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ON THE LU FACTORIZATION OF M-MATRICES:
CARDINALITY OF THE SET 2%(A)

R. §. VARGA*T AND D.-Y. CAI%

Abstract. An nxn M-matrix A is said to admit an LU factorization into n X n M -matrices if A can
be expressed as A = LU where L is an n X n lower triangular M -matrix and where U is an upper triangular
M -matrix. Then, for any given n xn M-matrix A, let PFE(A) denote the set of all nxn permutation
matrices P such that PAP”T admits an LU factorization into M -matrices with nonsingular L. Our aim here
is to determine upper and lower bounds for |?%(A)|, the cardinality of the set P£(A). This is done in
Theorem 4, while in Theorem 2, |2?%(A)| is precisely determined for a special class of #n X n M-matrices.

1. Introduction. If the spectrum, o(B), of an n x n complex matrix B is defined

as
(1.1) o(B)={reC:det[Al -B]=0},
then an n X n real matrix A =[a;;] is said to be an M-matrix if
(1.2) a;,; =0 foralli#j, 1=ij=n,
and if

(1.3) ReA =0 foralldeo(A).

It may be somewhat surprising to learn that, despite such a simple definition, the
theory and applications of M -matrices form one of the major building-blocks of
numerical linear algebra (cf. [1] and [6]). Moreover, the applications of M -matrices
extend beyond numerical linear algebra to Markov chains, input-output economic
models, dynamical systems, mathematical programming, and the compartmental analy-
sis of ecological systems (cf. [1] and {3]).

Such an application as above can give rise to a large sparse system of linear
equations whose associated coefficient matrix A is an n xn M-matrix. For direct
methods, comparable to the Gaussian elimination method for solving this system of
linear equations, it is of practical interest to know if the associated M-matrix A can
be factored as A =L - U, where L is an n X n lower triangular M -matrix, and where
U is an upper triangular M -matrix. More precisely, as in [7], an n X n M-matrix A
is said to admit an LU factorization into n X n M-n&zm’ces, if A can be expressed as

(1.4) A=LU,

where L is an nXn lower triangular M-matrix and where U is an n xn upper
triangular M-matrix. As shown in 1962 by Fiedler and Ptdk [2], any nonsingular
M -matrix admits such an LU factorization into M-matrices, with both L and U
nonsingular. In 1977, Kuo [5] extended this result by showing that any n X n irreducible
M -matrix (singular or not) admits an LU factorization (1.4) into M -matrices with,
say, L nonsingular. For the remaining set of M-matrices, it is easy to see that
not every singular and reducible n X n M-matrix admits an LU factorization into
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THE LU FACTORIZATION OF M-MATRICES
M-matrices with L nonsingular. as the particular matrix

7o o]
) ‘4“[—1 1

directly shows. However, if 2, denotes the collection of all # x » permutation matrices.
Kuo [5] has shown that. for anv n x n M -matrix A. the subset of 2,. defined by

(1.

tn

PA) ={PeP, PAP admits an LU factorization into
(1.6) , ' ‘
M -matrices with nonsingular L},
is never empty. (Here, the superscript g™ in (1.6) refers to good” permutations.)
If ?%(A), denotes the cardinality of 2}(A) (i.e.. the exact number of its elements),
then the fact that 2] (A) is not empty implies (since 2, contains 1! elements) that

(1.7) 1=20A)=n!,

for every n xn M-matrix A. From the above results. we remark that equality must
evidently hold on the right in (1.7) for any nonsingular or irreducible n x n M-matrix
A. From Funderlic and Plemmons [3], the same is true in (1.7) for any symmetric
M -matrix A and for any M-matrix A for whicy vy A =0 for some vy >0. Later (cf.
(2.15)), we shall see that the first inequality in (1.7) is sharp for every n = 1.

Our aim in this note is to determine upper and lower bounds for |PFA)], for
any n X n M-matrix A. The outline of this note is as follows. We conclude this section
with some needed notation, and in § 2, after giving some definitions, state our main
results and give some applications of these results. The proofs of our main results are
then given in § 3.

We assume, without loss of generality, that the n X n M -matrix A is in normal
reduced form (cf. [7]), i.e.,

A1,1 Al,z e Al.l
.47 AR A7

(1.8) A= "2\ 2,
0 A

where each diagonal submatrix A, is irreducible (15 =/). (As in [7], it is convenient
to define all 1 X 1 null matrices here to be irreducible.) Of course, if A is irreducible,
then /=1 in (1.8). For large matrices, we remark that good software exists, for
permuting the rows and columns of A to bring A into the form (1.8). For this, see
George and Gustavson [4].

Next, if we define R4 as follows

(1.9) Ra={/with1=j=1I: A;;is asingular and irreducible M -matrix},

then R4 # J if and only if A is a singular M -matrix. Continuing, we define the / x/
upper triangular matrix B4 = [b;;], derived from A in (1.8) by means of

b _{1 Ifl?éj and if A,‘yj?s@,
Li

1.10
( ) 0 otherwise.

Its directed graph Gi(#B4) on [ vertices Vy, V,, - -+, Vi, is called the block-directed
graph for the matrix A of (1.8). (Asin [6]or [7], a path in G{(#B4) from vertex V; to
vertex V; is a sequence {bknk,‘l}’;zl withj=1, by .., #0, and with k; =i and ki1 =s.)
For additional notation, with (m) = {1,2, - -, m}, let a ={ay, as, - -, ax} be a non-
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empty subset of (1), and let A{a] denote the induced principal submatrix of the n X n
matrix A = [a;,], determined by a, i.e.,

(1.11) Alal=la;;], wherei jea.

As in [7], we shall say that « is a proper subset of (n) if & # a g {(n).
If R4 of (1.9) is nonempty, then for each j € R4, we define the set

(1.12) S; = {k #j: there is a path in G;(#B4) from vertex Vj to vertex Vi

Because of the triangular form of (1.8), we note that S; can contain only integers k
satisfying 1 = k <, so that §;, for example, is empty by definition. It is also convenient
to say that

(1.13) Siisfull it S;=( -1,

2. Main results and applications. To state our first result, let A be an nxn
singular M -matrix in normal reduced form (1.8) so that R4 # J, and suppose that §;
is not empty for some j€ R4. Then, set

2.1 w=max{jeR,: S, =}

and assume that S,, is full. Note, from (1.13), that the assumption that S, is full implies
that u > 1. With this value of u, we define the following two principal submatrices of
A, which are evidently M -matrices:

Ay oo A1,u A1.1 Al.pvl

(2.2) B = \ S, C= \

0 Al 0 Apctu-

This brings us to the statement of our first result, whose proof will be given in § 3.
THEOREM 1. (reduction algorithm). Let A be an n X n M-matrix in normal reduced
form (1.8). If Ra= D, orif Ra# and if S;= & foreach je R4 (cf. (1.12)), then

(2.3) PEA)=n

Oiherwise, let u be defined as in (2.1), and assume that S, is full. If the mawrix C of
(2.2yissxsand if A, is mXm, then

n'mPHC)

24 IPEA) =
(2:4) P A) stis+m)

We remark that since the order of the matrix C of (2.2) is necessarily /less than
that of A, we can view Theorem 1 as a reduction algorithm which precisely relates
\PE(A) for A to |2%(C)! for the smaller matrix C. Of course, if C is nonsingular (so
that its associated set R of (1.9) is empty). or if C is singular and its associated sets
S, of (1.12) are empty for all je Rc (as is the case when C is irreducible), then
|?2(C)| = s!, and the reduction algorithm necessarily rerminates. Otherwise, the reduc-
tion algorithm can be continued if C satisfies the hypotheses of Theorem 1. Assuming
that R4 # &, a sufficient condition that this reduction algorithm can be continued to
termination is that

(]

(2.9 for every j€ Ra. either ;=2 or §,=¢(j—1).
Now, if R4 = . we further set

(2.6) RL ={jeRs: S =(-1}
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and if Ry = . we list (for convenience) its elements in decreasing order, i.e.,
2.7 RY = {uy pnn -, Ui}, wWherenZu >up>>- - >u =2,

For each w; e RE, let 1; be defined as the order of the matrix B of (2.2) with u = yu,
and let s, be similarly defined as the order of the matrix C of (2.2) with u = ;. If m;
is the order of the matrix A, ,.. we note that 1, =s;+m;, j=1,2,- - k.

With this notation, we state our next result, an extension of Theorem 1, whose
proof will also be given in § 3.

THEOREM 2. Let A be an n xXn M-matrix, in normal reduced form (1.8) which
satisfies (2.5) if Ra# . If Ra=O, or if Ra# & with R = & (cf. (2.6)), then

(2.8) |PE(A) = n!.

Otherwise, with the above notation,

k
Hj=1 m;
ks

j=17%

(2.9) |25(A) =n!

F
where Ra ={w1, w2, -+ +, pi}.
We next consider applications of Theorem 2. As our first application, consider
the n X n singular reducible M -matrix (in normal reduced form) ‘

Dy, D,
'1 _—_[-_—’___._.._’}’
(2.10) b 0 Ds,

where D, is an ny X n; nonsingular irreducible M -matrix, where D,, is an ny; X n,
singular irreducible M -matrix (with ny+n,=n), and where D; ,# 0. In this example,
Rp ={2} and S, = {1}, so that the hypotheses of (2.5) are satisfied. Thus, R5 ={2}, so
that u, =2, 1y = n, and m, = n,. Applying (2.9) of Theorem 2 gives

(2.11) |PUD)|=ny (n 1)1,

the result of {7, Thm. 4]. Thus, Theorem 2 here generalizes [7, Thm. 4].
As a second application of Theorem 2, consider the following 12 % 12 singular
reducible M -matrix (in normal reduced form)

i
2 1] 0 -1 0 -1 0 -1

1 20-1 o 0 1 0 0 -1 0

1 -1 0 -1 0 -1

0 1 1 0 -1 0 0 1 0

2 1| 0 -1 0 -1

0 0 1 201 o 0 1 0

(2.12) E-

1 -1 0 -1

0 0 0 1 0 9

1 -1 0 -1

0 0 0 0 IR N

2 -1
0 0 0 0 0 Y
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In this case, (2.5) is satisfied, and Rg = {2, 4, 5}, and RE={2,4},sothat u,; =4, u>=2,
t1 =8, t,=4, and m,=m,=2. Applying (2.9) yields

12!
(2.13) 19’52(5)|=-§"~

As our final application of Theorem 2, consider the particular upper triangular
n X n singular M -matrix, defined by

0 -1 -1 -1 ~1

0 -1 -+ -1 -1

(2.14) H, = \‘1 -1
0 -1

0 0

In this case, (2.5) is again satisfied, and Ry, ={1,2, ", n}, Rf}n ={nn—-1,--,2}
and m; =1 for each 1 =j=n —1. Applying (2.9) of Theorem 2 gives that

(2.15) |PE(H,)| = 1.

This example constructively shows that the first inequality in (1.7) is sharp for every
n=1.

While Theorem 2 precisely determines |P%(A)| for those n x n singular reducible
M -matrices A satisfying (2.5), we next seek upper and lower bounds for |2}(A)| for
singular reducible M -matrices which do nor satisfy (2.5).

Consider two n X n M -matrices A and B which are in normal reduced form

A Az o An B,y Bix '+ Bim
(216) A= Az,z\ .2'1 and B = Bz,z\ 2 »
0 Ay 0 B.m

where the diagonal submatrices A;; and B;; are irreducible. We say that A and B are
graph-compatible if (cf. (2.16))

i) I=m;
(2.17) (i) the order of A;, is equal to the order of B;; for each j with 1=j=1;
(iii) Ra=Rp (cf. (1.9)).

With §;(A) and S;(B) denoting the sets of (1.12) associated with A and B when
R, # & # Rp, we come to:

PROPOSITION 3. Let A and B be two n x n M-matrices which are graph-compatible
(cf. 217). If Ra # & and if

(2.18) S,(A)< S;(B) foreach j € Ra,
then
(2.19) |PE(A)z|PR(B),

with strict inequality holding in (2.19) if S;(A) g S;(B) for some j € Ra.
We now use Proposition 3 as follows. Consider any n Xn M-matrix A which
is in normal reduced form (1.8). We shall construct two n Xn singular reducible
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M-matrices, A and A, which are graph-compatible with A. Specifically, with

A A, - Ay A, %u /E“
(2.20) A= Azx o 4.2,17 A Ay, oo Aiz,,’
0 \Au 0 \A}‘,
we set
A=A, = A;; foreachl=i=l,;
2.21) Ai,,:A_,‘,,:A,-V,‘ foreachj¢ Rs,andall 1 =i =/

>
I

=AL= A;; foreachje R4 such that either §,(A) = &
orS;(A)=(j—1),andall1=i=1

Of course, if RA = Jorif R4 # & and A satisfies (2.5), then A and A are fully defined,
with A=A = A. Otherwise, suppose there is a je R4 for which & # §,(A) < (j—1).
For such j's, we change zero blocks A,; of A to nonzero blocks A; i; in the upper
triangular part of the jth column of A in such a way that

(2.22) SilA)=(j—1) forthose e R4 for which & # S;(A) < (j —1).

Similarly, we change all nonzero blocks A, in the upper triangular part of the jth
column of A, to be identically zero, thereby defining A,, =0 for all 1 =i<j, so that

(2.23) ,(A) = forthose j e R for which @ # S;(A) < (j—1).

Clearly, the matrices A and A are, by construction, M -matrices which are both
graph-compatible with A. Moreover, if R4 # &, the matrices A and A are such that
(2.5) is satisfied for each of these matrices, and also such that

(2.24) S,(A)<S,(A)SS(A) foreachje Ra.

Now, |?5(A)| and |P5(A)| can be exactly computed from Theorem 2, so that from
(2.19) of Proposition 3, we immediately have

THEOREM 4. Let A be an n X n M-matrix in normal reduced form (1.8). With the
nxn M-matrices A and A of (2.21)-(2.23), then either Ra=D or R,# and A
satisfies (2.5), so that A=A = A and

(2.25) |25 (A)] = |P5A)| = PEA),
or Ra# & and A does not satisfy (2.5), so that

(2.26) PRA)<|PLA) <|PLA),

where |P1(A) and |PE(A)| can be exactly determined from (2.9) of Theorem 2.
As an illustration of Theorem 4, consider the particular singular reducible M-
matrix

(1 1 -1 -1
(2.27) 7=Y 0 -1

0
0 0 0 -1
0
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For this matrix, its associated graph-compatible matrices J and J can be taken to be

1 -1 -1 -1 1 -1 0 ~11

0 0 -1 -1 _lo 00 -1
2.28 - = .
(2:28) 1=l o o0 -1 ™ I=0 00 4

0 0 0 1 0 00 1

Here, the inequality of (2.26) of Theorem 4 can be computed to give
(2.29) 4< P <12.

By direct computation, we find, on the other hand, that PS5 =8.
As a final remark, suppose that an n xn M-matrix A is the direct sum of k
M -matrices, i.e., in block-diagonal form,

(230) A = diag [Al,la AZ,Z» o, Ak,k]a
where each A,; is an m; X m; M -matrix. It is easy to see that
O TTE e (AL k
(231) 1951(14)1:71.11:—‘(1[ m,( l,l)l, where 1 = Z m.
H,‘:1 (m:’) i=1

The point of this remark is that if (2.30) is valid, then Theorems 2 and 4 should be
applied only to the matrices A;;, 1 =i = k.
To illustrate this last remark, consider the following matrix

9

(2.32) A=

- 9 AZ,Z

where [, @ denote respectively nonsingular and singular irreducible M -matrices,
where blank blocks are identically zero, and where x's denote nonzero blocks. In
this example, Ra ={2, 3,4}, S2={1}, 3=, and S4 = {3}; moreover, as R4 # & and
as (2.5) is not satisfied by A, Theorem 2 does not apply to A. However, A of (2.32)
is the direct sum of the two matrices A, and A,,. As Theorem 2 can be applied to
A, and A,,, then (2.31) can be applied, and |P%(A)| can be precisely determined.

3. Proofs of results. For the convenience of the reader, we state below two results
from [7] which will be used below.
THEOREM A. Let A be an n x n M-matrix. Then, the following are equivalent:
(i) A admits an LU factorization into M-matrices with nonsingular L
(ii) for every proper subset a ={ai, az, """ ,ax} of (n) for which Ala] is singular
and irreducible, there is no path in the directed graph G,(A) of A from vertex
v, to vertex v, for any t>ay and any 1=j = k.
THEOREM B. Let A =[a;;] be an nxn M-matrix. Then, the following are
equivalent:
(i) there exists an x >0 such that x TAz0;
(i) |PR(A)=nl;
(iii) for every proper subset a ={a1, az,* ", ax} of (n) for which Ala] is singular
and irreducible, then a,, =0 for all 12 a and all p € a.
Proof of Theorem 1. As (2.3)is immediate if R4 = &, assume first that R4 # &
and that the set S; of (1.12) is empty for every j€ Ra. This implies that, for each
jeRa, A, ;=0foreach1=i=Iwithi#j. Sinceeach singular and irreducible submatrix
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of A of (1.8) must be some diagonal submatrix A;; of A with je R4, it follows that
(iii) of Theorem B above is valid; whence, from (ii) of Theorem B, |?5(A)|=n!. This
gives (2.3).

Next, assume that §; # J for some j € Ra. With u defined as in (1.13), we further
assume that §, is full. The idea of the proof now is to use the equivalence of (i) and
(ii) in Theorem A, in two stages, to deduce the desired result (2.4) of Theorem 1. We
remark that if the directed graph G,(A) of the n X n M-matrix A =[a,,] is associated
with the n vertices v1, va,***, v,, if o is any permutation (1-1 transformation) on
(n), and if its associated permutation matrix P, is defined by P, =[8,,,)], then the
directed graph G,(P,APL) for P,AP! is simply obtained by relabeling the vertices
of G,(A) from v, to v,(;), while keeping all arcs intact. This observation will allow us
to determine which rearrangements (permutations) of (n) are such that (ii) of Theorem
A, applied to these rearrangements, is valid.

If the matrix B of (2.2) is £ X ¢, we first wish to establish that

(3.1) !@ﬁAN#@ﬂBW%%

Of course, if t=n, then A =B and (3.1) trivially holds. Thus, we may assume that
t <n. Consider any rearrangements of the first ¢ positive integers, say {v1, v2, - * *, v},
and consider any rearrangement {7, 75, " -+, 7,_,} of the remaining positive integers
{t+1,¢+2,---,n}. We then intersperse the integers of {r, -, ...} among the
integers of {vy, - - -, v}, thereby forming {w1, w2, * - -, w,}, a rearrangement of the first
n integers, in such a way that {wq, - - -, w, }\{71, -+, 7u .} ={1, - - -, »,} and such that
{w, 0 \v1, o, vy ={r, -, 7...}. We claim that the number of ways of inter-
spersing {71, * +, 7.} with {vy, - - -, v} is

n!
(3.2) K= R
To see this, each distinct method of interspersing {ry, - - -, 7,_,} among the integers
of {vy, -, v} applies equally well to each rearrangement {v}, - -, v} of the first
positive integers. Thus, there are exactly the same number, say K, of ways of inter-
spersing the integers of {ry, -, 7,_,} among the integers of each rearrangement of
the first ¢ integers. Clearly, the totality of arrangements of {w1, - * * , w,} which can be
obtained is, on one hand, K - ¢!, while on the other hand, it is necessarily #!, which
gives (3.2).

Next, we make the observation that if the rearrangement {v1, - - -, v,} corresponds
to an element of P! (B) = (n)\P%(B), then it is easily seen that every interspersing
of the integers of any rearrangement {r,, '+, 7,.} by definition corresponds to an
element of ?%(A). Thus, to obtain a rearrangement {w;, ', w,} in PE(A), it is
necessary to begin with a rearrangement {vy, - - -, v,} which is in ?{(B), followed by
any interspersing of any {r, -, 7._.}. (The reason that this is valid is that the n —¢
integers {71, - - -, 7,_,} necessarily correspond to vertices in the directed graph G,(A)
of A which, by construction, have no path to the singular irreducible submatrix A, .,
and hence play no role in applying (ii) of Theorem A to A, ,.) Thus, using (3.2),
|PE(A)| is given by

!
(3.3) x@ﬂAn=%4@ﬂB»

We now relate, in the second part of the proof, the quantities |2 £(B)| and |?2(C)|,
where B and C are defined in (2.2). Since S, is full by hypothesis, then S, ={(u-1).
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By definition, the matrices A, ., C and B (cf. (2.2)) are respectively of orders m, s
and ¢, with r=m+s. In analogy to the first part of the proof, we consider any

rearrangement {7y, -+, 75} of the first s positive integers, and any rearrangement
{n1, ", mm} of the integers {s+1, -, 1}, and we intersperse {11, ", Nm} aMOng
the integers of {r1, - -, 7}, thereby forming {wi, wa, "+, w}. As before, to obtain an
element in P%(B), it is necessary to begin with a rearrangement {ry,"+, 7} which is
in ?%(C). Moreover, because by hypothesis S, ={(u—1), we see from (ii) of Theorem
A that the final element , of {w1, - * *, w.} in P7(B) must be from {m1, *, mm}. For
each fixed {ry, -+, 7} in PE(C), it is easily seen that there are the same number,
namely m - (t—1)!/s! of such interspersings of {1, *, Mm}, such that the last element
w, is from {ny, * *, Mm}. Thus,

_|PiO)m - =)
B s! '

(3.4) |25(B)|

If we combine (3.4) with (3.3), we obtain (since =15+ m) the desired result (2.4). U

Proof of Theorem 2. As (2.8) is immediate if Ra = &, assume first that Ra # &
and that RS = &. But, R: = @ implies from (2.5) that §; = J for each j € Ra, which
with (2.3) of Theorem 1 gives that |?}(A)|=n!in (2.8). Hence, we may assume that

RY is not empty, so that from 2.7), RE ={u1, u2," -+, uxyWhere n Zp1 >u2>- >
wie =2. Now, let C'” denote the matrix C of (2.2) when w=w;, j=1,2, "+, k. In
addition, we set

(3.5) c"=A.

From the discussion preceding Theorem 2, s; denotes the order of each C', so that
so = n. Similarly, m; denotes the order of the matrix A,,,. Then, applying (2.4) of
Theorem 1 to C'" yields

S,‘)!m]u(l\@g (C(j+1))\

(Sj+1)!(f,‘+1)
where t; '= s; +m,. On multiplying the quantities of (3.6) forall j=0,1,- -, k—1,we
obtain (since sg = n)

(3.6) !@mcmﬂs( . J=0,1, k-1,

a1, my @5 (C™)]
)Tt

But, since the irreducible diagonal submatrices of C'“’ are either nonsingular, or
singular with associated sets S; empty, from (2.5) and 2.7), |25 (C*¥)|=(sp)!, and
(3.7) then reduces to the desired result (2.9). 0O

Proof of Proposition 3. With the hypotheses of Proposition 3, consider any
permutation P in 2%(B). From the equivalence of (i) and (i) in Theorem A, it is easy
to verify that the hypothesis of graph-compatibility and the inclusions of (2.18) imply
that P is also in P2(A), whence |P5(A)|=|PE(B), the desired inequality of (2.19).

Next, suppose that there is a j € R4 for which S;(A) g S;(B), along with S (A c
S, (B) for each k € R4, and let

(3.8) s = max {k: k€ S;(B)\S;(A)}, wheres<j.

By definition, there is a path from vertex V to vertex V; in the block-directed graph
for the matrix B, but no such path in the block-directed graph for the matrix A. With
A in reduced normal form (2.16) and with a = {s, s +1, "+, 7}, set

(3.9) T? = {t: s =t =] and there is a path from V; to V; for AYU{s}.

(3.7) |25 (A) =

(k)
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By definition,
(3.10) seT? and je{a\T})

Then, as in the proof of Theorem 1. with each vertex V.. we associate r, positive
integers (where A,, and B, are n, X n, integers). numbered consecutively so that the
integers associated with V7 are {1,2, -, n}, those associated with Vs oare {n,+
L,» -+, ni+na}, etc. Now, alter (n) (thereby forming a rearrangement of (1)) by
simply removing the consecutive integers, corresponding in sequence to the vertices
Vi in T3, and placing them (without changing their relative positions) immediately
after the last integer associated with the last vertex of V. Using (3.10), Theorem A,
and the fact that there /s a path from vertex V, to vertex V; for the matrix B, this
new rearrangement of (n) can be seen to be in the set 25(A), but not in the set
?;(B). Thus, |2 (A)|>25(B)|, which gives strict inequality in (2.19). 0

Proof of Theorem 4. The proof of Theorem 4 follows easily from Proposition 3.
First, if Ry = or if Ry = and A satisfies (2.5), the construction of A and A is
such that A = A = A in this case, from which (2.25)follows. Otherwise, assume R4 # &
and that A does not satisfy (2.5). Hence, there exists a je R4 for which & #
S;(A) g (j—1). For this j, the construction of A and A from (2.22)-(2.23) shows that

(3.11) SA = #85(A) 2 S(A)=(-1),
as well as
(3.12) S A)S S (A) = Si(A)  for which k € R.A.

Thus, strict inequality holds in (2.19) of Proposition 3, i.e.,
(3.13) PRA<|PHA)|<|PiA)),
which gives the desired result (2.26) of Theorem 4. [
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