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§1. Introduction

In studying the literature on iterative methods for solving elliptic
difference equations, one finds that these iterative methods can be
phrased so that they all depend upon the ability to directly solve ap-
propriate matrix equations in few unknowns. In some cases, such as
the Young-Frankel successive overrelaxation iterative method [39, 10]
and the Richardson iterative method [24,39], the matrix equations to be dir-
ectly solved involve only one linear equation in one unknown. In the
other cases, such as the Peaceman-Rachford iterative method [21],
and the Douglas-Rachford iterative method (8], tridiagonal matrix e-
quations are directly solved. While the idea of group relaxation [19,
13, 4], the direct solution of matrix equations in few unknowns, has
for some time been recognized to be advantageous, it appears that on-
ly the systematic direct solution of tridiagonal matrix equations has
gained popularity in practical machine codes for solving elliptic dif-
ference equations. ,

The main purpose of this article is to introduce a class of iterative
methods which depend upon the direct solution of matrix equations in-
volving matrices more general than tridiagonal matrices. We shall
show how these appropriate matrix equations can be directly and ef-
ficiently solved, and we shall show in addition how standard methods
for accelerating convergence can be applied.

§§2. Regular Splittings

We seek to solve the matrix equation

(2.1) Ax = k

-

where A = (a; ;) is a given n Xn non-singular matrix, and k isa °

given column Vector with n components. As in [17], we split the
matrix A into

(2.2) A=B-C

b

where B and C are n Xn matrices. If, for aa arbitrary n Xn
121




122 Factorization Techniques

matrix M, M has nonnegative entries, we write M>0 . If M has
only positive entries, we write M > 0 . Similarly, if the matrix
M, - M, has nonnegative entries, we write M; > M,

Definition I, A =B - C is areqular splitting of A if and ¢y if
B"!>0 and C>0

In what is to follow, we assume that matrix equations ¢f the form

(2. 3) Bx=g ,

where g is a given column vector, can be directly solved for the
vector x . If (2.2) represents a regular splitting of A , then the
iterative method

(2.4) Bx
(0)

where x is an arbitrary vector, can be carried out. Equivalently,
we write (2.4) in the form

tk , m=0,1,2, ...,

(2.4 ;(m”) =g} C_)_c_(m) relx, m=0, 1,2 ...

’
-1 has non-negative entries if (2.2) represents a

Thematrix D=8 "C
of A . Using (2.2), we express the matrix D as
1

regular splitting

2.5) D=+ tc=qa+alotalc
f E=AT'C |, then - .
(2.5 p=1+5 £ .

If A-l >0, and A =B - C is a reqgular splitting of A , then the ma-

trix E has only non-negative entries. If, for an arbitrary square ma-
trix M, E[M] denotes the spectral radius of M ,i.e.
p[M] = mix lxkl , where X\ is an eigenvalue of M, then we say

M is convergent if and only if g[M] < 1.

Lemma I. If A=B- C {s areqgular splitting of A and .1\"l >0
then

(2.6) (D] = —Tf[—f]——

and the matrix D is convergent.

Proof. It is clear from (2.5') that eigenvectors of E are also eigen-
M

Lty 2

Since’ both D and E are non-negative mat-ices, the result of (2.6)

vectors of D ., Thus, if E_g._j = )‘j 2, then ngz

—
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is an immediate consequence of the Perron-Frobenius theory of non-
negative matrices (22, 12, 7]. From (2.6) it follows that 1[D] < 1
and thus D is convergent.

As a consequence of this lemma, the iterative method of (2. 4) is
- necessarily convergent.
We now assume that A=B; - C, =B, - C, are two regular split-

tings of A . With D = Bl" Ci , we now compare the spectral radii
of the matrices D, and D,

Theorem 1. Let A=B, -C, =B, - C, be two regular splittings of
A , where A™' >0 . If C, > C, > 0 , equality excluded*, then

2.7 1>¢[D.] > D] > 0 .

Proof. From (2.6), K[D] is monotone with respect to K[E] , and it
thus suffices to prove that w[E.] > ®[E,] > 0 . Since C, _>_ Ci 20,
equality excluded. and A~! >0 | it follows that E; >2E; >0 , equal-
ity excluded. We first assume that the matrix E, is 1rreducible i.e.
there exists no n X n permutation matrix A such that

) ORIy
(2.8) AE, A™' = Iy 2 ,
0 AR
2y 2
where E(l) and E() are square submatrices. With E; irreducible,

11
and E; 2 E, >0 , equality excluded, it follows [7, p. 598] that

B[E2] >®[E,]>0 . If E, is reducible, let A be n X n permutation
matrix for which (2. 8) is valid. With

(1) (1)
M M C C
( ) -1 - Iy 1 1y 2 -1 1y 1 192
2.9) AA A = i ACLA =
M M ¢
2y 1 2y 2 2y 1 292

then since A™' >0 and E, =A~!'C, , it follows from (2. 8) that both

) (1)

and C are null, and thus E(l) is also null. Thus, if E,

l) 1 2y 1 1y 1
s reducible, we may assume in (2. 8) that E( 1) is null, and that

(1) 1

z . is irreducible since E; >0 , equality excluded. The non-zero
?

eigenvalues of the matrix E, are just the non-zero eigenvalues of the
irreducible nonnegative submatrix (1) , and

b 2 (1)

7[Ei] =H[E(l) ]>0 . Actually, the irreducibility of EZ \ and
292 ?
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1
A™! >0 imply that E( ) >0 and E(l) >0 . Since C; >C,
2 (2) 22 (1)
2

H

equality excluded, then either E > E

(1) (2) 2 2 12 .
= E is a principal minor of a larger irreducible square
252 2,2

submatrix of E; , and thus [7], H[E.] > E[E,] , which completes the
proof,

The result of Theorem 1 is a generalization of recent results
of Householder [16, Theorems 4.12 and 4. 13], which generalize results
of Fiedler and Ptdk [9]. The basic idea for this result, however, goes
back to the work of Stein and Rosenberg [26]. The particular setting
of Theorem 1 will be convenient, as we shall see, for applications to
the numerical solution of elliptic difference equations.

It is not difficult to find matrices A which admit regular splittings,
and have A™' >0 . In fact, consider any n X n matrix A = (a4, )
having the following properties: ’

, equallty excluded, or
else E

(2.10) 1. 8 y<0 forall 1#§, 1<1,§<n
3
2. A is irreducible.
3. 2?_1 a j 20 forall 1<1<n , with strict inequality
= 3

for some |

It follows [7] that A™! has positive entries. From the conditions of
(2.10), the diagonal entries of A are positive, Thus, if B is the
positive diagonal matrix derived from the diagonal entries of A, then
B=! >0 , and defining C=B - A , it follows that C> 0 . Thus

A =B - C is a regular splitting of A . Generalizing, if B is any
matrix derived from the matrix A satisfying (2, 10) by setting certain
off-diagonal entries of A to zero, then B~!> 0 [7,37), and A=B-C
represents a regular splitting of A . Of considerable practical inter-
est {s the fact that five-point discrete approximations on a rectangular
mesh to the self-adjoint elliptic partial differential equation

(2.11) -V-(DVu) +Zu =8, Z(x) >0, D(x)>0, S =5(x)

for general bounded regions in the plane with suitable boundary con-
ditions, can be derived [31] so that the resulting matrix A , determined
by the associated system of linear equations, satisfies (2,10). If a ma-
trix A satisfying (2.10) is symmetric, then it is positive definite [29].
Irreducible symmetric and positive definite matrices A with non-positiv:
off-diagonal entries are called Stielties matrices [3] and for these ma-
trices, it is also known that A™! >0 ., The original idea for this goes
back to an early result of Stieltjes [28].

Lemma 2. Let A be a Stieltjes matrix, and let A =B - C be a regular
splitting of the matrix A ,where C is symmetric. Then
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2.12) D] < r[ClEA- 1]
L+E[C] m[A™1]

with equality if the matrices A and C commute.

Proof. It suffices to show that E[A~!C] <p[a7']'E[C] . For symmet-
ric matrices, it is known [16, p.219] that the value of the spectral
norm is that of the spectral radius. Hence, since A~! and C are
symmetric, p[A™!'C] < [la~'c]| < fa=t-lcl = E[A™']®[C] , from
which the inequality of (2. 12) follows.

If M is an arbitrary convergent matrix, the rate of convergence
[38] of the matrix M is defined by the positive quantity

(2.13) R(M) = -¢n E[M]

Theorem 2. Let A be a Stieltjes matrix, and let A =B, - C, = B, - C;
be two regular splittings of A sy With 0 < C, < C, , equality ex-
cluded. If C, and C, are symmetric and E[E,] =+ |, then

(2. 14) R(D,) _, ElE]
R(D2)  E([E,]
Moreover, if C, commutes with A | then

(2. 15) EIE.] 5 ElC.]
klE:] T E[C)]

Proof, From the proof of Theorem 1, ®[E.] >¥%[E\] , and from (2.6) we
have that

R(Di) =+4n (1 +

>1 .,

1 1 1
) = 0 (== )
Rl wte] " )

and (2. 14) follows. If C. commutes with A , the inequalities of

(2.15) follow respectively from the proof of Theorem I, Lemma 2, and
the assumption that C, 2Ci>0.

We shall later find it convenient to compare the rates of convergence
of two iterative methods by means of the (2. 14) and (2,15)

sy @8 ;[EJ*{-OO 3

§3. Acceleration Methods

We shall henceforth assume that A is a Stieltjes matrix, and (2.2)
represents a regular splitting of A , where B 1is symmetric and posi-
tive definite. It follows that C is symmetric and has nonnegative en-
tries. Again we assume that matrix cquations of the form (2. 3) can be
directly solved.

The first acceleration method which we consider is the Young-Frankel
Successive overrelaxation iterative method [38, 10], and its general-
ization by Arms, Gates, and Zondek (1]. If the matrix A and the col-
umn vectors x and k are partitioned into the form
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(3.1) A A _...A X K

_“51\1,1 AN,Z"'.AN,N XN KN

- L - - -

where the diagonal submatrices Aj j are square, we can write (2.1
equivalently as ’

N
(3.2) ZA“xj=xi,1=1,z,...,N.
j=1 ©

Let B be the diagonal block matrix

Al,l 0o ...0

B = 0 AZ,Z'“O

. <

0 0 "'A'N,N

= e

(3.3)

and let the matrix C be defined by A=B - C . Since A is a Stielt-
jes matrix, then B and C are both symmetric, and C > 0 . Since
B 1is the direct sum of principal minors of A , then B is positive
definite, with non-positive off-diagonal entries. It follows {2] that
B™! > 0 , and hence, for this definition of the matrices B and C,
we have a regular splitting of A . The successive over-relaxation
iterative method, applied to (3.2), is defined by

’

(m+1) _ _(m) -1 (m+1) _ (m) _(m)
(3.4) X1 -x1 +w{Ai,i (-quAi”xj j};iAi’jxj +1<1) xi }

(0)

m=0,1,2, ...,1=1,2, ..., N, where x is an arbitrary
vector. The quantity w is the relaxation factor. In actual computa-
tions, the equivalent form of (3.4)

% (m+1) (m#+1) (m) .
(3.5) A, X =-) A, X =), A X +K, i=1,2,...,N,
1’1 1 jzi i’j j j>1 1,1 j i

and
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(3.5 xim”) xfm) Fw { fii(m”) -xim)} ,i=1,2, ..., N,

i

may be more useful. We now assume that the matrix A satisfies

property A" , and is (consistently) ordered [1]. We write (3.4) in
the form

(3.6) 5(m+l) = %E(m) tg , m=0,1,2, ...

where 7 denotes the successive overrelaxation iteration matrix.
Since A “is by assumption a Stieltjes matrix, and B is, by con-
struction, symmetric and positive definite, we can apply directly the
results of Arms, Gates, and Zondek [1], which generalized Young's
original results [38], and we obtain

Theorem 3. Let the partitioned Stieltjes matrix A of (3. 1) satisfy prop-
erty A™ and be (consistently) ordered. Then, the optimum value of

w, wy , which minimizes §{ _‘fu] as a function of the real variable
w , is given by

2
(3.7 “ = 1+NT-a2(D]
and
(3.8) ;[%b]=wb"l .
Moreover, as ®[D] -1~ , then
(3.9) R(Z, )~ N7 RD]?

Since w, of (3.7) increases monotonically with E[D] , we obtain
from Theorems 2 and 3 the following

Corollary 1. Let A=B, -C, =B, - C. be two regular splittings of
the Stieltjes matrix A , where 0<C,<C, , equality excluded. Let
B, and B; be diagonal block matrices, as in (3. 3), derived from
different partitionings of. A , where each partitioning of A satisfies
property AT and is consistently ordered. Then,

RO\

R(£C )

(3.10) > 1

Moreover, {fboth C, and C, commute with A , and E[E;] =+o | then
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e R(_(f(l)). z[C.] % e o
(3.11) b~ .
R(ZL E(Ci]

Of practical importance is the fact that the matrix D = B™'C=(d, j),
derived from a regular splitting of A , has nonnegative entries, and
thus [7] if u is any vector with positive components u; , then non-
trivial upper and lower bounds for the spectral radius of D ‘are given
by

min | } - max
(3.12) { ™ < B[D]l < i

Zdi,juj (Zj:di,juj

Yy

If D is, moreover, irreducible, then T[D] can be expressed [35] as
a minimax

Z di j uj E di j uj
b b
(3. 12.)umf>; miin ] - - II[D] =um:np miax ) -
M i = i

where P is the set of all column vectors u with positive components.
Upper and lower bounds for B[D] give, respectively, upper and lower
bounds? for wp , defined in (3.7).

Our next acceleration method is what we call the Chebyshev semi-
iterative method with respect to the matrix D , and has been widely
discussed in various forms in the literature [18, 27, 33, 39].

Here we need only our previous assumptions, A a Stieltjes matrix,
B and C defining a regular splitting of A , and B symmetric and
positive definite, to enable us to rigorously apply this method. The
matrix D =B~!C is nonnegative, and has real eigenvalues, since D
1s similar to a symmetric matrix. It follows, from the Perron-Frobenius

theory of nonnegative matrices and Lemma 1, that the eigenvalues p
of D at least satisfy

(3.13) -#[D] = <E[D] <1 .
If Cp(x) isthe Chebyshev polynomial of degree m , defined by

(3.14) C_(x) =cos [mcos™'x], |x| <1 , m=0,1, 2

) y e+ 9

then by using the following well known three term recurrence relation
for Chebyshev polynomials
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Colx) =1;Ci1(x) =x ,

(3.15)

- . - - 2
Cm+1(x) = 2x Cm(x) Cm_l(x) , m=1

the Chebyshev semi-iterative method with respect to the matrix D
applied to (2. 4), is defined# by

’

(3.16) x™V_a H{Dgc_(m)é- B k-x ™1y +3<_(m"”, m=0,1,2,...,

where
2 cm(l/i)
(3.17) a.l=1,am+l=—"—""““— ym=1,2...,
v (/0

anc; ® =¥[D] . Again, in actual computations, the equivalent form
of (3.16),

(3.18) Bx M) _ o (m ,
and
(3.18") -)S(mi'l) = um*l{ ;‘(mi-l) _ﬁ(m-l)} *_-)s(m-l) ,

may be more useful. If the interval -§ <t < + u is the smallest in-
terval containing all the eigenvalues of D , it 1s known (33, 39] that

the Chebyshev semi-iterative method with respect to the matrix D has
the fastest average rate of convergence among all semi-iterative meth-
ods, in a certain norm, with respect to the matrix D .

We thus far have considered two acceleration methods applied tothe
basic iterative method of (2.4). The latter method has the advantage
that it requires no further assumptions, such as property A" or a (con-
sistent) ordering to be rigorously applied The former method on the
other hand is, if applicable, faster in rate of convergence (33, 40] and
requires in actual ccemputations less vector storage than the Chebyshev
semi-iterative method defined in (3. 16).

We now consider a new type of splitting of the matrix A , where
A 1is a Stieltjes matrix, B is symmetric and positive definite, but C
Is now symmetric and non-positive definite. Defining C = -F , then

F is symmetric and non-negative definite. We furthermore assume that
matrix equations of the form

(3.19) B+pDx=g,
and
(3.19") (F+pDx=gqg,

can be directly solved for the vector x for all vectors g and all posi-
tive scalars p . With
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(3.20) A=B+F

)

the Peaceman-Rachford iterative method [21], applied to (2. 1), is de-
fined by

(3.21) Bt o) ™ = (o1 - 1 x™ vk
and _
(3.21) o D™ oo™,

where the Pm are positive scalars. The process can be carried out
because of our assumptions concerning (3. 19) and (3.19'). Similarly,
the Douglas-Rachford iterative method [8], applied to (2. 1), is defin-
ed by (3.21) and

(3.21%) (F + o1 5(mi-l) - 1:.gs(m) . g(m) .
Combining (3. 21) and (3.21'), we obtain
+1

(3.22) _)g(m ) T _)g(m) tglpy)

m
where
(3.23) T, = o) (pI - B)(B + pDI) ' (oI - F)
Similarly, combining (3. 21) and (3. 21%), we obtain
(3.24) E(mn) =U _x_(m) thp ) ,

P m

m
where
(3.25) U =+ oD (B +pD ' (p*I+BF}.

We call the matrices T, and Up respectively the Peaceman-Rachford
and Douglas-Rachford iteration matrices. If the matrices B and F
commute, then the positive scalars Pm can be suitably chosen so as
to make these iterative methods rapidly convergent (3,8, 21,34]. In
the case that B and F do not commute, both of these iterative meth-
ods are convergent for fixed p > 0 [3].

Having considered several iterative methods for solving the matrix
equation of (2. 1), we turn now to the practical question of how these
ideas can be actually utilized.

§4. Factorization and Normalized Iterative Techniques

We again assume that A is a Stieltjes matrix, that (2.2) represents
a regular splitting of A , and that B is symmetric and positive-
definite. It is well known [20] that there exists a real unique upper
triangular matrix T with positive diagonal entries such that B can be
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factored into
(4.1) B=T'T

If the matrix T is known, then the matrix equation (2. 3) can be dir-
ectly solved by the writing (2. 3) in the form

(4.2) T's = g,
where
(4.2") Tx=s

Both matrix equations of (4.2) and (4.2') can be directly solved by
backward substitution.
Now let

(4.3) T=TR,
where T is an upper triangular matrix with unit diagonal entries and
R is a positive diagonal matrix, so that the matrices T , T , and
R are all uniquely determined from B . If Rx= Yy , then (2.1) can
be written equivalently as

~ P~ ~ -]
(4.4) 'Ty=Cy +R k ,
where

(4.5) C=r'cr7! .

In analogy to the iterative method of (2.4), we consider the iterative
method

~ o~ (m+l) ~ (m) -1
(4.6) TT =Cy tR 'k, m=0,1, 2, ... ,
whe,ga __( ) is an arbitrary vector. From the defimtlon of the matri-

ces T, R, and c , it follows that R™'AR™!' =TT - T is a reqular

~

splitting of R™!'AR™! ., In the case where the matrix B is symmetric
and positive definite and T is symmetnc we say that A=B-C is

~

a normalized- reiular sp\}itting of A ifA=B-C isa requiar split-
tingof A and B=T'T , where T is upper triangular with unit
diagonal entries. In analogy to §2, if we define

(4.7) D=(TT)' &,
then
(4. 8) D=RDR®
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Thus, the matrices D and D are similar, and evidently have the
same spectral radius, proving that the normalization of the basic iter-
ative method of (2.4) does not affect the rate of convergence of the
basic iterative method.

The reason for normalizing® is purely one of increased efficiency
on a digital computing machine, since solving T' Tx =g for the vec-
tor x requires in general two more multiplications per component than
does solving ?‘Ty = h for the vector y . Thus, if many iterations
of (2.4) or (4.6) are aaticipated, iterating by means of (4.6) is pref-
erable, since passing fina.ly from the vector Y to the vector x re-
quires but one multiplication per component.

§5. Cyclic Methods

We now consider several practical iterative methods, which can be
accelerated by means of the Young-Frankel successive overrelaxation
method. We call these methods cyclic iterative methods (as opposed
to the primitive methods of §6) since if the partitioned matrix A of
(3.1) satisfies property A™ , it can be shown [32] that the matrix
D = B™! C is cyclic of index 2 in the sense of Romanovsky [25], i.e.
there exists a n X n permutation matrix A such that

o - 0 o
- 152
(5.1) ADA™! ’

where the diagonal submatrices are square.

We now consider three iterative techniques simultaneously. Let
A be a Stieltjes matrix arising from a five-point approximation on a
rectangular mesh in the plane to the self-adjoint elliptic partial dif-
ferential equation of (2. 11), with Dirichlet type boundary conditions.
First,let B, be the positive diagonal matrix composed of the dia-
gonal entries of A |, i.e. B, is the matrix of (3.3), corresponding
to the partitioning of the matrix A in which the diagonal blocks

of A in (3.1) are all 1 X 1 matrices. Next, for our rectangular

mésh, we number our mesh points along successive horizontal mesh
lines, as in Figure 1,

L2 3 4
2 ¢ 7 8 s 0
1
1.3

Figure 1.
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Since each mesh point is coupled only to its four adjacent mesh points,
then let B, be the diagonal block matrix of (3. 3), corresponding to
the partitioning of A into successive blocks consisting of mesh points
on a single horizontal mesh line. Finally, iet B, be the diagonal
block matrix corresponding to the partitioning of the matrix A into
blocks consisting of mesh points on successive pairs of horizontal
mesh lines, Specifically, referring to Figure 1, the matrix B, can

- be expressed as

A)

0
i1
(5' 2) Bl = b4
1
0 . A( )
29 2
1
where AE ) is the 10 X 10 submatrix cougling the unknowns
s 1 1
Xiy...3%X19 , and A( ) is the 3 X 3 submatrix coupling the unknowns
2y 2

Xi1, X312, and x;3 . Defining the matrices Cy by

(5.3) A=B-Cy ,1=1, 2, 3,
it follows that all three different partitionings of the matrix A corres-
pond to regular splittings of A , and in each case the partitioned ma-

trix A satisfies property AT , and can be (consistently) ordered.
Moreover,

(5. 4) 0 <CircC; <¢Cy ,
equality excluded if, as in Figure 1, there are three or more horizon-
tal mesh lines. By means of Corollary 1, it follows that the
Successive overrelaxation iterative method, with optimum w , applied
to the regular splitting A = B, - C, is faster in rate of convergence
than the successive overrelaxation iterative method, with optimum w's,
applied to the remaining cases. The application of the successive
overrelaxation {terative methed to the reqular splitting A =B; - C;
which we denote by SOR, is due originally to Young [38] and Frankel
[10]. While the theory of [1] applies to both the reqular splittings
A=B,-C,; =B, - C,, only in the latter case has the successive
overrelaxation {terative method, denoted by SLOR, been actually con-
sidered in solving two-dimensional elliptic difference equations (1, 6,
11, 17]. Since the matrix B, couples together adjacent lines of mesh
points, we denote the successive overrelaxation iterative method ap-
plied to the regular splitting A = B, - C, by S2LOR.

We now show how the iterative method S2LOR can be carried out
numerically. Because the matrix A is derived from a five-
point formula, the matrix B; , after a suitable permutation of indices
of the mesh points, is a symmetric, positive definite, and five-diagon-
al matrix. Thus, By =TT, , where T, is an upper tridiagonal matrix

»
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with positive diagonal entries. To tilustrate this, we have relabled
(1)
Iyl
cormresponding matrix coupling the unknowns X1y X2y e, Xig

the mesh points of A of (5.2) in Figure 2, which shows that the

2 4 8 19
1 3 5 6 7 9
Figure 2.

s a five-diagonal matrix. While matrix equations of the form (2.3),
where B is a five~-diagonal matrix, can be directly solved by the
Gauss elimination method, it i{s more efficient if one has the upper
tridiagonal matrix T, y where B =T;'T, , to solve equation (2. 3)
in the manner of (4.2) - (4.2'). Given the five-diagona! positive def-
inite symmetric matrix B » We can generate the entries of the upper
ridiagonal matrix T, as follows. Let

(505) ’-bl,[ bl,l b1,3 0 0 c s 0
b, bs, . b., ;s b, 0 0
B = : ,
bl:! bZ)J bs,: b3y4 bh S 0
0 0 0 0 0 .. bn,n
(5.5") rt;,‘ t1,. t1, s 0 0 ...0
0 tz_,g tz,; tz,q 0 ... 0
T =
0 0 0 n 2 Z
n,n
L |
If t =t =0 for m =1, 2, then




Richard S. Varga 135

2

2 2 )
t +t2  +t?  =bp -1 2 .
i=2,1 i-1,] i, i, )y )y © ) ,
t, b, ., bt ot =b .
(5.6) =L, i=h, 000 i, T, 0l vl , i =1, 2, , n-1,
- j=1,2, ..., n-
o1t a2 7B ez y1=1,2 ..., -2,

With (5.6), it is clear how a normalized ?1 , with unit diagonal entries
can be similarly generated.

It is convenient now to consider the P-condition numbers of the ma-
trices B;, 1 =1, 2, 3. Following Todd [30], we define the P-condition
number P(M) of an arbitrary non-singular matrix M as

max |

|
ok

(5.7) | P(M)=W ;

where the \_ are eigenvalues of M . Since the matrices B, are all
symmetric and positive definite, the eigenvalues )\k(i) of the matrices
B, are positive real numbers, and thus

b

max X\, (i)
PR
min X\ (1)
K k

The following table** gives information about the application of the
normalized iterative methods SOR, SLOR, and S2LOR, to the numerica!l
solution of matrix problems arising from a five-point approximation, on

a rectangular mesh in the plane, to the partial differential equation of
(2. 11), with Diricklet-type boundary conditions. For the second

(5.7") P(B) =

Method Operations per Mesh Point  Estimate of [[C] P(B)
SOR 5m ba 4 1
SLOR 5m 6a 2 3
S2LOR 6m 7a 1 7 .

TABLE I. Five-Point Formula in Two Dimensions

and third columns, only Laplace's equation on a uniform mesh is con-
sidered. The second column gives upper bounds, by Gerschgorin's
lemma [14], for the spectral radii of the cormresponding matrices Cy
The third column gives upper bounds for the P-condition numbers of the
unnormalized matrices Bi
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f%:: ‘ ' . It is interestmg to note that the numbers in Table I are independent '
f. - 7. of the actual numbers of mesh points considered. From Table I, wecan

conclude that, for the matrices By, directly solving matrix equations ?

‘ ; of the form (2 3) does not give rise to serious round-off error difficul-

© . tles. To illustrate the usefulness of the second column of numbers, we

e . consider the numerical solution of the Dirichlet problem in a unit square

‘ " 7" on a uniform mesh of side h . ‘For this specific problem, it 1s known
(1, 17] that the matrices C, , C,, and A commute, and that

o st o e e -

¥ : SRR (77 B .
. (5.8) - ;f? -——T%- = NZ . , s

ST : . . “b * .
.+ However, since B(C,] -4, R[C:]~2: H[Ci]~1, and T[A~ ]-+eo as

h - 0, we can obtain the above result as a consequence of Theorem
2 and Corollary 1, as well as the fact that : }
, 1 ‘

e oL s Mm “b o ' ' i
, . 8 . : — {
3 . g-\,,,.(s ) ' v  h-+0 R( ( ) _ ﬁ E L . !
| L Lup). | |
Thus the rate of convergence of the iterative method S2LOR with op-

timum w , is, for small mesh spacings h , considerably greater than
the rates of convergence of the iterative methods SLOR and SOR with
optimum w's . e ! )

As pointed out in (1], the fterative method SLOR can be rigorously
v applied to the itarative solution of matrix problems arising from a nine-
TR . point approximation to (2. 11) in two dimensions. While.it is easy to
4 . . seethat the iterative method S2LOR can also be applied to this prob- B
% lem, the surprising result, as indicated in Table II, is that the normal- C
s F i ized {terative method SZLOR requires in general the same number of op-
" 7 erations per mesh point as does either the normalized iterative method

.- SLOR or the normalized iterative method SOR. As in Table I, the infor-
: \ mation in Table I.Lconcerns the normalized iterative methods SOR, SLOR,
i ! : 4 / g
L . Method Operations per Mesh Point Estimate of R[C] P(B) ‘
4 ISOR . 9m :10a . 20 1,
i [SLOR . 9m 10a 12 © /3
v -+ |82LOR . 9m 10a 6 17/3 ‘

TABLE iI. Nine-Potnt Formula in Two Dimensions

._ht,,
PR

i

A “-,'. L

,.,;,
Tl
-

-

——yr e e

,SZLOR and the last two columns refer to the numerical solution of La-
- rplace's ‘equation on.a uniform mesh in the plane. The arguments extend v
to three dimensions, and we include, for completeness, the seven point
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approximation in three dimensions to the partial differential equation
of (2.11), with given Dirichlet-type boundary conditions.

Method Operations per Mesh Point Estimate of §[C] P(B)
SOR 7m 8a 6 1
SLOR 7m 8a 4 2
S2LOR 8m 9a 3 3

TABLE III. Seven-Point Formula in Three Dimensions

The rangé of application of iterative method S2LOR is not restrict-
ed to rectangular meshes in two and three dimensions. As another ap-
pllcation, we consider solving Laplace's equation on a uniform triang-
ular mesh in the plane, and we couple together mesh points on succes-
sive pairs of horizontal mesh lines,
If we use a seven-point approxima-

tion to Laplace's equation in the . .
Plane, then, as illustrated in Figure 2 4 6 8
3, the matrix coupling the unknowns * ‘ * °

X1,...,Xq 1s again a five-diagonal )
Symmetric and positive definite ma- .
trix, which can be factored into

T*T , where T is upper tridiagon-

L]
°
e
L]

al. It is easy to verify that the ¢ ¢ ° °
Stieltjes matrix A » SO partitioned,
is a tridiagonal block matrix, and Figure 3,

therefore [1] satisfies property A™
is and (consistently) ordered. Thus, the successive overrelaxation
iterative method can be rigorously applied in this case, and the rate
of convergence of the iterative method S2LOR is again faster than the
rates of convergence of the iterative methods SLOR and SOR.

A far more interesting application 1
of the iterative method S2LOR is to the ¢
nNumerical solution of the biharmonic
€quation in the plane, over a thir-
teen-point mesh [5, p. 506]. As
pointed out by Heller [15], coup- 1 -8 20 -8 -
ling the mesh points along two * ¢ : ' *
neighboring horizontal mesh lines
partitions matrix A into a tridiag-~
onal block matrix, which satisfies
property A" | and is (consistently) 1
ordercd. With suitable boundary
conditions, the matrix A can be
derived in such a way so that A is symmetric and positive definite,
dand the diagonal blocks of the partitioned matrix A , corresponding

L
L]
.

Fig. 4. Thirteen-Point Star
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to the coupling of mesh points on two adjacent horizontal mesh lines,
are also symmetric and positive definite. Thus, based on a generali-
zation of Reich's Theorem [23], the iterative method S2LOR with w = 1
(Gauss-Seidel or single step method) is convergent. Since the matrix
A satisfies property A" and is (consistently) ordered, it foilows [1]
that the Richardson iterative method (total step method) is also conver-
gent. The same is not always true for the iterative method SLOR [15,
36]. It is significant, however, that by means of normalization, both
the normalized iterative method S2LOR and the normalized iterative
method SLOR require 13 multiplications and 14 additions per mesh point.
For this application, the matrix B of (3. 3) is the direct sum of eight-
diagonal symmetric and positive definite matrices, each of which fac-
tors into T' T where T is an upper five-diagonal matrix.

§6. Primitive Iterative Methods

In the previous section, the basic idea presented involved partition-
ing the matrix A into a form for which matrix equations, involving on-
ly the diagonal blocks of the partitioned matrix A , could be directly

solved. It is natural to consider the problem of factoring the entire
Stieltjes matrix A into

6. 1) A=T'T ,

where T is an upper triangular matrix with positive diagonal entries. §§
Unfortunately, for large practical problems the resulting matrix T is
seldom sparse, and the growth of round-off errors is now more serious.
The same is true of directly applying the Gauss elimination method to
(2.1). Instead, we now attempt to approximately factor the matrix A

into the form of (6.1), where the matrix T is sparse. Allowing for an
error matrix C , we write '

(6.2) A=T"T-C .

In particular, if A is a Stieltjes matrix arising from a five-point ap-
proximation to (2.11) on a rectangular mesh in a plane region with given
Dirichlet-type boundary conditions, (x, m)

let the directed graph of the upper

triangular matrix T be as in Figure o
5, where arrows connecting mesh

points are interpreted as non-zero

coefficients in the matrix T . Spe-

cifically, if in Figure 5 the mesh (k, m+1)

points (k,m), (k+1.m) ., and (k. m¢+1)

are called the i-th, itl-st, and j-th

mesh points respectively, then the Figure 5. Five-Point Star

only entries in the i-th row of the

matrix T = (t, .) permitted to be non-zero are ti,i’ ti,iH , and ti,j .

(k+1,m)

1,
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While the matrix T so generated is evidently upper triangular and
sparse, the matrix C of (6.2) is not in general null. In fact, if
C = (ci J.) , then C is symmetric, and

b

(6.3) TSI IR TR

can be different from zero. The matrix T can be derived so that the
only non-zero entries of the error matrix C are of the form (6. 3).
Morecver, with A a Stieltjes matrix, it can be verified that
A=T'T- C is aregular splitting of A , sothat (T'T)-' >0 . We
include, for completeness, the following

Theorem 4. The matrix (T' T)™! is nonnegative and primitive. If the
finite mesh region is convex, then (T'T)"! >0 .

Proof. By a classic theorem of Frobenius [12], a primitive matrix is a
matrix M such that M >0 , and such that M™ > 0 for some posi-
tive integer m . Since (6.2) represents a regular splitting of A |
then (T' T)™' >0 . Moreover, it can be verified that the diagonal
entries of (T' T)™! are positive, and, since A is irreducible, the
matrix (T' T)=! is also irreducible. Thus [35], (T* T)~! is primitive.
If the finite mesh region is convex, then it can be verified that the up-
per triangular matrix T~! has every entry on or above the main diag-
onal positive. Thus, (T'T)"' >0 ;

As consequences of this theorem, we observe, for convex mesh re-
gions, that the matrix B =T' T of (6.2) and the Stieltjes matrix A
which B approximates have the common feature that their inverses
have only positive entries. Opposed to this, we find that for cyclic
iterative methods, the matrix B of (3.3) is such that B~' >0 , but
B=! does not have only positive entries unless C is the null matrix.
Next, it follows, for convex mesh regions, that if the matrix C of
(6.2) is not null, then the matrix D= (T' T)~'C is not cyclic of index
2. While the successive overrelaxation iterative method cannot dir-
ectly be used to accelerate the convergence of the basic iterative
method of (2. 3), the Chebyshev semi-iterative method nevertheless
can be applied. (k, m)

The use of primitive iterative ’
methods is obviously not restricted
to five-point approximations of
(2.11). If nine-point approxima-
tions of (2.11) in the plane are con-
sidered, then the analogous directed (k,m#+1) (k+1, m#+1)
graph of the upper triangular matrix »

T 1is given in Figure 6. Other ex-
tensions are easlly obtained.

. (k+1, m)

Pimqure A ATimAa o PAaime Ok
Slgure RIS ! ol .
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NOTES

*By this, we mean that neither C, or C, - C, is the null matrix.
SFor special applications of this result, see [6, 31].

#This particular application of Chebyshev polynomials can be derived
from (17) of [27], upon making proper identifications.

+
An example of a normalized iterative technique is given in [6].

**The quantities m and a refer respectively to multiplications and
additions.

§§A similar approach has been considered by T. A. Oliphant in "A dir-
ect implicit scheme for solving two dimensional steady-state diffusion
problems", The Rice Institute (1958).

MAt the present time, Mr. William R. Cadwell, a graduate student at
the University of Pittsburgh, is experimenting with this iterative meth-
od as well as the iterative method S2LCR on the IBM-704. The
numerical results are to be included in his M.A. Thesis.

BIBLIOGRAPHY
1. Amms, R.J., Gates, L.D., Zondek, B., A method of block iteration,
Journal Soc. Indust. Appl. Math. 4 (1956), pp. 220-229,

2. Birkhoff, Garrett, and Varga, Richard S., Reactor criticality and

nonnegative matrices, Journal Soc. Indust. Appl. Math. 6 (1958),

3. Birkhoff, Garrett, and Varga, Richard S., Implicit altemating dir-
ection methods, Trans. Amer. Math. Soc., 92(1959), pp. 13-24,

4. Bodewlg, Matrix Calculus, Interscience Publishers, Inc., New
York, 1956.

5. Collatz, L., Numerische Behandlung von Differentialgleichungen,
Springer, Berlin, 1955,

6. Cuthill, Elizabeth H., and Varga, Richard S., A method of normal-

ized block iteration, Journal Assoc. Computing Mach. 6 (1959),
pp. 236-244, :

7. Debreu, Gerard and Herstein, I.N., Nonnegative square matrices,
Econometrica 21 (1953), pp. 597-607.

8. Douglas, Jim, Jr. and Rachford, H. H., Jr., On the numerical so-
lution of heat conduction problems in two and three space variables,
Trans. Amer. Math. Soc. 82 (1950), pp. 421-+439.

9. Fiedler, Miroslav and Ptdk, Vlastimil, Uber die Konvergenz des
verallgemeinerten Seidelsc__ben Verfahren zur LYsung von Systemen
linearer Gleichungen, Math. Nachrichten 15 (1956), pp. 31-38.

’




Richard S. Varaga ' 141

10,

l1.

12.

13,

14.

15,

16,

17.

18.

19.

20.

21.

22,

23.

Frankel, Stanley P., Convergence rates of iterative treatments of
partial differential equations, Math. Tables Aids Compuzt. 4 (1950),
pp. 65-75.

Friedman, B., The iterative solution of elliptic partial difference
equatiocns, AEC Research and Development Report NYO 7698, 1957,

Frobenius, G., Uber Matrizen aus nicht negative Elementen,
Sitzungsberlchte der Akademie der Wlissenschaften zu Berlm (1912)
PP. 456-477,

’

Geiringer, Hilda, On the solution of systems of linear equations
by certain iterative methods, Reissner Anniversary volume, J. W.
Edwards, Ann Arbor, Mich. (1944), pp. 365-393,

Gerschgorin, S., Uber die Abgrenzung der Eigenwerten einer Ma-
trix, Izvest. Akad. Nauk SSSR 7 (1931), pp. 749-754.

Heller, J., Simultaneous, successive and alternating direction
iteration schemes, AEC Research and Development Report NYO-
8675 (1958). '

Householder, A.S. , The approximate solution of matrix problems,
Journal Assoc Computmg Mach. 5(1958), pp. 204-243.

Keller, Herbert B., On some iterative methods for solving elliptic
difference equations, Quart. Appl. Math. 16 (1958), pp. 209-226.

Lanczos, Cornelius, Solution of systems of linear equations by
minimized iterations, Journal Research Nat. Bureau of Standards
49 (1952), pp. 33-53,

von Mises, R., and Pollaczek-Geiringer, Praktische Verfahren der
Gleichungsaufl§sung, Zeit. f. angew. Math. und Mech. 9 (1929),
PpP. 58-77, 152-164,

Murnaghan, Francis D., The Theory of Group Representations,
Johns Hopkins Press, Baltimore, 1938.

Peaceman, D,W., and Rachford, H. H. Jr., The numerical solu-
tion of parabolic and elliptic dlfferentlal equations, journal Soc.
Indust. Appl. Math. 3 (1955), pp. 28-41.

Perron, O., Zur Theorie der Matrices, Math. Ann 64 (1907), pp.
259-263,

Reich, Edgar, On the convergence of the classical iterative method
of solvmg linear simultaneous equations, Ann. Math. Stat. 20
(1949), pp. 448-451,

. Richardson, L.F. , [he approximate arithmetical solution by finite

differences of physical problems involving differential equations,
with an application to the stresses in a masonry dam, Phil. Trans.
Royal Soc. A 210 (1910), pp. 307-357,




142

° [}

Factorization Techniques

25/

26.

27.
28.
29.
30.

31.
32.
33.
’34.

35.
36.
37.

38.
39.

40,

Romanovsky, V., Recherches sur les chaines de Markoff, Acta
Math. 66 (1936), pp. 147-251,

Stein, P., and Rosenberg, R.L., On the solution of linear simul-

. taneous equations by iteration, Joumal London Math. Soc. 23

(1948), pp. 111-118,

Stiefel, E., On solving Fredholm integral equations, Journal Soc.
Indust. Appl. Math. 4 (1956), pp. 63-85,

Stieltjes, T.]., Sur les racines de l'equation )(1_l =0 , Act.. Math.
9 (1887), pp. 385-400.

Taussky, Olga, A recurring theorem on determinants, Amer. Math.
Monthly 56 (1949), pp. 672-676.

Todd, John, The condition of a certain matrix, Proc. Cambridge
Philos. Soc. 46 (1950), pp. 116-118,

Varga, R.S., Numerical Solution of the Two-group Diffusion Equa~
tion in x-y Geometry, IRE Trans. of the Professional Group on
Nuclear Science NS-4 (1957), pp. 52-62.

Varga, Richard S., p-cyclic matrices: a generalization of the Young-
Frankel successive overrelaxation scheme, to appear in the Pacific
Journal of Math. :

Varga, Richard S., A comparison of the successive overrelaxation
method and semi-iterative methods using Chebyshev polynomials,
Journal Soc. Indust. Appl. Math. 5 (1957), pp. 39-46.

Wachspress, E.L., CURE: A generalized two-space-dimension
multi-group coding for the IBM-704, Report KAPL-1724, Knolls
Atomic Power Laboratory of the General Eleqtric Company (1957).

Wielandt, Helmut, Unzerbegbare, nicht negative Matrizen, Math.
Zeit. 52 (1950), pp. 642-648.

Windsor, Edith S., Iterative solutions of the biharmonic difference
equations, Master's thesis, New York University (1957).

Wong, Y.K., Some properties of the proper values of a matrix,
Proc. Amer. Math. Soc. 6 (1955), pp. 891-899.

Young, David, Iterative methods for solving partial difference equa-
tions of elliptic type, Trans. Amer. Math. Soc. 76 (1954), pp. 92-
111.

Young, David, On Richardson's method for solving iinear systems
with positive definite matrices, Journal Math. and Physics 32
(1953), pp. 243-255,

Young, David, On the solution of lineé‘r‘;yhstem»é by iteration, Pro-
ceedings of the Sixth Symposium in Applied Math, McGraw-Hill,
New York, (1956), pp. 283-298.




