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Summary. Using the theory of Euler methods from summability theory, we
investigate general iterative methods for solving linear systems of equations.
In particular, for a given Euler method, a region S of the complex plane is
determined such that a k-step iterative method converges if the eigenvalues
of an iteration operator T are contained in S. For a given S, optimal
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§1. Introduction -
Given the following system of n linear equations in n unknowns,
Ax=b, (where 4eC™" is nonsingular), (L.1)

let A=M —N be any splitting of A (i.e., M is nonsingular), so that (1.1) can be
expressed as

x=Tx+e¢, (where :=M"'N and where c:=M ~'b). (1.2)
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Now, (1.2) induces the following simple iterative method
X, =Tx, e, m=01 .., (1.3

which, as is well known, converges, for any choice of the initial vector X, tc
the unique solution x of (1.1) iff p(T)<1, (where if o(T):={4: det(AI —T)=0}
denotes the spectrum of T, then p(T):=max {|4]: Jea(T)} denotes its spectra
radius). Moreover, if g, =X, —X, m=0,1, ..., is the error vector associated with
the iterate x,,, it is further well-known (cf. Young [14, p. 87], Varga [13, p. 67]

that

p(T)= lim (| T"[)" = lim (Sli% el /llEo '™, (1.4
for any vector norm | -[| on C", where |T™| denotes the associated induce;

operator norm of T™. Consequently, for any £, %0, we have from (1.4) that

tim (l2,l/lgo )" < p(T), (L
so that (p(T))" is a rough measure of how |lg,,[l/leell behaves asymptotically, :
m—»o0.

For each positive integer k, suppose we consider, in place of (1.3), & k-st
stationary iterative method for (1.2), defined by

Ym:=u0(Tym—1+c)+M1ym~1+"'+:u’kYm——k’ m:k7k+1""’ (1‘

where ¥o,¥i,---»Yg_1 are given starting.vectors, and where fio, fby, - My @
fixed complex numbers (independent of m) which are assumed to satisfy

fto+ py + oo y=1 (1

Obviously, on choosing the specific starting vectors as yo=... =¥ =X, °
see from (1.6) and (1.7) that y, =x for all m=0. Next, we note that the choi
po=1and p,=...=p=0 for k=1 is such that that iterative method of (1
reduces to that of (1.3). Moreover, the iterative methods of (1.3) and (1.6) ea
require just one matrix multiplication by the matrix T, although more vec
storage is in general required with (1.6), as compared with (1.3).

Because of the condition (1.7), the iterative method defined in (1.6) can
thought of as a type of averaging method of the matrix T and the iden
matrix I. For example, if k=1 in (1.6), the condition (1.7) implies that (1.6)
be expressed as

yms{(l—'uo)l—i_'u’OT}ym—1+:u0c’ m=1,2,...,

which is known in the literature (cf. [14, p. 361]) both as an extrapola
iterative method, and a stationary first-order Richardson method, based
(1.2). Similarly, the case k=2 of (1.6) becomes

yvn:(u11+MOT) Ym—1+(1_1u’0—“1) ym*2+u0c> m:273> sy
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which is known in the literature (cf. [14, p. 487]) both as a linear second-order
iterative method, and as a stationary second-order Richardson iterative meth-
"od, based on (1.2). It is interesting to note that optimized semiiterative meth-
ods (nonstationary second-order Richardson methods) degenerate, after suf-
ficiently many iterations, precisely into the stationary 2-step methods of (1.6),
when computers with finite word lengths are used (cf. Golub/Varga [3]).
Our aim here is to study the k-step stationary iterative method of (1.6), with
the goal of understanding the theory for selecting the parameters {u;}%_,, so as
to make the associated error vectors

g, =Y,—X, m=kk+1,.. (1.8)

tend to zero as rapidly as possible, when m— co. It is obvious that any choice
or optimization of the parameters {u;}%_, goes hand-in-hand with a knowledge
of the spectrum ¢(T). Usually, it is assumed that some information is given
about ¢(T), and the problem then is to find associated optimum parameters
{y; 3?:0. Our point of view here, just the opposite of the above, can be posed as
the following

Question. Given some parameters {u;}5_, satistying (1.7), what are the resulting
geometrical conclusions on the spectrum ¢(7) of the matrix T such that the
associated error vectors {&,}° , of (1.8) decrease in norm as K™, as m— oo,
where « is assumed to satisfy 0<x < 1?

If one can precisely describe these regions containing the spectrum of T as
a function of «, then one has a better understanding of how to select the
coefficients {uj}§=0 in (1.6), so as to nearly “optimally” fit a specific spectrum
o(T). This has been recently considered by de Pillis [12] and Manteuffel [8] in
a related context, where ellipses were used to fit (or “embrace”) a spectrum
o(T) in the special case k=2 in (L.6).

Our approach to the above posed Question comes from the theory of
summability. Clearly, as (1.2) possesses a unique solution iff 1¢0(T), then the
unique solution of (1.2) is x=(I—T) !¢, assuming 1éo(T). If, moreover,
p(T)<1, then x can be computed from the convergent Neumann series

x=1I-T)"1e= i Tie; (1.9)

j=0
and the iterations of (1.3) can be seen as a recursive computation of the partial

sums X,,:= ) T/c of the vector sum in (1.9), provided that x©:=c. Now, if
j=0
o0

the Neumann series ) 77 for (I —T)~! can be transformed by a general Euler
i=0

method (to be defined in §3), there results a polynomial series )" v,(7T), where
j=0
each v,(T) is a polynomial in the matrix T, of degree at most j. If this series

converges to (I —T)™!, then the solution x of (1.2) can be expressed as

x=(I—T)‘1c=.§ vo(T)e. (1.10)

ji=0
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For a special class of general Euler methods, which depend on the parame-

ters {u;}5_o, the partial sums ¥, = Y v(T)e, for m=0,1,..., of the series of

j=0

(1.10) can in fact be computed recursively from (1.6), provided that the initial
vectors {yj}’;;é are suitably chosen. This recursive computation is, of course,
important in applications. The central idea is that general Euler methods are
generated by a conformal mapping function p, and it is the properties of this
conformal mapping p which will give an answer to our Question above. This
summability approach, which one can find briefly described in Niethammer
[10], also reveals a connection with the methods of Kublanovskaja [7], de-
scribed in Faddeev-Faddeeva ([17, p. 6411L).

We now briefly describe the remainder of our paper. In §2 we describe how
a summability method, represented by an infinite triangular matrix P, can be
applied to the Neumann series of T. In §3 for a general Euler method, B is
generated by an Euler function p. Such a p determines a region S(p) in € such
that (1.10) converges to X whenever o(T)<=S(p). In §4, for estimating the decay
of the errors, it is useful to introduce, for some zeS(p), the quantity

w(z,p):=lim o)™
j—ooo
From the Jordan normal form of T, it can be seen that an appropriate measure
for the (asymptotic) decay of the terms v,(T) of (1.10) is

x(T,p): = max k(1;, P), (1.11)
,ea(T)
as similarly considered by Manteuffel [8]. 1f p is the identity mapping, then
o (T) =T/ and (T, p)=p(T).

For each Euler function p, there exists a maximal number 7(p)>1, such
that p is meromorphic and univalent in the disk with radius #(p); we call #(p)
the maximal extension of p (cf. Def. 2 of §3). Then, for each n with 1<n <7(p), a
closed subset S,(p) of S(p) can be described such that

K(Tp) =1/, (1.11)

whenever a(T)<=S,(p) (cf. Corollary 2).
Recursive formulas for the partial sums ¥, of (1.10) are derived in §5; for
computing ¥,,, all preceding ¥; (j=0,...,m—1) have to be stored. However, if p

is given by
to®

o M® g tm=l 1.12
e S AR (1.12)

then the central formula (1.6) results, so that a finite recursive formula is
obtained (cf. §6).

As an example, we describe in §6 the regions S(p) and S,(p) for a p of the
form (1.12) with k=2 and with real parameters. Then, p is an Euler function
for p,>0 and |u,|< 1, and S(p) is the interior of an ellipse with center — i, to>
and semiaxes (1—po)/tho and (1+u,)/ko- S,(p) is similarly shown to be the
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closed interior of a confocal ellipse for 1=y <4, where 7:=1/)/|u,|. For n=n,
S;(p) is the interval between the foci.

If @ and B are different complex numbers such that the line segment [«, f]
joining o and B doesn’t contain the point z=1, then there exists a unique
ellipse E in the complex plane such that E contains 1 and has foci « and f; in
§8, the optimal p, for this segment [«, 5] (and for all confocal elliptic regions
E,=int(E)) are constructed.

If one examines the problem of adjusting the parameters, it is useful to
consider, rather than one special operator 7; the class of operators

Oy:={TeC"": o(T)= U} (1.13)

for some compact set U, containing more than one point, whose complement
contains 1 and is simply connected. For an Euler function p with S(p)> U, we
define from (1.11)

K(U,p):=min{l/rz:1<?1§ﬁ(p) and U<s, ()} (1.14)

as the convergence Jactor of U with respect to p. By definition (cf. (1.11) and
(1.117),

K(Tp)=x(U,p)  for all TeO,,.
Now, the Euler function Po is said to be optimal with respect to U, if
K(U>P0)§K(U>P),

for all Euler functions p with S(p)> U. From the Riemann Mapping Theorem,
it follows (Theorem 8) that, for every U, there always exists an optimal p,.
Since the number K(U, po) is unique, we set

®(U):=x(U, p,). (1.15)

Now, it can be seen (Corollary 10) that each Euler function p is optimal
with respect to every S,(p), where 1 <y < 7(p); there holds

“S,p)=1/n.  1<n=h(p). (1.16)
Further, if U, ¢ U, we have from Schwarz’s Lemma that (cf. Theorem 9)
k(Uy) <k(U,). (1.17)

Together with the result of (1.16), upper and lower bounds for x(U) can easily
be obtained, if Euler functions p, and P, are known to satisfy
S, p)eUg S,,(p,); thus (cf. Corollary 11),

Uy <x(U)<1/y,. (1.18)

If an Euler function of the form (1.12) is given, then for m>k, the recursive
computation of the partial sums X,, of the Euler transform yields formula (1.6),
where y, is replaced by X, (i=m~k,...,m). If we want to interpret (1.6) as a
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general k-step iteration formula, we have to admit arbitrary starting vectors y;
(j=0,...,k—1). Then, of course, the sequences {X,,}m_o and {y,}o_, differ. But,
in §9 it is shown that both sequences have the same asymptotic convergence
behavior.

In the rest of §9, five examples are described. First, ([ —v,v]) for 0<v <1,
and k([ —iv,iv]) for arbitrary v>0, are determined. The third example deals
with the SOR-method (the successive overrelaxation method), applied to the

special linear system
X 0 B 1] [x] [01]
= + , (1.19)
[y ] [B , 0 y c,

ie., the iteration matrix in (1.19) is weakly two-cyclic in normal form (see [13],
§4.1). Then, the SOR-method can be written as a two-step method for the
partial vector x:

x, =0?(Tx,,_+&+2(1-w)x, ,—(1-w)’x,_, Mm=2) (1.20)

m

with T:=B, B,, &=c¢, +B, ¢,. Then, on applying the results of §6 and §7, the
convergence behavior of the SOR-method with an arbitrary complex relaxation
parameter w satisfying | — 1| <1, can be determined.

Finally in Example 4, a special 4-step method is examined, whereas in
Example 5, relation (1.18) is applied for the special case of the rectangle R,
:={zeC: —v<Rez=<v, —1<Imz=1}, O<v<l, ie, upper and lower bounds
for k(R,) are derived.

§2. Background Material from Summability Theory
The sequence of vectors {x,,}>_,, generated by (1.3), converges to the unique

solution x of (1.2), for any choice of x'?, iff p(T)<1. Suggested by the classical
theory of summability, the following sequence of vectors

Vi =) Vm Xy (mZ0) 2.1)
j=0

can be considered. The infinite triangular matrix Q:=(y,, Jmso0.0<,<m yiclds the
so-called sequence-to-sequence transformation. (For this notation and others
appearing in the following, see e.g., Zeller-Beekmann [15]). If the condition

Y my=l (120) ek

is imposed on Q, then for the error vector €,:=y,,—x of (1.8), it follows that

émzqm(T) é()’ (2‘3)
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where the polynomial g, (z) is defined by

0= 3 3,7 49

If it is known that the eigenvalues of a Hermitian matrix T are contained
in the real interval [«, f] with <1, then, with respect to this information on
the eigenvalues of 7, the use of properly normalized Chebsyhev polynomials
1,(z) guarantees a maximal reduction of the Euclidean norm of the associated
error vectors g,. Moreover, the three-term recurrence relation for these poly-
nomials ¢,(z) induces a corresponding three-term recurrence formula (cf. Chap.
5 of [13]) for the vectors y,, which by-passes the use of formula (2.1) which
requires the storage of all intermediate vectors x;. Methods of this type are
usually called semi-iterative methods.

On the other hand, if the eigenvalues of T are complex, but symmetric with
respect to the real line and can be enclosed in an ellipse which doesn’t contain
the point z=1, then a corresponding iteration, again based on Chebyshev
polynomials, in optimal, but only in an asymptotic sense (cf. [8]).

There is a second way, also suggested from summability theory, for trans-
forming the vector iterates {x™}®_, of (1.3). Instead of a sequence-to-sequence
transformation (2.1), we consider the following series-to-series transformation.
Given an infinite triangular matrix

"B:=(ni,j)i§0,0§j§i’ (2.5)

the terms 77 of the Neumann series (1.9) are transformed according to

Jj
v(T):= Z nj,,Tl, j=0,1,..., (2.6)
=0
ie.,
_UO(T)A _no,o s

v, (T) o .y O T

v(T) Mo Ryq..m; || T

] L ML

The resulting series

2. o7 2.7)
j=0 ,

is considered as the transformed Neumann series. To this transformation, de-
termined by B, there corresponds a sequence-to-sequence transformation Q of
the partial sums of the Neumann series to the partial sums of (2.7). Between P
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and Q, the following relation holds (cf. [15, p. 71)

Q=P 2.8)
where ~ B
1 1 1
1 1 0 —1 1 0
1 1 1 —1 1
= >-1, = .
=g ) \
e N | o |

If the transformed Neumann series (2.7) converges to (I—T)~!, then the
solution x of (1.2) is given by

x=(I—T)’1c=‘§ v(T)e. (2.9)

j=0

We note that if B of (2.5) is chosen to be the identity matrix, then so is Q from
(2.8), and from (2.6), we have v(T)=T J. Thus, when p(T)<1, (1.9) is a special
case of (2.9).

There are two reasons for applying such transformations. First the series
(2.9) may converge more rapidly than that of (1.9), and second, the series (2.9)
may even converge in cases where (1.9) diverges. This raises two obvious
questions.

(i) Under what assumptions on 8 and T does (2.9) hold, i.e., under what
conditions on B and T does the series (2.7) converge?
(i) If (2.9) is valid, ie., (2.7) converges to (I —T)~*, does there exist a low-

o
order recurrence relation for the partial sums of ) v,(T)e which allows one to

j=0
by-pass the direct evaluation (and storage) requirjed in (2.6)?

It should be mentioned that, in summability theory, the transformation
(2.6) is not restricted to triangular matrices so that in general, an infinite series
would result in (2.6). But since, in this case, no recurrence formula is known to
exist, we confine ourselves to triangular matrices and especially to the so-called
Euler methods which were examined in 1923 by Perron [11] and in 1926 by
Knopp [5] as generalizations of Euler’s series transformation (see [15], p. 132).
We sketch below the derivation which reveals a close connection to known
iterative methods for solving the equation x=Tx+¢; a more detailed treat-
ment is given in Niethammer [9]. A further connection exists to the so-called
“universal algorithms” of Kublanovskaya [7], described in [1].

§3. Euler Functions and General Euler Methods

For notation, let D, :={¢eC: [¢p|<y} for any >0, and let [3,, denote its
closure. We make the following
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Definition 1. A complex-valued function p is said to be an Euler function
(written pe) if there exists an open neighborhood D of D, such that

a) p is meromorphic and univalent (schlicht) in D, and if

b) p(0)=0, p(1)=1.

We remark that if p is an Euler function, then from a), p can have at most
one pole, of order one, in D,. Next, if p is an Euler function, then from b),
there exists a v>0 such that p is holomorphic in D,. Thus, the following power
series

pO= Y 7, 0 (1)

converges (uniformly and absolutely) for |¢|<v. This implies that there exist
power series for all powers of p, i.e.,

[p(qb)]"'::i Tiand, m=0,12.., for |} <v. (3.2)
J=m

Hence, from an Euler function p, the coefficients {n im) e, Of (3.2) can be used
to define the j-th column (0<j < o0) of an infinite matrix B, and the series-to-
series transformation (2.5) induced by % is called the associated general Euler
method. As we shall see, this introduction of a general Euler method is useful
for the computation of the transformed series (2.9), which we call the Euler
transform.

The following definition will be useful in the next section.

A

Definition 2. For each peG, the maximal extension, #(p), is #=4#(p)
:=max{x>1: p is meromorphic and univalent in D,}.

Note, from Definition 1, that 1 <#(p)< o for each pe@.

For the understanding of its analytical properties, the following derivation
of the Euler transform is more appropriate. We introduce the resolvent opera-
tor for an n x n complex matrix T with 1¢0(T):

"G T)=(I-(1)" Y (3.3)

r is evidently matrix-valued and meromorphic, the poles {; of r and the
eigenvalues 7, of 7 are related via =1/t (i=1,...,n). We are interested in

r(1, T)=(I-T)"", which can be represented by the Neumann series ) 77 if

j=0
there are no poles {; with ILI=1, ie., if there are no eigenvalues 7, of T with
I'Cil 21

Since r is holomorphic at { =0, then there is an n >0 for which

oo

GCT)=(I-{T)" =Y ¢Ti  for |f|<n. (3.4)

=0

For an Euler function p, we now make the substitution {=p(¢) in (3.4), use
(3.2), and reorder according to the powers of ¢. Thus, there is an ii>0 for
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which N
R(§, T):=r(p(d), T)=(U—p(@) T)" "=} v(T)¢), for [p|<il,  (3.5)

with o
vo(T)i=1, and v,.(T):=li 7 T forall j=1,2,..., (3.6)

which agrees with (2.6).

Now, our interest is in having the representation of R(¢, T) in (3.5), valid
for all || < 1. If this were to be true, then the case ¢p=1 of (3.5) would give us
that

R(L,Ne=(I~-T)"te= i v(T)e,

j=0

so that the Euler transform of the Neumann series of (I —7)~! is convergent.
This leads us to

Theorem 1. Assume pe€. If
o(T)=C~p(D,)=S(p). (3.7

where D, is the closed unit disk and p:=1/p, then R(¢$, T) is nonsingular for all
€D, and the expansion of (3.5) converges absolutely in ¢ in D,. Conversely, if
the expansion in (3.5) is absolutely convergent for all ¢ in D,, then o(T)<=S(p).

Proof. From (3.5), we have that there exists an #4>0 for which the repre-
sentation of (3.5) is valid. We claim, with the hypothesis of (3.7), that #>1. To
show this, assume 7 <1, which implies that this representation has a singularity
in some ¢ with |§|=#<1, ie., from (3.5) (I —p(¢) T) is singular. Hence, there is
an eigenvalue 7, of T such that p(@)t,=1, so that

=p(9).

1
)
But this contradicts (3.7).

Conversely, assume that the expansion in (3.5) is valid for all qbe]jl. Let 1,
be any eigenvalue of T, so that Tx=r1;-Xx for some x=0. Then, from (3.5),

(ivgn¢d§=(§l4m¢ﬂx=a¢§éﬁﬁ

\j=0 j=0

for all ¢peD,. Thus, 1, p(¢) 1 for any ¢eD,, which implies (3.7). O
The mappings p and p, together with the open domain S(p), are shown in
Fig. 1. '

Remark. If T is nonsingular, i.e., T has no zero eigenvalue, then because of the
relationship between the poles of the resolvent r and the eigenvalues of T, it is
evident that r is holomorphic in a neighborhood of oo. Thus, if ¢,eD,, is a
simple pole of the Euler function p, then R(¢, T)=(I—p(¢) T)~* is holomor-
phic in a neighborhood of ¢,, if T is nonsingular.
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Fig. 1

~ §4. Rates of Convergence of Euler Methods

It can be seen from the Jordan normal form of T (cf. [8]) that an appropriate
measure for the (asymptotic) decay of the terms v(T) of the Euler transform is

k(T p):= max lim |v,(r))|'", 4.1
ti€0(T) jo oo
Thus, (T, p) can be taken as a measure for the rate of convergence of the Euler
transform. Note that for the identity mapping pe®, we obtain v(T)=T/ and
hence x(T; p)=p(T) (cf. (1.4)).
From the Cauchy-Hadamard formula, we conclude that 1/x(T,p) is the
radius of convergence of the power series (3.5) of R(+, T). Thus, if R(-,T) is
holomorphic in D,:={¢: |¢|<n} for some 5> 1, then

®(Lp)=1/n. (4.2)

We now seek sufficient conditions on p and T so that R(-,T) is holomor-
phic in D, with #>1. Thus, consider any n with 1<n=4(p) (cf. Definition. 2).
Then, R(+, T) is holomorphic in D, if

p(@)+{;  for ¢eD,, i=1,...,n,
ie.,
u#p(¢) for ¢eD,, i=1,...n,
ie.,
o(T)<= S,(p):=C~ p(D,).

The above gives us the following

Corollary 2. If peG, then for the associated Euler transform there holds
K(Tp) =1/ (4.3)

Jor all T with a(T)cSn(p)==(I_3\ﬁ(Dn), where 1 satisfies 1<n=<4#(p). Equality
holds in (4.3) if there exists at last one eigenvalue of T on the boundary of S,(p).

The region S,(p) is described in Fig, 2; for comparison, the region S(p) from
Fig. 1 is given by a dotted line.



188 W. Niethammer and R.S. Varga
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We remark that inequality (4.3) was derived in Niethammer [10].

It follows from the above construction that, for pe€, the region S(p) is open
with the point 1 on its boundary, and S,(p) is closed for 1<n<f(p). If p is
holomorphic in D,, then 0eS, (p), while if p has a pole in D,, then 0¢5,(p).

The following result will be very useful for comparing different Euler
functions.

Theorem 3. (Comparison Theorem). Let p, and p, in € satisfy

S,,(P2) S5, (11)s (4.4)
where 1<, <#(p,), and 1<n, =i(p,). Then
Un,=1/n;. (4.5)

Moreover, if equality does not hold in (4.4), then strict inequality holds in (4.5).
Proof. From the assumption (4.4), it follows that

ﬁZ(‘Dnz)QlN)l(‘Dnl)' (46)
Then, if g, denotes the inverse mapping of 1/p,, it follows that the com-
position g,°p, maps D, inté D, . Thus,

h(d): =;71~<qzo 51 ) (47

is a mapping from D, into D, with h(0)=0. By Schwarz's Lemma, we conclude
that |h(¢)| <|¢| for all peD,. For p=1/n,, we obtain

Un zlh(1/m)l=1/12, (4.8)

the last equality coming from the fact p,(1)=p,(1)=1. This establishes (4.5).
If equality does not hold in (4.4), then inequality is valid in (4.6), and, again
from Schwarz’s Lemma, we have, in analogy with (4.8),

n,>h(1/m )= ns,

which establishes strict inequality in (4.5). []
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It is interesting to remark that the univalence of the Euler function p, as
required in Definitions 1 and 2, is used in Theorem 3. However, on deleting
the univalence hypothesis, one could work with a weaker definition of an Euler
function, for which many of the results here, but not all (such as Theorem 3)
would remain valid.

>

§5. Computation of the Euler Transform

Now, we come to the computation of the solution x=(—-T) 'c¢ from the
series (3.7). If an Euler function p has the property that ¢(T)<=S(p), then the
series (3.7) converges to x, so that the partial sums

h, (5.1)

J

VF

Xpi= Y v(T)e=:
j=0

Jj=0

I

with h,=c,
lLlj:zb‘j(Y’)c:é:1 n, T'e  (j>0) (5.2)
arc convergent to x as m— oo. (Note that since [p(¢)]°: =1, we have
Ty o=1m;,=0 (j>0); (5.3)

therefore in (5.2) the summation begins with /= 1) It is not practical to
evaluate the polynomials v (T) directly, so we seek for a recurrence formula for
the x,,’s.

Lemma 4. Let pe€ be given by the power series

pOI= Y 7, 54

Then, the partial sums x,, in (5.1) can be recursively computed by

X, =h,=c,
X, =X,_;+h,, (m>0)
with
m—1
sz(znmimJ (55)
1=0

Proof. The coefficients 7;, in (5.2) are the coefficients of the power series for
[p(¢)]. From the identity p(¢)- [p(¢)]"~' =[p(¢)]", we derive

nm,j=Z7zl_1,j_1-nmfl+1’1 (m=12...; 1<j<m). (5.6)
=)
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With (5.6) and (5.3), we obtain

h,=v,(T)e=Y =, ;T'c
j=1

j=

m

J
Z Ty 1, j—1Tm—t41,1 T'e
]

=J

m 1
— j~1
=T Z Tn—1+1,1 (Z Ty, T c)

I=1 j=1
m—1 1

_ j

=T T, 1 ( nl,jT c)
1=0 =0
m—1

=T Ty b O

0

T

The advantage of (5.5) is that, for each x,,, the operator T has to be applied
only once; further, the coefficients =, ;, for j>1, do not appear in the re-
currence formula, but only the coefficients 7, ; of the given power series (5.4).
Yet, the disadvantage is that for computing x,,, all preceding h; (j=0,...,m—1)
must in general be stored.

The next theorem shows that there are special Euler functions p without
the last mentioned drawback. For this, we make the following

Definition 3. For each positive integer k, the subset €, of € consists of all pe€
of the form

_ o ®
p((ﬁ)—l—ulqﬁ—...—um"' (5.7)

With this definition, we next establish

Theorem 5. If peG,, then the partial sums x, of (5.1) can be recursively
computed by

x,=h,=c,

X, =X,_;+h, (m>0)
with ‘

hm::ﬂ() ’Thm—l_{_lu'lﬁm—l+:u’2hm—2+"‘+iukhm—k (58)
where

e h, >0

Yle, 10
A direct recurrence formula for X, is
Xo=¢,
X1=C+,UOTX0, (5 9)
Xy ==y ==y ) € o T+ g X ooy Xy,
(2=m=k)

X, =Uo(TX,, _ +O)+u X, +. .+ WX,  (m>k). (5.10)
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Proof. First, we derive a recurrence formula for the elements of the matrix P
=(n;,) generated by a p of the form (5.7). Again, we use the identity
p(P) [p(d)]" ' =[p($)]™ which gives

o

wo (5

\j=m-—1

s ®) ==t d == (3 7,00
j=m
A comparison of the coefficients of equal powers of ¢ yields

Tim=HoTjt,met F T gy F T g o Ty (5.11)
U=L2,...; 1<m<}), where Tjm:=0 for all j<m. For the 0-th column, (5.3)

holds.
Using (5.11) and h,=¢, we get for j>0 that

J
h;=v(T)e= Zl o, Tme

Jj
= Z (.uo”j—Lmq T T +1uknj—k,m) "¢
m=1

j—k

i-1 -1 j
=WoT X my W T"+py Y Tiam Tty Y 7 T,
m=0 1 m=1

me=

The first term on the right side equals h;_, by definition; the terms with factor
t (I=1,...,k) equal h, as long as J—1>0; otherwise, these terms are zero. Thus,
we can write

hj=uoTh,_ +pchy  +. +uh,

with h;:=h, if >0, and h,:=0if I<0, which establishes (5.8).
Assuming first that m>k, we obtain with (5.8) that

Xm=h0+ Z hj
i=1
=h,+u, T Y b +p ) Ej—1+"‘+/uk Ej—k
i=1 j=1 j=1
m—1 m—1 m—k
=hg+uT ) hj+pu, b+ Y b—p by
Jj=0 j=0 Jj=0

_.ukh05

where the last terms can be considere;d as corrections since, in the terms with

factor u, (1<1<k), we have replaced h, by h,. Now, since A=y~ =) =u,
m—|

and h,=c, we get (5.10) from X, ;= h (I=1,...,k). The formula for X,
j=0

j=
follows from (5.8) for m=1; for 2=mzxk, the terms with factor y, I>k—m,
disappear, i.e., no corrections have to be made in this case. This proves (5.9).
O
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It is important to note that any Euler function in €, yields, by virtue of
(5.10) (with y, replacing x,) the k-step iterative method as introduced in (1.6).

§6. The Special Case k=2: Real Parameters

As an example, we examine the particular Euler function p in (5.7) for the case
k=2, and determine the regions S(p) and S,(p) according to Theorem 1. Let

Lo P
1"#1(15".“2@52’

where at first we confine ourselves to real parameters uo, ty, y, with py+p,
+u,=1; from (6.1), p(0)=0 and p(1)=1 follow. We should mention that for
the special case u,=0, the associated Euler function p of (6.1) generates the
classical series transformation of Euler-Knopp (cf. [15, p. 130ff.]).

Next, p of (6.1) is an Euler function if, for p:=1/p, it can be established that
there exists an open set © containing D, for which § is univalent in D. To
show this, we introduce polar coordinates ¢ =#¢'’ and obtain

p(¢):= o %0, (6.1)

) 1 1 1 .
p(ne)y= L ((f—,uzn) cos 6 —i (—-i—uyq) sin 0). (6.2)
Ho Ho \VI n

From (6.2), we conclude that, for small #, the image p(D,) is the exterior of an
ellipse E, with center —p,/u, and semiaxes

ay:=(1/n—pm)/luol by =Q/n+pymyluol. (6.3)
For n=1, one obtains the ellipse E with semiaxes
a:=(1—=w)/lwol, b=+, Il (6.4)

Since the semiaxes a, and b, are easily seen from (6.3) to be strictly monotone
decreasing functions of #, then there exists an open set © containing D, such
that p is univalent in D iff, for 0<n =<1, the semiaxes a, and b, remain positive.

This is the case iff -
Uo=0, and —l<pu,<L. (6.5)

As a consequence of (6.5), 1 —u,>0, or equivalently p, =1—pu,— o> —fi.
Thus, —p,/u,<1 for py>0 and —pu,/uy,>1 for uy,<0, ie., the center of the
ellipse E lies to the left (right) of unity if o >0 (<0).

Next, the above discussion shows that p is meromorphic and univalent for
1 <n <47 (where 7(p) is the maximal extension (cf. Def. 2) of p) iff a, and b, of
(6.3) are both positive for | <n<i. For n=1, either a, or b, is necessarily zero,
from which it follows (cf. (6.3)) that

A= 1/ 1,l. (6.6)
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An easy calculation with (6.3) shows that the associated family of ellipses E, ,
where 0 <7 <7, are confocal with foci F~ and F *, where

F+:={(_'u1 2y ‘.uzl)/:uo if —1<u, =0, (6.7)
(= 220 Ipalfue - 0=p, <L,

We note further that the limiting case y=# corresponds to the degenerate
ellipse E,, which is the line segment [F~,F*].

As a consequence of these observations and Theorems 1 and 5, we next
establish

Corollary 6. Let pe€,, so that (6.5) is valid. Then,

(a) The Euler transform of the Neumann series of T converges to (I—T)~!
for all T with o(T)=S(p), where S(p) is the interior of the ellipse E with center
—H1 /g, horizontal semiaxes a=(1 — 1)/l and vertical semiaxes b=(1 — 1)l

(b) For all  with 1 <y<1/}/|u,|, the region S,(p) is the closed interior of the
ellipse E, (confocal to E) with semiaxis a, and b, given by (6.3). For T with
o(T)<=S,(p), there holds

K(Lp)=1/n.

() If F* and F~ are the foci of E (and E,) according to (6.7), and if
o(T)=[F~,F*]:={F~4+t(F*—F~): 0<t<1} for some T, then

k(T p)=1/i1=V|u,l.

(d) The partial sums x,, of the series x = ZO vi(T)e can be computed accord-
J=
ing to

X,=C¢,
Xy =C+po TX,, 6.8)
X, =(1—p)e+u,Tx, +ux,,

X =Uo(TXyy 1 +€)F X+ X, , (m>2).

Proof. Parts (a) and (b) follow from Theorem 1, part (d) from Theorem 5, and
part (c) from Corollary 2. [

If an operator T, together with some information on a(T), is given, then
one can try to adjust the real parameters u,, p,, 4, such that o(T) is “em-
braced” by a fitting ellipse E,; if o(T) is contained in the strip —1<Rez<1,
this is done by de Pillis in [12]. ‘

§7. The Special Case k=2: Complex Parameters
Corollary 6 describes the situation when the parameters Ho» My, Uy are real; in

this case, S(p) and S,(p) are elliptical regions, such that the foci F~ and F* are
on the real line (1, <0) or on a vertical line (u,>0). For studying the complex
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case, let us begin with two different complex numbers « and 5, and let us again
(cf. Corollary 6, (c)) denote by [, f] the complex line segment joining o and f.
If 1¢[o, £, then o and f determine a unique ellipse E with foci o and f which
passes through z=1.

Now, we can try to find an Euler function p such that S(p) coincides with
the interior of E, and, such that p is of the form (6.1), with, eventually, complex
parameters u,, u4,, 4,. If there is a p with S(p)=int(E) then, by our derivation
in the §3, p=1/p would be a mapping from D, onto the union of E and its
exterior. We shall find this mapping p by constructmg a mapping p from Dy,
for some > 1, onto €\ [o, f]. We do this in three steps.

First, we begin with a disk D,, #=|s|> 1, where s is to be fixed later.

() ¢p—¢:=/s
(1) Gy =(+1/$)2

() yoz:=yp+6 with  y:=(f—a)/2, 6:=(a+ )/2.

In (1), the disk D, with n=|s| is mapped onto the unit disk D in the ¢-plane;
by (II), D is mapped onto €~ [—1,1] in the y-plane, and by (III), C~[—1,1]
is mapped onto €~ [a, f] in the z-plane.

The three steps are sketched in Fig. 3; the dotted line shows the images of
the unit circle |¢|=1.

Fig.3

The mapping ¢rz=p(¢) is given by

z=p(¢p)= 5—{— ( ¢+¢> (7.1)
82 4+2509+y¢?
B 25¢
1+2(S ¢+ ! ¢* p

=—> (72)

;;05

ie., p(¢)=1/p(¢) is of the form (6.1) with
2 — -

T L s 73

s s s
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Now, s has to be determined from the condition 1 =p(1)=p(1); from (7.1), we

derive that
7 (1 )
1=06+< |~
+2 (S+S

2 20-9)

or

s+1=0. (7.4)

Denoting the two roots of (7.4) by s*, then

Ntk ;1—5)2—}’2‘ (7.5)

By inserting y:=(f—«)/2, §:=(a+ B)/2 we get

. (l—oc)+(1—[)’)+2]/(1—o¢)(l
f—u

_ 2
|/1 -+ 1 (7.6)
f—a
From (7.4), we see s*=1/s7; for use in (7.1)-(7.3), we take that particular

solution which satisfies |s|> 1. Thus, the mapping p has been constructed. If we
set

N

or

f:=max(|s*|, |s~)=lsl, (7.7)

then by construction, ﬁ(Dﬁ)=@\[a, f1 so that 4 is indeed the maximal exten-
sion of p (cf. Def. 2). Thus, D, is mapped onto the exterior of the ellipse E with
foci o and f, passing through z=1; the interior of E corresponds to S(p).

To any ellipse E, from this family of ellipses with foci « and f and with
1<n<4, there corresponds a disk D,, 1<n<#, such that D, is mapped by j
onto the exterior of E,. Suppose z is an arbitrary point of int EX[o, f], and we
wish to determine that value of 5 such that z lies in E,. To determine this 7, let
¢ be the unique complex number with |¢|<7# such that z=p(¢). Then, it is
easy to verify that y=|¢|. Thus, we have established

Theorem 7. Let o= feC be such that 1¢[a, B], and let E be the ellipse with foci
o and f which passes through the point 1.

(@) Then by (7.3) and (7.6), there exists an Euler function p in €, (df. (6.1)
such that S(p) is the interior of E, i.e., the Euler transform of the Neumann series
of T converges to (I—T)~* for all T wzth o(T)<int(E).

(b) If o(T) =[x, B], then

k(T p)=1/7, (7.8)

where ij is given by (7.7).
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(¢) If o(T) is contained in the closed interior of a confocal ellipse E, where
1 <n<#, which passes through a point z, then

k(Lp) =1/,

where n=|¢| and ¢ is a solution of z=p(¢p) with 1 <|P| <.

(d) If o(T)<int(E), then the partial sums X,, of

x=(I-T)"te=) v(T)ec
j=0

can be computed by the formulas in Corollary 5, (d), where the parameters p,,
Uy, Uy are given by (7.3).

Since 7] is the maximal extension of p, equality holds in (7.8). Special cases
of Theorem 7 are considered in Sect. 9.

§8. Optimal Methods with Respect to a Given Set

For convenience, we first let 3 denote the class of all compact sets U
containing more than one point, whose complement contains 1 and is simply
connected. Then, for each UeIR, we define the set

W,:={peC: S(p)o U}. (8.1)
(Later, we shall show that 2, is not empty.) Next, we define for each pe?l,,
k(U,p):=min{l/n: 1<n<i(p) and UcS,(p)}. (8.2)

Note that if x: =x(U, p), then UcS,y . (p).
For each Ue, we can associate an asymptotic convergence factor x(U) for
U, defined by

w(U):= inf (U, p). (8.3)

peliy
Any Euler function p,e%(, for which
KU, po)=x(U) (34

is then called optimal with respect to U.
We next establish

Theorem 8. For each UeIR, there exists a p ey, which is optimal with respect
to U.

Proof. The complement U:=C~ U is open and simply connected in €. Under
our assumption on U, the set U has more than one boundary point. By the
Riemann Mapping Theorem, there exists a univalent mapping j from the open
unit disk D, onto U with j(0)=oo. Since 1€U, there exists a unique s=+0, seD,
with p(s)=1. Setting q(¢):=1/p(s¢), then it is evident that g(1)=1 and g(0)=0.
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Moreover, by definition

1 ~
G(Dy ) =———=p(s Dyy)=U
1/]s| q(Dl/Is') 1/lsl

Thus, as S(q):=@\§(D1)DG—Z\Q(D1/|S‘)=U, then ge,. Moreover, as S,(q):
=C~g(D,), then
S1/|s|(q)=@\ U: Ua and K(Ua Q)Z |S|

Next, assume that there exists a ¢, in 2y with x(U,q,)=Is,|<|s|. Then it
follows that

U :Sl/|s|(q)CS1/|s|(q1)'

From Comparison Theorem 3 of §4, we conclude that |s|<|s,|, which is a
contradiction. Thus we have shown that g=p, is optimal with respect to U. []

The essence of Theorem § is that we can replace the definition of #(U) in
(8.3) by k(U)=min x(U, p). (8.5)

pely

Next, as a consequence of Theorem § and Comparison Theorem 3, we estab-
lish

Theorem 9. Let the sets U, and U, in M satisfy U, U,. Then,
k(U <x(U,). (8.6)

Proof. From the proof of Theorem 8, there are p;e€ and »; with 1<n;Z#(p))
such that S, (p)=U; (j=1,2) with

K(U)=1/n, j=1,2. (8.7)

Thus, from Comparison Theorem 3, 1/, <1/, which, with (8.7), gives the
desired result of (8.6). [

As we have seen, the Riemann Mapping Theorem provides us with a tool
for determining an optimal Euler function for each set U in M. As is well
known, finding the appropriate mapping function by means of the Riemann
Mapping Theorem is not usually easy, so that upper and lower bounds for the
asymptotic convergence factor x(U) may be both useful and desirable. On the
other hand, for every Euler function p, there is a family of regions for which p
is optimal (in the sense of (8.4)) for each of these regions. These two sets of
ideas have been incorporated into the following results, whose proofs are
respectively consequences of Theorems § and 9.

Corollary 10. If peG, then p is optimal (cf. (8.4)) with respect to each set S,(p)
for any n satisfying 1 <n <7, and moreover

kS, p)=1/m, 1<n=i=i(p). (8.8)
Corollary 11. Let UeIR. If p;e€, j=1,2, with

Sr“(.pl)%U%Snz(pZL 1<'I}§ﬁ(p1)7 j=1727 (89)
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then
1/, <x(U)<1/n,. (8.10)

The next section is devoted to the study of various examples of sets U for
which the exact asymptotic convergence factors x(U) are found, and other sets
U for which nontrivial upper and lower bounds for x(U) are found.

§9. Examples

We now describe some examples, which make use of Corollary 10 and Corol-
lary [1. As far as Corollary 10 is concerned, we can take two points of view.
Initially, we can assume that UeI is given, and we are looking for some Euler
function p such that U=S§,(p) for some [ <y=<i(p). Or, we can start with an
Euler function of the form (5.7). If ¢(T)<=S(p) for some operator T, then the
partial sums x,, of the Euler transform can be computed by the formulas in
Theorem 5. For convenience, we repeat (5.7):

X =pho(TX,_ +Q) X+ Xy (m>k) 9.1

Now, if we want to interpret (9.1) as a general k-step iteration formula, we
have to admit arbitrary starting vectors X;(j=0,...,k—1). If we do this, of
course, we get a sequence {X,}n_, which differs from the sequence {x,}>_,
generated in (5.9) of Theorem 5. The question is, if the sequence {X,}%_, has
the same limit (I—7) "¢ and the same asymptotic convergence factor as the
sequence {X,,}o_.

Let us first assume that in Theorem 5, instead of x,=c, we choose %, +c.
Then, we will prove by induction that

L,=x,+W, with W,:=v,(T)&,—c) 9.2)
and with v,(T) defined by (5.1). Since v,(T)=1, we have
Xo=c+(X,—¢)=%X,+(X, —¢)=X, +0o(T) (X —©).
Now, let (9.2) be true for all. [ with 1<I<m—1, 1<m—1<k. Then from (5.9),
we have
ﬁmz(l_.ul—‘“ _lum—l)c"l_IuOHm——l +lu1ﬁm71+"' +:um—1ﬁ1
==y = = ) g TR+ X+ pt, X
o TW, gy Wy e W
Then, from (5.9), we conclude that the terms in first row on the right side equal
X,,; that the terms in the second row equal W,,=v,(T)(%X,—¢) follows from
(5.8), where ¢ has to be replaced by (X,—c). Similarly, from (5.10), it follows
that (9.2) holds for m>k.

Now, if we choose x,=c¢, but X,#x, for some [ with 1<I<k—1, there
results a sequence {X,}>_,; in the same way as above, one shows that X,
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=x,(0<m<i-1),

X, =x,+W, with W,:=v, (T)&—x) (m=]). 9.3)

m

Finally, if we choose X;#x; (j=0,...,l; ISk—1), then the sequence {X,}x_,,
resulting from (9.1), differs from {x,,}°_, by [ terms of the form (9.3).

Now, if k:=x(T,p)<1, then from the definition of (4.1), we know that for
the sequence {x,}*_, given by Theorem 5, the difference sequence {x,
—X,, 112 ={h,}>_,, (x_,=0), tends to zero as {k"}y_,. If we choose arbi-
trary starting vectors %X; (j=0,...,k—1) then, from above, we know that the
resulting sequence {X,,}%_, and the sequence {x,}u_, differ by at most k
sequences {w,}%_, of the form (9.3), which tend to zero as {xkm=he
=0,....,k—1), ie, {X,}>_, and {x,}x_, have the same limit and the same
convergence behavior. Therefore, all statements concerning the convergence
factor, which are derived by interpreting (9.1) as the recursive computation of
an Buler transform, hold in the same way, if we interpret (9.1) as a k-step
iteration formula with arbitrary starting vectors.

Example 1. Let U be the real interval [ —v,v] with 0<v<1. Applying Theo-

rem 7 with o:=—v and B:=v, there is an Euler function pe€, such that (cf
(7.8) and (7.10))
SJ_r_( 1-}—vi|/1—v)2_1i|/1—v2 ©.4)
B 2y B v ' '

In our special case, we have for the parameters y and J, appearing in (7.3), y
=(f—a)2=v, §=(B+®)/2=0; from (7.3) and (9.4) we get with s=s~
=20 1

p 2 2 0 v? 9.5)
== = , Yy ——m = = (O,
O ys 14y/1—y2 s S 412

From Corollary 10 we conclude that the Euler function pe€,, determined by
the parameters in (9.5), is optimal with respect to U=[—v,v], and

1 v
K(U)y=—=r——.
ST 1+ 12
From Theorem 7 and Corollary 10, we further conclude that p (determined by
(9.5)) is optimal, too, with respect to the closed interior E, of all ellipses with
foci Fi":=(v,0) and F; :=(—v,0) and major semiaxis a,, v<a,<1; we have
k(E,)=1/n, where n is determined from (6.3): a,=(1/n—u,n)/1to. If the semiaxes
a, or b, are not known, but some other point P on the boundary of E, is
kn;wn, then a, is given by the well-known property of any ellipse: F*P+F~ P
= a,,.

It should be mentioned that if the Chebyshev semi-iterative method (see
[13], §5.1 and §5.2) is applied to a linear system x=Bx+c, where B has real
eigenvalues with p(B)=v <1, then, asymptotically, as m— oo, the convergence
rate is governed by (9.6), whereas the (nonstationary) parameters in the three-
term recursive formulas tend to the values in (9.5), as m— 0.

(9.6)
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Example 2. In the same manner as in Example 1, we conclude in the case U
:=[—iv,iv], v>0 arbitrary, that

. Wl+ivEy1—iv) 1) 1+4v2
ST = = -
iv

2iv

9.7

and with y=iv, §=0, s=s*
2 2 0 —1 v2
—_— e —, 'LL f— A 'u —_——m =
o s T /T ' st (1+/1107)

Again, the Euler function pe@,, determined by (9.8), is optimal with respect to
U=[—iv, +iv], and

9.8)

W(U)= b= 9.9

N 1+|/1+v2'

Formulas (9.8) and (9.9) are derived, e.g.,, in de Pillis [12]. The statements of
Example 1, concerning confocal ellipses, hold in a corresponding way.

Example 3. Let Az=z—Bz=c be a nonsingular linear system, such that B is
weakly two-cyclic (cf. [13]) with complex elements, and Az=c has the form

s, o1G1+[2)
= + , (9.10)

[y] [B2 0lly ¢,
where the diagonal blocks are square and zero. Then, (9.10) can be written as
two uncoupled systems of equations for x and y (see [13], §5.4). In a similar

way, the SOR-method, applied to (9.10), can be written as a two-step method
for the vector x alone (see [9]): there results

X, =w*B,B,X,,_;+¢,+ B ¢,)+2(l —o)x,_, —(1—w)’x,_,
(m=2). Writing

T:=B;B,, ¢€=c¢,+B¢, 9.11)
we have

X, =0*(1X,,_; +&+2(1 —w)x,,_, — (1 —w)*x,,_,(m=2), (9.12)
i.e. (9.12) is of the form (9.1) with
Hoi=0%  p=2(1-w), p,= —(1‘—60)2. (9.13)

The parameters uo, fty, p,, which satisfy po+p, +u,=1 and which depend
only on o, determine an Euler function p=p(w)e€,. From the considerations
at the beginning of the section, we conclude that the sequence {x, 00, of
(9.12), generated by the SOR-method, has the same convergence behavior as
the sequence of partial sums of the Euler transform induced by p(w). But for
the latter, many new results, even for complex parameters, can be derived from
our previous sections.
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First, let us describe S(p(w)). Combining (7.3) and (9.13), we get

2
= 2:——-
Ko @ YS,

—26
1y =201 —0)=—-,
VS

1
o= —(1-0P=—.

Solving for 7, 6, s yields

2(1—w) —-2(1—w) 1
_ _ ) = b 9.14
1 o2 o o2 S=1_w (9.14)

From (7.7) we want to have |s[>1, which gives
[1—w|<1, (9.15)

the well-known necessary condition for convergence of Kahan (see [13], Theo-
rem 3.5). From §7, we know that S(p(w)) is the interior of the ellipse E(w), with
foci o and B, where y=(f—0)/2, 6=(a+pB)/2, and which passes through the
point z=1. From (9.14), we get
—4(1—
=0, p=—20-0) (9.16)

w

If we now denote by E(w) the ellipse which passes through Z=1 and has center
0 and foci

proo 2V 170 9.17)
w

then, by representing E(w) in polar coordinates, an easy calculation shows that,
by the mapping Z—z? the ellipse E(w) is mapped onto E(w) (and E"(co) onto
E,(w)). Further, since the eigenvalues t; of T=B;B, ar¢ connected with the
eigenvalues f§; of the matrix B of the given system x—Bx=¢ via 1;= 7. we
have

e ) iff fieE @) (=1 ....n).

This means that every result concerning the spectrum o(T) and the region
E,(w), holds equally for o(B) and E,,(co). If p(2,) denotes the spectral radius of
the SOR-operator €, then by comparing the asymptotic decrease of the error
vectors of SOR and of the equivalent two-step method (9.11) (see § 1), we have
x(T, p(w)) = p(L,). From Theorem 7, it follows for the iteration (9.12) and there-
fore for the SOR-method, that the following is valid.

Theorem 12. Let weC be arbitrary with |1—w|<1. Then, the SOR-method,
applied to the nonsingular system z—Bz=c, where B is weakly two-cyclic with
elements from C, is convergent, if o(B) is contained in the interior of the ellipse

E(w) with foci F*(w)= £2}/ 1 -/, which passes through the point 1.
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If o(B) is contained in the closed interior of the confocal ellipse En(w)cE(w),
then p(8,)<1/n, where equality holds if there is an eigenvalue of B on the
boundary of E",,(a)). In particular, if 6(B)=[F (o), F *{w)], we have

p(2,)=l1-ol. ©.18

Figure 4 shows the regions E(w) and the corresponding intervals [F~, F*]
for w,=1+05, w,=1+0.5i, w3=1-0.5; from (9.18) we conclude in each o
the three cases, that p(2,)=<0.5 if o(B)<[F~,E"],j=123.

w,= 1+05i 3
F'= [1.2+04i] F3
F = [-1.2-0.4i]
+
1 F
- + 2
s
\_,_/:1 -1 1 -1 1
F2
w =15 wy=05
a =1, b=13 a=1,b=3
+ * ;
Fi=+0.9428 F™= %282

Fig. 4

Since for arbitrary @ with |1 —w|<1, the interval [ —v,v] with O0<v<1 i
contained in E(w), we conclude that if I —B is symmetric and positive definite
then the SOR-method converges for every weC with |1 —w|<1.

Let B be given with ¢(B)<[—v,v], veC~ {[1, 0)u(— 0, —1)}; in our no:
tation of (1.13), this means BeO,_, ,,. Then from Corollary 10, it follows tha
p(w) is optimal with respect to [ —v,v] if [F~,F*]=[—v,v], where F* are
determined by (9.17). This yields the relation +v= +2}/1—w/w, which solvec
for w, gives the wellknown relation

0w=w k[—v,v]=|1—w,l; (9.19

2
"Y1
it should again be emphasized that (9.19) holds for every v with ve(
~A{[1, 0)u(— o, —1]}. Real two-cyclic matrices B (cf. (9.10)) with comples
eigenvalues have been treated by Young [14, p. 191], while complex two-cyclic
matrices B have been examined by Kjellberg [4] and Kredell [6].

Example 4. As an example of an Euler function from €,, let us consider

to®

p(e): :W

(9.20
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with real parameters p,, u, and g, +u,=1. Then, with (9.20), the following 4-
step iteration formula can be formally deduced (cf. Theorem 5):

szuO(Txmfl +c)+,u4xm44 (m>4) (921)

As in §6, the function p of (9.20) is an Euler function if, for f=1/p, it can be
established that there exists an open set © containing D, for which p is
univalent in ©. We introduce polar coordinates ¢ =#e'® and obtain

11/ 1. .

7= p(P)=— [(—cos@—u4n3 cos30) —1i (—51n9+u4113sm30>]. (9.22)
Ho L\ fl

From (9.22) we conclude that, for small # and p,, the image p(D,) is the

exterior of a simply closed curve I;, which is nearly a circle with radius 1/n; I

is a special type of a cycloid. For studying I, we form

dz 1 [( 1. . (1
|| =Zsinf+3 3sm39)—z(—0059+3 300539)]. 9.23
40 po L\ 7 Hal n Hal 029

The following Fig. 5 shows the curves I, for u,=1.1 (ie, u,=—0.1), =10,

1.1, 1.2 and y=#(p)=1/1/3|u,| =1/ 10/3.

Fig. 5

Now, let us assume p,<O0. Then, as can also be seen from Fig. 5, p is
univalent in D, iff the coefficient of i in (9.23) remains positive for 6=0. This
holds for 0<n=1if 14+3pu,>0, ie, if

—1/3<pu, <O. (9.24)

Thus, a function p of the form (9.20) is an Euler function iff (9.24) holds.
Similarly, we conclude again from (9.23) for 6=0, that p is univalent in D, iff
1n+3u,n*>>0 or n*<1/3|u,l, ie., we get

Np)=11/31ul- (9.25)
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Figure 5 shows that I has a cusp for §=0. From (9.22) and (9.25), it follow:
that

" 1 .1 4 1
v=p()= [7—;14113]:5- . V31, (9.26

L—pg 197

Now, as again can be seen from Fig. 5, S;(p) is the closed interior of I and ha
the four cusps +v, +iv, ie. the “cross” U,:=[—v,v]Ju[—iv,iv] is containe
strictly in Sy(p). From Corollary 11 it follows

K(Uv)<%:1/“ 3lial 02

On the other hand, if there is an operator T such that ¢(T)< U, for some
with 0<v<1 (ie, if T€Oy) then, since U, is symmetric with respect to bot
coordinate axes, no k-step method of the form (9.1) with k=1 or k=2 yields a
acceleration of convergence, the same holding for k=3. Of course, sinc
p(T)<v<1, the simple iteration (1.2) converges. Now, since v is given, (9.2¢
can be solved for |u,]. Method (9.21) with p,:= —|u,| and po=1—p, has the
a convergence factor, which is less than or equal 1/fj, where 7=(3| pa)7HE
measure for the acceleration of convergence, which can be obtained by the 4
step method (9.20) is

In(1/n)

) (9.2

Y(v):

(see e.g. [13], p. 67). Table 1 shows some values of y, and the resulting value
of v, 1/} and (v) according to (9.26), (9.25) and (9.29).

Table 1

Hy v /i Y(v)
—0.025 0.6807 0.5233 1.6838
—0.05 0.7903 0.6223 2.014
—-0.1 0.8971 0.7401 2.771
—-0.2 0.9779 . 0.8801 5.715
—-03 0.9990 0.9740 25.77

To interpret the numbers of Table 1, the last row there indicates that the -
step method (9.21) requires asymptotically 1/25 as many iterations, in this cas
as does the one-step method (1.2).

Example 5. Given a nonsymmetric operator T, it is often possible to describe
rectangle which contains the spectrum of 7. For simplicity, given some v wi
0<v<1, let us consider the rectangle

Rv:={ze(E:|—V§Rez§v,—l§lmz§l}. 9.2

There exists, by Theorem 8, an Euler function p,, optimal with respect to R
but the computation of the corresponding Euler transform would go v
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Lemma 4. On the other hand, by our considerations in §6, we understand very
well how to operate with elliptic regions, usually associated with two-step
iteration methods of type (9.1). The idea is as follows: By Corollary 11, every
closed elliptic region E - intervals included - which are contained in R,
provides a lower bound «x(E) for (U,), and «(E) is an upper bound, if EoSR,.

Since R,=[—v,v] and R,>[—i, +i], we get from Example ! and Exam-
ple 2, ie, from (9.6) and (9.9), the first lower bound

(9.30)

K1:=n’laX(

v 1 )
, <x(R,).
1+1/1=2" 1472 KR)

For our second lower bound «,, we use the fact that R, contains the elliptic
region E, where the boundary is the ellipse E, with center 0 and semiaxes v

and 1. The foci are
F*i=ig with &e:=)1-v2. 9.31)

Now, we want to determine an Euler function p from €,, such that E=S,(p)
for some 5>1. Since the center of E, is 0, we have pu,=0. From (6.7) and

(9.31), we get e=21/u,/u, and by solving for u,,

20/1+6 1)
T2
&

=1~ . 9.32)

0

Since one semiaxes of E, has endpoint 1, we get from (6.3) the equation 1=(1/
+4,n)/tg, which we can solve for #; there result two solutions Wy, 1, with

1<n, <fi=)/u,<n,. Thus, we have the second lower bound

2
—V/ui2=4
Ky:=w(E)=1/n,, where nlzLuo—ﬁi, (9.33)
2u,
where p, u, are given by (9.32). Finally, by Corollary 11, we note that
Ky <K, <k(R). 9.34)

For an upper bound «; for (U,), we seek another elliptic region E with
ESR,. Let E, be the ellipse with center 0 and semiaxes a,b (where v<a<l)
such that E, passes through the corner (v,i) of R,. E, is not unique, but there
holds v?/a®>4+1/b?=1, ie,

a2

b=

27 (9.35)
So, for E,, we have a one-parameter family. The foci are F*:=ig where &:
=1/b*—a*; by (9.35), ¢ is a function of a. As before, we can determine
parameters u, and p, according to (9.32); from (6.7) we conclude b=(1/y
+ 1,M)/ 1o solving for # yields

K(R,) <ks=x(E)=1/y,,
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where

0= 242 (9.36)

buo—1/b* g —4u,

Now, b, 1y, u, are all functions of a and v, so x5 is a function of a and v; we
get the lowest upper bound by minimizing x; as a function of a. Given v, we
determine this minimum not analytically, but by a numerical search process.

Table 2 shows the values x,, k, and x, for different values of v, where x;
and k, are lower bounds of k(R,), and i is an upper bound of k(R ).

Table 2

v Ky K, Ky

0.2 0.4142 0.5 0.6171
0.4 0.4142 0.5941 0.7485
0.6 0.4142 0.7016 0.8605
0.8 0.5 0.8310 0.9503
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