é(r);t -t+arcsln(-r¢ﬁ

+1,)/2) for all o<r<2/(|u1]+]u2[), 2.7)

where - g < §(r) + ¥ < g. and where the upper bound on r ig infinite if

l“ll N l“z’ = 0.

Figure 1: Case 1.
With these definitions

Theorem 2.1, Assume that A

0 ¢ K(D‘IA), and that Teiw

Y .

Figu}e 2: Case 2.
» We establisgh

“D-L -Uwich p nonsingular, that

is the point of K(D-IA) closest to the origin.

Then, there exists a positive constant m such that, on each circle hul- r

with 0 < r < m, there is a unique b(r), given by (2.7), for which

P = ) =  min
reie(r) 0<8<2n

Moreover, (cf. (2.6)),

6(r) = VT @y, ) /2 -r

O(Jreie) < 1. (2.8)

3m1+u2)3/48+0’(r5), as r - 0, 2.9)
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8o that

lHm B(r) = -y, (2.10)
r-0

and
2

3
PO 150y " UrT - Tl + L0 D) +06Y), ws r 0. @11y
re

Remark. Note that (2.10) gives us that the uniquely defined optimal path
of relaxation, for J“J with ,wl small, is tangential to the ray

{re-“ :r > 0}, as lwl - 0.

Proof. Because of rotations, there i1s no loss of generality in assuming
in the proof that ¥ =0. On considering Case 1 with V =0, then T 18 an
elgenvalue of D—IA, and

Il-reierlz = 1-2r 7 cos 8+ r2r%> (1-r1)? for all 0<6<2m. (2.12)

On defining m = 2/M1 where

2
Myi= max(Re &+ 7+ AREL e € o (p N (),

2
it can be verified that {f 0 < r < m, then (1 - r7)2 P ll - r§| for all

§ €od'A). Thus, wich (2.12), 0@ () > 1 - r7 for all 0< 6 < 21 and
re

for all 0 < r < m s, while p(Jr) =1 - rr. Thus, 5(7:) = 0 18 the unique
value of § for which (2.2) holds, for all 0 < r < my, under our
normalization y = Q. Further, as a result of our convention that

My -u2 = 0 for Case 1, 5(:‘), as defined in (2.7), is zero, and

(2.9)-(2.11) follow immediately.

Assuming Case 2 with ¥ = 0, 1t can be verified from the definitiong
of (2.5) and (2.7) that

max”l—reiegl :LEE)> ]1-reté(r)§1| = [l-rei‘é(r)

gzl (2.13)
for all 8 ¢ a(r) (mod 2Tm), and that there exists an m, > 0 such that
|1-re1§(‘)gl] S LR Y P GO P RPN £ €om aNE, @)

for all 0 < r < m,. From the above two {nequalitties, (2.8) follows.

Then, from- 2.7y, (2.9)-(2.11) tollow by direct calculation. [ ]
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If we assume that D-IA is a real matrix with 0 ¢ x(n'lA), then, from
the fact that the nonreal eigenvalues of D-IA necessarily occur in
conjugate complex pairs, it is evident that either §y = 0 or ¥ =mn, and
that (cf. (2.6)) My +u2 = 0, Consequently, from Q.7), a(r) = (0 or
8(r) = +nfor all £ > 0, and we immediately have from Theorem 2.1 the

result of

Corollary 2.2. Assume that A=0D-L-Uwith D nonsingular, and that

D-IA is a real matrix. If Re £ > 0 for all € € G(D-IA), then

min p(J ) = pJ) (2.15)
0<8=<2nm reie r

for all r > 0, while if Re € <0 for all € € O(D-IA), then
min pQ 16) = p(J_r) (2.16)
0<é<an re

for all r> 0. 1In efther case,

2 2 2,1/2
min Q@ @) - (A -+ rull /2
0<6<2y re

2.17)
I%Jf r3an A
1 - 7T + 5 + — +'C>Zt ), as r - 0.

3. OPTIMAL PATHS OF RELAXATION FOR "’lu

We next obtain an analogue of Theorem 2.1 for the matrix db when lw[
is small. On defining

Q):= D‘IAwn’lL(I-wo'lL)'ln'lA, for all |w| small, (3.1)
we see from (3.1) that

4, = 1-wQ@), for all |w| small. (3.2)
Next, 1if we set

KQW)):= closed convex hull of o(Qw)), (3.3)
then, since QW) - D-lA as ,w' = 0 from (3.1), it follows from the

continuity of the eigenvalues involved that
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-1
KQW@)) = k(0 A), as |w| - 0. (3.4)
Now, because the optimal path of relaxation for |w| small for
Jw « [ - wo'lA, from Theorem 2.1, depends only on the geometry of

K(D-IA), it 18 not surprising from (3.4) that the same might be true for

-%. More precisely, we have

Theorem 3.1. Assume that A = D - L - U with D nonsingular, that

0 ¢ K(D-IA), and that fei* is the point of K(D-IA) closest to the origin.

Then, there exists a positive constant m' such that, on each circle lwl-r

with 0 < r < m' there is a é(r) for which

pc.creié(r)) ) OSm;nS?.ﬂ p(‘{'reie) < b @3
Moreover,
lim 8(r) = -y, (3.6)
r-0
and
141/n

p(.{teia(r)) =1 - rT +3(r ), as r - 0. 3.7)

Remark. As in Theorem 2.1, an optimal path of relaxation for 4, with
le small, is tangential to the ray {re-“ :r > 0} as 'wl - 0.
Proof. We shall establish this result only for Case 1, since Case 2 {is
similarly treated. That a é(r) exists on each circle |w| = r for which
(3.5) holds, follows of course by continuity. Now, in Case 1, we know
that Te“ € U(D-IA). Then, applying Ostrowski's classical result
[3, p. 334] on the perturbation of eigenvalues of a matrix, there is at
least one eigenvalue §(w) € o (Q(w)) for which

le@) - re'Y| =@’(|w|”“), as |w| -0, (3.8)
vwhere n i8 the order of A. Thus,

NG, 8):= 1 - re ¢ (ret?) (3.9)

is an eigenvalue of « 18 from (3.2) for each such £(w). The modulus of
re



28 ’ JOHNJ.BUONIANDIUCHARDS.VARGA

each such n(r, 6) is, from (3.8), just
e, & =1 - 7 conco + y) +OeMy e e Lo, (3.10)
unirormly in 6. For any fixed ¢ with 0 < ¢ < 1, suppose that

cos(8 + ) <1 - €, 8o that from (3.10),
Ince, 8) =21 -7+ err +C3?rl+1/n), as r - (.

On the other hand, the choice of @ = -¥ in (3.10) gives the
1+1/n

asymptotically smaller quantity 1 - rr +91r ) a8 r - 0. Thus, we see
that, for each fixed r > 0 sufftciencly small, {f a(r) minimizesg
]n(r, 6)] over 0 < 6 < 21 and over all such eigenvalues n(r, 8), then
a(r) cannot satisfy cos(g(r) +¥) <1 - ¢ for all r - 0, Next, as in the
proof of Theorem 2.1 in Case 1, it turns out that min PG 19)’ for

0<e<anm re

r small, is governed by the behavior of such eigenvalues n(r, 8), so that

ain oG 19) =1 - rr +C3?rl+1/n), as r - 0, 3.11)
0<8<2n re

which gives the desired results of (3.5) and (3.7). The previous

discussion concerning cos(8 + §) <1 - ¢ also shows that lig g(r)= -y. =
r-0

expansions through firge order terms in ¥, 88 r - 0. Because of the crude
estimation of perturbation effects {ip QwJ for ’w] small, which resulted
in che tern|Cﬂr1+l/n) in (3.7), ic 1g not possible to say which of thege
optimized procedures 1s faster ag r - 0, unlike the classical
Stein—Rosenberg Theorem. Nevertheleas, the following intefesC1ng
observations can be deduced.

If che term Cﬁrl*l/n) in (3.7) actually behaves asymptotically ag
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ura, as v - 0, where Iul > 0 and vhere 1 < 0 < 2, then {t is evident from
(2.11) and (3.7) that the optimized extrapolated Jacobi procedure is
asymptotically faster than the >ptimized successive overrelaxation
procedure for all r > 0, sufficiently small. This means, for example,
that 1f the Jordan normal form, corresponding to some eigenvalue in the

subset E of D-1

A of (2.5), 1s not diagonal, and {f the perturbation Q)
of D-lA, for w = re-w with r > 0 small, separates the eigenvalues
associated with this Jordan block, then the optimized extrapolated Jacobi

method will be asymptotically faster than the optimized successive over-

relaxation method for all r > O sufficiently small.

Now, the above deduction is precisely the opposite of what one
expects in the usual Stein-Rosenberg Theorem. Why? The assumptions in
the usual Stein-Rosenberg Theorem require that B: = DQH‘+ D-lu be a
nonnegative matrix, but this, by the Perron-Frobenius Theorem, insures
that the Jordan blocks for B, corresponding to the subset E of D-IA = ]-B,
are all 1 x 1 matrices and hence diagonal. Thus, the assumptions of the
previous paragraph are not met!

In a later paper, we will give a more precise form of Theorem 3.1,
based on perturbation theory, for optimal paths of relaxation for the
matrix i% in the complex plane. Included there will be results, both

numerical and graphical, illustrating these comparisons of the iteration

matrices J and £ .
w w
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