R.A.LR.O. Analyse numérique/Numerical Analysis
(vol. 15, n° 4, 1981, p. 371 a 390)

AN EXTENSION TO RATIONAL FUNCTIONS
OF A THEOREM OF J. L. WALSH ON DIFFERENCES
OF INTERPOLATING POLYNOMIALS (*)

by E. B. SAFF (1), A. SHARMA (%), R. S. VARGA (®)

Résumé. — Dans cet article, un théoréme de J. L. Walsh, sur les différences de polyndmes d’inter-
polation en les racines de I'unité et en I'origine, est étendu aux différences de fonctions rationnelles
d’interpolation en des ensembles de points plus généraux.

Abstract. — In this paper, a theorem of J. L. Walsh, on differences of polynomials interpolating
in the roots of unity and in the origin, is extended to differences of rational functions interpolating in
more general point sets.

1. INTRODUCTION

Our main purpose is to generalize, to the rational case, a well-known and
beautiful result of J. L. Walsh on the convergence of differences of interpolating
polynomials. To state this result, we first introduce some needed notation.

Let A4, denote the set of functions f(z) analytic in the disk | z| < p, where
we assume that 1 < p < oo. With m,, denoting the set of all complex polyno-
mials of degree at most m, let p,(z;f) € m, be the Lagrange polynomial inter-
polant of f(z) € A, in the (n + 1)-st roots of unity, i.e, ~

p(®:f) = f(®), Vo suchthate" ! =1, (1.1

, ; .
for each nonnegative integer n. Writing f(z) = a; 7 for | z| < p, we let
j=0

Pz:f) = ; a; z’
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372 E. B. SAFF, A. SHARMA, R. S. VARGA

be the associated n-th partial sum of £, so that
PJz;f) = f(2) = 0", as z—0. (1.2)
Letting

D,:={zeC:|z| <t} and D,:={zeC:|z|<1},
(1.3)

then this particular result of Walsh [7; 8 p. 153] can be stated as

THEOREM A : Iff€ A, then the interpolating polynomials p2) of (1.1)
and P,(z) of (1.2) satisfy

lim [p,(z3/) = P(z;/)] =0, Viz|<p?, (1.4)

the convergence being uniform and geometric on any closed subset of D,.. More
precisely, on any closed subset # of any D, withp < © < <0, there holds

lim sup { max | p,(z: ) — Pz:f) |} < 5. (1.5)
#

n—ow ze [y ,

Furthermore, the result of (1.4) is best possible in the genée that there is some
f()€ A, and some z with | Z| = p* for which p(Z:f) — P(z: f) does not
tend to zero as n — 0. :

In a recent paper, Cavaretta, Sharma, and Varga [2] give several genera-
lizations of Theorem A for the case of polynomial interpolation. Our present
goal is to extend some of these results to differences of rational functions which
interpolate a meromorphic function. Although our main result(¢f: Theorem 2. 1)
deals with more general interpolation schemes and their associated geometries,
we first state, for purposes of illustration, our extension of Theorem A where
the interpolation points are again- the roots of unity and the origin.

For notation, for each nonnegative integer v and for each p, with 1 <p <o,
let M (v) denote the set of functions F(z) which are meromorphic with precisely v
poles (counting multiplicity) in the disk D,, and which are analytic at z = 0
and on | z| = 1. Given F € M,(v), consider the rational interpolant

Suz: F) = 8,(2) = U, (&)/V,(2), with U, em,V,,en, (1.6)
of type (n, v) of F(z) which, in analogy with (1.1), is to satisfy

S,(®) = F(®), Vo suchthato™ ™ = 1. (1.7)

R.A.I.R.O. Analyse numérique/Numerical Analysis



AN EXTENSION OF A THEOREM OF J. L. WALSH 373

Similarly, consider the Padé rational interpolant (¢f. Baker [1], Perron [4])
Ryplz:F) = Rypld) = Poy(d/Quld). with Py e, 0, e, (LY

of type (n, v) of F(z) which, in analogy with (1. 2), is to satisfy
R, (2z) — F(z) = 0(z"""*"), as z—-0. (1.9)

(We assume here and throughout that the denominator polynomials V, (z),
0,.,(z) of (1.6) and (1.8) are normalized so as to be monic.)

It is important to note that the existence and uniqueness of the rational
interpolants S, (z) and R, (z) of (1.7) and (1.9) are, for all n large, guaranteed
by a theorem of Montessus de Ballore [3] and its generalization due to Saff [5];
this latter result is stated in § 2 as Theorem B. '

With the above notation, we shall prove in § 3 the result of

THEOREM 1.1 : If F € M(v), and if { o; }j are the v poles of F in D, (listed
according to multiplicities), then the rational interpolants S, , of (1.7) and R,
of (1.9) satisfy

3111010 [S,z; F) — R, [(z; F)] =0, VzeD_\ LVJ {a;}, (1.10)

i=1
the convergence being uniform and geometric on any closed subset of

Dpz\ U {O(j}.
. j=1

More precisely, on any closed subset # of any D\ U { o; } withp < 1 < 0,
1 .

j =
there holds

lim sup { max | §,,(z: F) = Ry(z3 F)| pm g = (1.11)

n—oo ze p

The result of (1.10) is best possible in the sense that, for any v = 0, and for any p
with1 < p < oo, thereis an F, € M (v) such that

lim sup { min | S, (z; F,) — R, J(z; F) |} > 0. (1.12)
n-wo |z| =p2 ‘

We remark that the special case v = 0 of Theorem 1.1 reduces to Walsh’s
Theorem A. We further note that the sharpness result (1.12) of theorem 1.1
generalizes the corresponding result for v = 0 of Cavaretta, Sharma, and
Varga [2]. -
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374 E. B. SAFr, A. SHARMA, R. S. VARGA

Concerning the behavior of the (monic) denominator polynomials of the
rational interpolants S, (z; F) and R, (z; F) of Theorem 1.1, it is known from
Saff's Theorem B (c¢f. §2) that

lim ¥, (2) = lim 0, (2) = B(z) = U (z — o), VzeC,

and, moreover, as a special case of (2.22), that on each compact set # < C,

lim sup { max | V,(z) — B | [ [iznllfliv(l, lo; D1/, (1.13)
and lim sup { max | Q,,(z) — B(z)| }'" < [ifffl.’_(,v Loy ll/p. (1.14)
Clearly, (1.13) and (1. 14) together imply

lim sup { max | V, (2) — Q,(2) | }'" < [‘:Hllax (1 1o D)p. (1.19)

n-roo zeH

But, as a special case of Corollary 2.4, we can improve (1.15) by means of

COROLLARY 1.2 : With the assumptions of Theorem 1.1, there holds on every
compact set # < C
| 1

S (1.16)

lim sup { m

n—wo zZe

ax I Vn,v(z) - Qn,v(z) i }1/71 g
H

The outline of the present paper is as follows. In § 2, we state and prove our
main results for general interpolation schemes, and in § 3 we consider some
specific applications of these results.

2. MAIN RESULTS

Our aim to extend Theorem A4 in two directions. Firts, we wish to consider
triangular interpolation schemes that are associated with planar sets more
general than that of the disk. Second, we shall replace polynomial interpolation
to analytic functions by certain types of rational interpolation to meromorphic
functions.

For these purposes, let E be a closed bounded point set in the z-plane whose
complement K (with respect to the extended plane) is connected and regular
in the sense that K possesses a Green’s function G(z) with pole at infinity
(cf [8, p. 65]). Let T, for o > 1, denote generically, the locus

T,={zeC:Gz) =logo}, @.1)
and denote by E, the interior of T_. ’

R.AI.R.O. Analyse numérique/Numerical Analysis



AN EXTENSION OF A THEOREM OF J. L. WALSH 375

Next, for each nonnegative integer v, and for each p, with 1 < p < oo,
let M(E,; v) denote the set of functions F(z) which are analytic on E and
meromorphic with precisely v poles (counting multiplicity) in the open set £,
For F e M(E,; v), we consider rational interpolation in the two triangular
schemes

e B

B, By b By

....... 2.2) .. 2.3)
B, B .o B B B o B

where we assume that no limit points of the tableaux in (2.2) or (2.3) lie
exterior to E. To be specific, we let r, ,(z) be the rational function of the form

rlzi F) = 1) = 2282 4 guy €M guy monic,  (2.4)

which interpolates F(z) in the r? ni(é\z + 1 points { BV }riv*+l e,
FanBEY) = FBI*™), i = 1,2, ..on+ v + 1, (2.5
and we let 7, (z) be the rational function of the form
Fnlzs F) = ) = 229 5 e g, em g, monic,  2.6)

- G (2)
which interpolates F(z)inthen + v + 1 points { f"*V }72V*1 je,
FnBETY) = FBM ™), i=12 on+v+1. 2.7)

In the tableaux (2.2) and (2.3), we do not require that the entries in any
particular row consist of distinct points. In the case of repeated points, inter-
polation in (2.5) or (2.7) is understood to be taken in the Hermite (derivative)
sense. , ,

Unlike polynomial interpolation, the existence of the above rational inter-
polants is by no means assured without further assumptions on the behaviors
of-the triangular schemes. Also, to establish a theorem (analogous to Theo-
rem A) which asserts that the difference 7, (z) — r, [(2) tends to zero in some
« large » region, we need to assume that the tableaux (2.2) and (2 3) are, in
some sense, « close » to one another.

To specify these assumptions, set

n+1 nt+1

@)= [1 =B, #6) = [ B wi@ = vy =1, 2.9

vol. 15, no 4, 1981



376 E. B. SArr, A. SHARMA, R. S. VARGA

Concerning the triangular scheme (2.2), we suppose that

lim | w,(z) '™ = Aexp G(z), (2.9)

uniformly in z on each closed bounded subset of K, where A is the transfinite
diameter (or capacity) [8, § 4.4] of E. We remark that the existence of some
triangular scheme { " } for E for which (2.9) holds, is well-known: for
example, on defining the tableau { B{” } to consist of the Fekete points for E,
then (2.9) holds (¢f: [8, p. 172]). Next, since each w(z) in (2. 8) is monic of precise
degree j + 1, there are unique constants y,(n), 0 < j < n, such that

.2) = w2 + ‘:io v w1, Vn>1, (2.10)

For p fixed, we assume (as in Cavaretta, Sharma, and Varga [2, § 10]) that
there exists a constant A, with — o0 < A < 1, such that

n—=o0 ,]_

lim sup{ f L vn) | (ApY } < ApH(< Ap), (2.11)

where A is the transfinite diameter of E. With the above assumptions, we
can show that, for each Fe M(E,: v) and for each n sufficiently large, the
rational interpolants r, (z; F) and 7, (z; F) of F(z) in (2.5) and (2.7) do
indeed exist and are unique. Our main result is

THEOREM 2.1 : Let p be fixed with 1 < p < o, and suppose that the tableaux
(2.2) and (2.3) have no limit points exterior to E and satisfy the conditions (2.9)
and (2.11). If F e M(E,; v), v = 0, and if { o; }}_, are the v poles of F in E,\E
(listed according to multiplicity), then the rational interpolants r,,, v(z F)of (2 5)
and v, (2 F) of (2.7) satisfy ,

lim [, (z; F) = 1, (2 F)] = 0, VzeEp*™ U {w}, (2.12)
n—oo j=1

the convergence being uniform and geometric on any closed subset of
Epz_k\ 'Ul {o;}.
j:,

More precisely, on any closed subset # of any E\ U { o } withp <t < do,
j=1 : ‘

there holds ,
llmsup{max|rnv(2 F) r:v(Z;F)I}l/n <‘E/pz_)\' (213)

n— o0
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AN EXTENSION OF A THEOREM OF J. L. WALSH 377

We remark that while the rows of tableau (2.2) are defined for every
n=0,1,2, .., the tableau of (2.3) need only be defined for some infinite
increasing subsequence of nonnegative integers n, and the conclusions (2.12)
and (2.13) of Theorem 2.1 remain valid for that subsequence. As we shall see
in § 3, this observation will be useful in studying Hermite interpolation.

Essential to the proof of Theorem 2.1 is the/following extension, due to
Saff [5], of the Montessus de Ballore Theorem [3].

THEOREM B : Suppose that F € M(E,; V) for some 1 < p < o0, and v > 0,
and let { o; }}_, denote the v poles of F in E,\E. Suppose further that the points
of the triangular scheme

by

bV, bV

...... (2.14)
B, B, . b

(which need not be distinct in any row) have no limit points exterior to E, and that

n+1
[] @~ b

i=1

1/n
lim = Aexp G(2), (2.15)

n—o

uniformly on each closed and bounded subset of K. Then, for all n sufficiently
large, there exists a unique rational function s, (z) of the form

Sn,v(z) = %"'L% 3 gn,v € ™ hn,v €T, hn,v monic ). (2 . 16)

which interpolates F(z) in the points b§"*™, b§™*V, . b"7L . Each s, (z) has
precisely v / finite poles, and as n — o0, these poles approach, respectively, the v
poles of F( (z)inE o \E. The sequence { s,;,(z) }x=,, converges to F(z) on

n=no

E,\ ‘L:Jl 1%},

uniformly and geometrically on any closed subset of E )\ U { o; }. More precisely,

on any closed subset # of any E, \ U {a;}withl < T< p, there holds

lim sup { max | F(z) = s,(2) | }'" < t/p. (2.17)
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378 E. B. SAFF, A. SHARMA, R. S. VARGA

Theorem B in particular implies that the monic denominator polynomials
of the s,.(z) satisfy ‘

lim h, (2) = IVI (z — )= :B(2), (2.18)
n= oo i=1

uniformly on each compact set of the plane. In the proof of Theorem 2.1,
we also need the following quantitative property.

LEMMA 2.2 : With the hypotheses of Theorem B, suppose that F(z) has a pole
of order m(< V) at o, where o € Ty (0; < p). Then (cf. (2.16)),

k

d
E.Z_IZ hn,v(aj)

1/n

< oy/p, foreachk = 0,1,...,m — 1. (2.19)

lim sup
n—aw

Proof : With B(z) as defined in (2. 18), the function f(z) := B(z) F(z) is ana-
lytic throughout E,, and is nonzero at each point o, i = 1, ..., v. On multi-
plying F(z) — s,.(2) by B(z) h, (2), it follows from (2.17) and (2. 18) that, for
each T with 1 < 1 < p, there holds

lim sup { max | f(z) h, () = B(z) g,.(2) | }'" < t/p . (2.20)

More generally, on setting
D(2) 1= f(2) hyol2) = B9,

so that D,(z) is analytic throughout E,, it follows from (2.20) and Cauchy’s.
formula that, for each nonnegative integer k, :

dk
327 Dn(Z)

n—oo

lim sup { max
zel,

1/n
} <1t/p, for 1<t <p. (2.21)

Since B(a;) = 0, then taking z = o; and T = o; in (2.20) yields
lim sup | S(oy) by o) ;W <o/p,

and since f(a) # 0, inequality (2.19) follows for the case k = 0. For
k =1,..,m — 1, inequality (2.19) is easily proved by induction, using the
more general estimates of (2.21), the Leibniz formula for differentiating
products, and the fact that B¥a) =0 fork =0, 1,...,m—1. =

As a consequence of (2.19), on expanding each 4, (z) in terms of a fixed
Lagrange basis of polynomials, there holds on each compact set # < C,

lim sup { max | ,(2) — B(z) | }'"" < ( max o)/p, (2.22)

.....

where o, e I' ) foreachi =1, ..., v.
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AN EXTENSION OF A THEOREM OF J. L. WALSH 379

It is clear from the hypothesis (2.9) of Theorem 2.1 that the results of Theo-
rem B and Lemma 2.2 apply to the triangular scheme of (2.2). The next lemma
establishes that the same is true for the triangular scheme of (2.3).

LemmA 2.3 : With the hypotheses of Theorem 2.1, the polynomzals w,(z) of
(2.8) satisfy

lim | W,(z) |'" = Aexp G(2), (2.23)

n-roc

uniformly in z on each closed bounded subset of K.

Proof : By assumption, the zeros of the polynomials W (z) have no limit
point exterior to E. Hence, on each compact set in K, the harmonic functions

% log { W,(2) ! are, for n sufficiently large, uniformly bounded, and so they form
anormal family in K. Now, let R be any fixed number with max { 1, p* } <R <p.
Since from (2.9),

lim [max w(z)|]" = AR < Ap,

Jj—ow zel

it follows from the assumption of (2. 1'1) that

n—r o zel'r j=

n 1/n
lim sup l:max Z \' Yj(n) i § Wj—l(Z) {:I < Ap* < AR,
j=0

and hence (¢f. (2.10)), we have
lim [m%x | W(2) [ = lim [m%x | wi(z) []'* = AR. (2.24)

Noting that AR is the transfinite diameter of Ej, the result of (2.24) implies,
by a theorem of Walsh [8, Theorem 4, p. 163], that

lim %log W, z) | =log A + G(2), (2.25)

uniformly on each compact set exterior to I'. But, as the functions 1log 1, (2) |

form a normal famlly in K, then (2.25) necessarily holds unlformly on each
compact set in K, which gives (2.23). =

We can now give the

Proof of Theorem?2.1 : By Lemma 2.3 and the assumption of (2.9), it follows
from Theorem B that, for each n sufficiently large, the rational interpolants
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ra(2 of (2.5) and 7, (2) of (2.7) exist and are unique. Furthermore, the monic
denominator polynomials g, (z) and §, (z) satisfy

lim g, ,(z) = lim §,,(z) = [[(~0)=:B@), (2.26)
n—oo n—co i=1

uniformly on every compact set of the plane.
Next, for convenience, set

J{2) = an2) 3, (2) F(2) - (2.27)

Since r, ,(z) interpolates F(z) in the points { Birtv Yty from (2.5), it follows,
on multiplication by g, (2) g, /(2), that g, (2) p,(2) is the unique polynomial in

m, ., which interpolates J,(z) in these n + v + 1 points. Similarly, g, (2) p. P, (2
is from (2.7) the unique polynomial in 7, which interpolates J (z) in the
points { B"*¥ 17+ 1, Since F(z) is, by hypothesis, analytic on E, there exists
aconstantn > 1 such that F(z) is analytic on and interior to the level curve I',.
Then, for each n sufficiently large, Hermite’s formula gives

W D) = WD J(0) dt
Gnl2) Pa?) = 5= L (=2 , VzeC, (2.28

W, 2] T L) dt
Was ) (1 — 2) ’

422 Pas®) = 5= J [0 = VzeC. (2.29)

On subtracting, we have

8ul2) Parl2) = Gu(2) Pusl2) = 221. L Wf((t)(t;)j(t()titdi 5 @30
where

K, 2) 5= Wy (1) Wy (2) = Woi (2) W, (D) - (2.31

Next, let { of }io ;s <V, deriote the distinct poles of F(z) in E,\E, so that

U {o¥} = U { o; }. Let R be any constant such thatmax {1, p*} < R <p
j=1 j=1

and such that all the poles of F(z) lie interior to I'p. Further, select s small
circles C;:={teC:|t—a¥|=23;} which are mutually exterior and
satisfy C; = Ep \E for each j = 1,2, ..., 5. Setting Cy,, = I'g, then Cauchy’s
theorem applied to the integral of (2.30) gives, for all n sufficiently large, that

s+1

qn,v(z) pn,v(z) - qn v pn v Z I(n) (2 . 32)
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AN EXTENSION OF A THEOREM OF J. L. WALSH 381

where

I(") — __L Kn(tﬁ Z) J"(t) dt
( ) 2 i C; Wn+v(t) WNn-{-V(t) (t - Z) ?

j=L2.,s+1. (2.33)

In (2.33), the contour C,, , is taken to be positively oriented, while the remain-
ing contours C;, 1 < j < s, are all negatively oriented.

To estimate the integrals in (2.33), we first note that using (2.10) we can
express K, (t, z) as

ntv

by 2) = Z Yin + V) [Was (D) wi—1(2) — w1 (2) Wi—l(t)] . (2.34)

From the hypotheses (2.9) and (2.11), it then follows that, for each © > p

lim sup { max | K(t,z) | : te Ty, zel, }1" < A* 1pt,

and from (2.9) and (2.23) we have

lim [min | w,.(t) W, (1) | 1 1€ T]"" = (AR)?.

Further, we note from (2.26) and (2. 27) that the functions J,(t) are uniformly
bounded (independent of n) on the contour C,, ; = I',. Putting the above facts
together yields from (2.33) that

lim sup [max | I®%(z) | : ze T, ]'" < 1p*/R?*, 1> p. (2.35)

n-—o0

Next, to estimate the integrals around the poles o}, we note that for each

J =12, s [["z) is just the negative of the residue at ¢ = of of the function
K.(t, 2) J (1)

Wn+v(t) Wn-&-v(t) (t - Z) )

(2.36)

Ifafe TG;, then it follows from (2.9), (2.11), (2.23), and (2. 34) that for each
k=01,..,

1/n A
lim sup [max aak K, (¥;z)|:ze I‘T} <Atphtzp, (2.37)
and
lim su LA S < 1/(Ac*)? at t = of (2.38)
et | A w0 0] S v

vol. 15, n0 4, 1981



382 E. B. Sarr, A. SHARMA, R. S. VARGA

Furthermore, if o¥ is a pole of F(¢) of order m, then from Lemma 2.2 we have,
foreachk =0,1,...,m — 1,

hm 1 sup | gl o) 1V < o¥jp, hm 1 Sup | LgMer) M < o¥p .

and, consequently, for such k
1/n

k
limsup | [J(0)( — o] | < (0¥/p)P at t=oF. (2.39)
=00 dtk J J J

On combining (2.37), (2.38), and (2.39) to estimate the residue at t = o¥
of the function in (2.36), we find that, for each j = 1, 2, ..., s,

A%tp* [o%\? T
hmsup[maxU("’(z)l zelJV" < (Acff( > =—==,T2p. (2.40)

Thus, from (2.32) and the estimate of (2. 35), it follows that

lim sup [max | §,,(2) Pu(2) =gy (2) o) (117 < W0H/R2 T 2 .,

and so, on letting R approach p and applying the Maximum Principle, we have

lim sup [max | Gn2) Pu(2) = 4,2 B @) I < T/p?7H, T2 p. (2.41)

n— o0

Finally, appealing to the equations (2.26), the de31red conclusions (2.12)
and (2.13) of Theorem 2.1 then follow. =

COROLLARY 2.4 : With the hypotheses of Theorem 2.1, there holds on every
compact set H < C,

lim sup [max | g,,(2) ~ 4,,(2) [ < 1/p* . (2.42)
n—>w zeH

Proof : Since g, (z) and g, [(z) are, for n large, each monic polynomials of
degree v, the difference d,(z) : = §,.(z) — ¢,.,(2) is a polynomial of degree
at most v — 1. Moreover, d,(z) is the unique polynomial in 7r,_, which inter-
polates the function

Gn(Z) L= (CNI,,’V(Z) pn,v(z) - Qn,v(z) i)’n,v(z))/pn,v(z)‘ (243)

in the v zeros of g, (z). From Theorem B (cf. (2.26)), thesé zeros approach,
respectively, the v poles of F(z) in E )\ E. Also, as

lim p, (2) = B() F(2) = /() (2.44)
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uniformly on compact subsets of E,, and as f(z) is analytic and different
from zero in each pole of F(z), then there exist s small circles C i

Ciilz—af| =3, j=1,..5

(as in the proof of Theorem 2. 1) such that for 7 sufficiently large, Pnf2) 18 dif-
ferent from zero on the closed interior of each C - Consequently, for n large,
the function G,(z) is analytic inside and on each C »J=1,..,s Since the
zeros of g, (z) will eventually all be contained in the union of the interiors
of the circles C;, Hermite’s formula again gives

i (qn,v(t) - qn,v(z)) Gn(t) dt
1 C; Qn,v(t) (t - Z) ’

VzeC,  (2.45)

j=

1
dn(Z) = m

where now the integration is taken in the positive sense around each C - But,
from (2.44) and from (2.41) with © = p, we have for 1 < j < s,

lim sup [max | G,(1) []'" < lim sup [max | g, () Paylt) = gualt) Pun(0) 11"
n=owo teCy n=wo teCj

< p/p2-k — l/pl—k.

Using this estimate together with the limiting behavior (2.26) of the poly-
nomials g, (z), it follows from (2.45) that

lim sup [max | d,(z) []"/" < 1/p*~*,
n—co zeH

where # is any compact set in the plane, which establishes (2.42). m

If only the triangular interpolation schemes are specified, but not the point
set E, then D. D. Warner has shown [9] that, under rather mild regularity
conditions, the schemes determine a geometric setting in which Saff’s Theo-
rem B remains valid. Such assumptions lead to further generalizations of
Theorem 2. 1.

3. SOME EXAMPLES

In this section, we discuss some special cases of Theorem 2.1 and Corol-
lary 2.4. We begin with the results quoted in the introduction concerning
rational interpolation in the origin and in the roots of unity.

Example 1 : Let E be the closed unit disk | z | < 1, so that E has capacity
A = 1. The associated Green’s function is then simply G(z) = log|z|, and
the level curves I'; are the circles | z | = o. Next, select the n-th rows of the
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tableaux (2.2) and (2. 3) to consist, respectively, of all zeros and of the (n + 1)-st
roots of unity ; that is, with the notation of (2.8),

wyz) = 2", Wwiz)=z2""" — 1. (3.1

Trivially, w,(z) satisfies (2.9) and, furthermore, the inequality of (2. 11) is valid,
for every p > 1, with A = 0. Thus, Theorem 2.1 gives the conclusions (1.10)
and (1.11) of Theorem 1.1, provided that F(z) € M(v) has all of its v poles
exterior to E 1|z | < 1. However, slight modifications in the proof of Theo-
rem 2. 1 show that, for these special interpolation schemes, we can indeed allow
some or all of the v poles of F(z) to lie in the punctured disk 0 < | z | < 1, and
this will not effect the validity of Theorem 2.1.

Next, we establish the sharpness assertion (1.12) of Theorem 1.1. For any
given p with 1 < p < o0, and any fixed complex a with O < o | < p,|a | # 1,
the particular meromorphic function

1

F(z)::z—oc z—p

(3.2)

is evidently an element of M (1). Because v = 1 in this example, the associated
interpolants (¢f. (1.6) and (1.8)) of F(z) are

U,,1(2) A
7.0 and R, (z; F)

~

n,l(z)

Sn,l(Z; ﬁ) = - Q I(Z) »

where we write
Voiz)=z+X,, and Q,:(z) =z +,.

It can be verified that

0("+2+<Xn+2 _ — g n+1+an+1
hy = 22 P=P =% = pof B2, 3.3

! 2 - PHZ — o2 pn+2 NI
and that
pV, P (@t — p"™ Yy oV, (@) (! — gt
Un,l(Z) - 2 B ;1+2‘ - ;1+2 >
P = 1)(z — p) @2 = 1)(z — 0) 54
P, () =2 — 0,.1(p) (= ph) _ Q,.1(0) (- oty
n,1 pn+1(Z _ p) oc"+1(z — CX) .

Note that since p > | o |, both &, and v, tend, from (3.3), to — o as n — co.
This, of course, implies that the poles of S, ;(z; F) and R, 4(z; F) both tend
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to o as n — oo, which is in agreement with Theorem B. Using (3.3) and (3.4),
straight-forward (but lengthy) calculations give

A A e — ) (p+ o —22) 1
;F) — R ;F) = : ' + 0 =),
Spalz: F) (23 F) 2 — )P (z — p) - as n—oo

(3.5)

the last term holding uniformly on any bounded set in CN\({a} U { p }).
From this, it follows that

liIIl{lnllinszn,l(z;F) - Rn,l(Z;F)|} =
n— o z|=p
lp—allp+a—2pe| _|p—aP@2p’—p—|a]

n i > > 0.
osos2r | pZe® — ol [ p2ed — p| P> + 1ol (p* + p)

(3.6

Thus, for the particular function F(z) of (3.2), we see that (3.6) implies (1.12)
of Theorem 1.1, for the case v = 1. It thus remains to establish (1.12) for any
integer v > 2 and any 1 < p < oo. This is done by using the previous cons-
truction as follows.

Let us regard the function F(z) of (3.2) as a function of z, o, and p, ie.,

F(z) = Fz;0,p).
Forany pwith 1 < p < oo, and for any positive integer v, we set

1 1
e M), (3.7)

Fie) = FEi a0 p) = 5 +

where, as in(3.2),0 <]o| < pand|a]| # 1. Then, the rational interpolants
S, {z;F) and R, (z; F,) of F, are easily seen to be related to the rational
interpolants S, ,(z; F) and R, ,(z; F) of F as follows :

S(m+ I)V"I,V(Z; FV) = Sm,l(zv; F(': uv’ pv)) 5

A A v 3.8
Rons 1yv-1:23 Fy) = R, 1 (2" F5 0%, pY),m = 1,2, ... ( )~
Because of the relationships of (3.8), it follows from (3. 6) that
lim { ‘nllinz | Stnt 1yv—1.:2 5 FV) = Rips1py—1.,42; Fv) |}
m— o z|=p
Vo V2 2v AV \%
Lo =0 POt el

(p2v + IO( Iv)3 (p2v + QV)
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and hence
lim sup { min, | 5,(z; F) = R (z:F) 1} >0,
n— z|=p
for each positive integer v, and each p with 1 < p < co. This completes the
proof of the sharpness assertion of Theorem 1.1.
Finally, we remark that Corollary 1.2 is an immediate consequence of
Corollary 2.4 with L = 0.

Example 2 :1f we wish to compare (Padé) rational interpolation in the
origin with Hermite rational interpolation of order k(= 2) in the roots of unity,
we again take E to be the closed unit disk and we set

W (@)= 2= L2 W)= @ 1, m =12

Then, it can be verified that the inequality of (2.11) (with n = km) holds for
every p > 1 with k. = 1 — 1/k Thus, Theorem 2. 1 (modified to allow poles in
the punctured disk 0 < |z| < 1, as discussed in example 1) gives for any
F e Myv),

lim {Skm——l—v,v(Z;F) - ka—l—v,v(Z;F)} = 03 VZe;l)p”“/"‘/ U {dj}’
C =1

m-— 0

3.9)

where S,,,—1-v4(z; F) is the rational function of type (km — 1 — v, v) which
interpolates F(z) in the m-th roots of unity, each considered of multiplicity k,
and where Ry, 1_y4(z; F) is the corresponding Padé approximant to F(z).
We note that the result (3.9) for the case v = 0 appears as the case [ = 1 in
Cavaretta, Sharma, and Varga [2, Theorem 3]

Example 3 : Here we take E to be the real interval [— 1, 1], which has capa-
city A = 1/2. The level curve I, (c > 1)for Eis the ellipse in the z-plane with
foci + 1, and semi-major axis (o + 1/0)/2. With T,(x) = cos (n arc cos x)
denoting the familiar Chebyshev polynomial (of the first kind) of degree n,
we shall compare Lagrange interpolation in the Chebyshev zeros with Hermite
interpolation of order k (= 2) in these zeros. For this purpose, we define

(¢f (2.8)) the monic polynomials
w,_i(2)=2""Tn=12., Wm— 1(2) = (217 Tm(é))k, m=12,...

1t is well-known (cf- [8, p- 163)) that the w,(2) satisfy (2.9), and moreover, it can
be verified that the inequality of (2.11) (with n = km — 1) holds with
A = (k — 2)/k for every p > 1. Hence, if F(z) is analytic on [— 1, 1] and mero-
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morphic with precisely v poles { «; }_, inside the ellipse I', (i.e., F € M(E,; v)),
then Theorem 2.1 gives

lim {?kMAl—v,v(Z;F) - rkm~1—v,v(Z;F)} = 03 VZEEP(“*ZW‘\.U {O(j } .
m=+co o J=1

(3.10)

As a special case, we see that the choice k = 2 gives convergence to zero in
v
E-\ U { o; }, which is reminiscent of the result of Theorem 1.1.
j=1

Example 4 : Let E be a closed bounded point set (containing more than one
point) whose complement K is simply connected, and let #(z), forn = 0. L. ...,
denote the Faber polynomials [6, Chap. 2] for E. For simplicity, we assume
that E has capacity A = 1. If w = ¢(z) maps, one-to-one and conformally,
the complement K onto the domain | w | > 1 so that ¢(c0) = oo, then Z,(z) is
the principal part of the expansion of [¢(z)]" as a Laurent series in a neigh-
borhood of z = 0. Specifically, if

(p(z)=z+co+—z—+—z-§—+“' (3.11)

in a neighborhood of z = <0, then

n n (n) n-1 (n) n—2 (n) C(f)l C(f)z
lo@]" = 2"+ ™, 2270 4 (™, 2772 e o el o

3

(3.12)

and, by definition,

Fl)=2"+" 2"+ P n=0,1,... (3.13)
It is known that the zeros of #,z) have no limit points in K and, moreover
(¢f. [6. p. 133))

lim | Z(2) " = | o) |, (3.14)

n—co

uniformly on each compact set in K. Choosing the interpolation scheme
of (2.2) to consist of the zeros of the Faber polynomials, ie., setting

Wn—l(Z) = gﬂn(z) >

then the condition of (2.9), with G(z) = log ! ®(2) |, 1s clearly satisfied. For a
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comparison scheme, we consider Hermite interpolation of order 2 in these
Faber polynomial zeros, ie., we set

Wom-1(2) = [F D], m=1,2,... (3.15)

Now, if z = Y(w) denotes the inverse of the function vq)(z), we have (cf. [6,
p. 138))

[0 = ¥ an 0, 6.16

where, for any r > 1,

1 [Z.(b(w)]* .
= el e =0,1,...2m. .
KRR r™ JM:, Wt v =0 2m (3.17)
Now, it is known [6, p. 132] that
gk*m(\i/(w))=wm+%Mm<%>, Viw|>1, (3.18)

where M,,(1/w) is analytic at w = co and has a Laurent series converging for
all | w| > 1. Substituting (3.18) in (3.17) gives

- 1 (W>™ + 2w M, (1/w))
a. e — T
i 2mi ), w/tl

dw, j=0,1,...,2m. (3.19)

From this, we immediately see that

agl =1; a” =0 for m<j<2m. (3.20)

Next, we estimate the remaining coefficients a{™, 0 < j < m.For 0 < j < m,
we have from (3.19) that

1 2wmt M (1/w) dw
m _ _m .
dr = jw,m -, . (3.21)
Writing M'"(%}) = Y v w kforall |w]| > I, then it is evident that
k=0
a =29, 0<j<m, (3.22)

Let I < o < p. Then, we can obviously write

, 1 i 1 1
(m) . m—j—1
VYmejo1 = 7 - w {—W Mm<—w> } dw . (3.23)
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From [6, p. 134, inequality (2)], I‘VIEM’”(%)I < Wo) o™ for [w| = o,

where (o) is a positive constant, independent of m. Thus, from (3.23),

ym < pe)o® i, 0<j<m.

Hence from (3.20) and.(3.22), we have
2m—1 m—1

) 12m Y 1/2m
lim sup{ Yoldm pJ} = lim sup{ Yo la™ | p’} (3.24)

/=0 j=0

m—1 . 1/2m
< lim sup { 2p(c) Y o p’} =/op.
j=o

m— o0

Letting o tend to unity, we see that for n = 2m — 1, inequality (2.11)
holds with A = %(since A = 1). In a similar (but more tedious fashion), it

can be shown that if we consider Hermite interpolation of order k (> 2) in the
zeros of the Faber polynomials, i.e. (cf. (3.15)) if

Wem—1(2) = [Z2) ], m=1,2,..., (3.25)
and (c¢f. (3.16)) if
km
[Zu(2)] =) (k) F(2), (3.26)
j=o
then (3.24) can be generalized to

km—1 . 1/km
nmsup{ 5 ta;m«mpf} <@k, @)
m— o i=0

ji=

so that on letting ¢ again tend to unity, we see inequality (2.11) now holds
with & = 1 — 1/k. In other words, Theorem 2.1 gives for any F € M(E,; V),

m—> o0

lim { Sppo1 (23 F) = Ry 1y (z; F)} = 0, VzeEyuon\ U {o},
"j=1
(3.28)

where Svkm,l*v’v(z ; F) is the rational function of type (km — 1 — v, v) which
interpolates F(z) in the zeros of the Faber polynomial #,,(z), while

ka*l-v,v(Z; F)
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is the rational function of type (km — 1 — v, v) which interpolates F(z), with
multiplicity k, in each of the zeros of the Faber polynomial #,(z).

Finally, although the set E = [— 1, + 1] of example 3 is a special case of
example 4, we note however that the comparison of Lagrange interpolation
in the zeros of the Faber polynomial Z,,(z), with that of Hermite interpolation
of order k in the zeros of the Faber polynomial #,(z), gives the associated

exponent (c¢f. (2.11)) of example 3 as A = 1‘__;_% , which is smaller than the

A of example 4.

associated exponent A =
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