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OF J. L. WALSH’S THEOREM AND ITS EXTENSION
FOR INTERPOLATION IN THE ROOTS OF UNITY

E. B. SAFF' (Tampa) and R. S. VARGA? (Kent)

§ 1. Introduction and statements of new results

Let 4, denote the collection of functions analytic in |z|<¢ and having a sir
larity on the circle |z|=g, where it is assumed that 1< < oo. Next, for each posi
integer n, let p,_y(z; f) denote the Lagrange polynomial interpolant, of degre
most n—1, of f(z)€A, in the n-th roots of unity, i.e.,

1. Pua(w; ) = flw)

where @ is any n-th root of unity, and let

n—1
(1.2) Pz ) = kZﬂ a,z*
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A NOTE ON THE SHARPNESS

OF J. L. WALSH’S THEOREM AND ITS EXTENSIONS
FOR INTERPOLATION IN THE ROOTS OF UNITY

E. B. SAFF* (Tampa) and R. S. VARGA? (Kent)

§ 1. Introduction and statements of new results

Let A4, denote the collection of functions analytic in |z|]<g and having a singu-
larity on the circle |z|=y¢, where it is assumed that 1< 0= <o. Next, for each positive
integer n, let p,_;(z; f) denote the Lagrange polynomial interpolant, of degree at
most n—1, of f(z)€4, in the n-th roots of unity, i.c.,

(1. Pu-a(@; f) = f(w)

where  is any n-th root of unity, and let

n—1

(1.2) Py_i(z: f) = kZZO ayz*

be the (n—1)-st partial sum of f(z)= 2 a.z". Letting
k=0

(1.3) D, = {z€C: |z] =1},
then a beautiful result of J. L. Walsh [2, p. 153] can be stated as

THEOREM A. For each f(z)€ Ay, the interpolating polynomials of (1.1) and (1.2)
satisfy
W dm{pa(@ =Py Ny =0, for all zeD,.
Moreover, the result of (1.4) is best possible in the sense that there is some f (2)€4,
and some % with |£|=9* for which the sequence  {p,_1(2; f)—P,_1(¢; )},
does not tend to zero as n— oo

Note that in Theorem A, no sharpness assertions are made for arbitrary functions
f(2)€A4,; in particular, no statement is made on the behavior of the sequence

(]'5) {pn—-l(z; f)—Pn*I(Z; .f)};Q:l

in |z|>¢% One of the aims of this note is to in fact address this behavior in |z|=> g2
As a special case of Theorem 1 below, we prove that; for any f(z)€A,, the sequence
in (1.5) can be bounded in at most one pointin |z|> g2 This fact is of special interest
in the case when f(z) in 4, is also continuous in the disk lz|=g; for such functions,
it has been shown in [1, Thm. 2] that (1.4) is valid for all |z|= 2.
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372 E. B. SAFF and R. S. VARGA

For our own purposes below, we need a recent extension of Theorem A. For
additional notation, set

n—1

(16) Pn-—l,j(z;f) = k;:) ak+jrizk> f:()a 19

Then, the following result of Cavaretta, Sharma, and Varga [1, Thm. 1], which gives
Theorem A as the special case /=1, can be stated as

THEOREM B. For each f(z)€A,, and for each positive integer I, there holds
-1
(17) lim {p,,_1<2; f)— 2’ Pn—l,j(Z; f)} = Oa for all ZEDQ'*‘»
no e i=o
the convergence being uniform and geometric on any closed subset of Dgi1. Moreover,

the result of (1.7) is best possible in the sense that there is some f(2)€A, and some Z
with |2|=0'*" for which the sequence

(1.8) {p,,ﬂ(z; f’)»—g e f)}

with z=% and f=f, does not tend to zero as n-—- .

oo
n=1

Our first new result is

THEOREM 1. For each f(2)€A,; and for each positive integer 1, the sequence:
(1.8) can be bounded in at most [ distinct points in |z| = @'*t. This result is sharp, in
the sense that, given any [ distinct points {m}i=1 in the annulus o' <|z|=<o'"3,

there is an f(z)€A, for which

d—1
(1.9) Lim {pn—l(nk; N=2 Py, f)} =0, k=12 ..,1L
7~

There is an extension of Theorem 1 which we can also state. Note, of course,
that Theorem A involves only the Lagrange interpolation of f"in the n-th roots of
unity. For r a fixed positive integer, Theorem B can be extended using Hermite inter-
polation. For notation, let h,,_4(z; ) denote the Hermite polynomial interpolant,

f degree at most rn—1, to f, 7, ..., f¢~Y in the n-th roots of unity, i.e.,

(1.10) D (o ) =P, j=01,.., r—1,

where again @ is any n-th root of unity. If f(2) = 3 a;z7, we set
=0

-1
(1‘11) Hrn—l,(l(z; f): = kgo akzk:
and we set
n—1
(]12) Hrn-—l,j(Z; f) = Bj(zu) kg('l ak+n(r+j—~1)zka .} = ]"23 eery
where
R r—1 l"+ __1 ) R
(1.13) Bi@:= 2 ( 1 ](2—1)", i=1,2....
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ON THE SHARPNESS OF J. L. WALSH’S THEOREM 373

Then, the following result of Cavaretta; Sharma, and Varga [1, Thm. 3], which gives
Theorem B as the special case #=1, can be stated as

Treorem C. For each f(z)€A,, and for each pair of positive integers v and I,
there holds

I—1
(1.14)  lim {h,,,~1(z; f)— 2 Ha_y ;(z; f)} =0, for all z€Dg:+am),
ey “

the convergence being uniform and geomeiric for any closed subset of Dyrvam.
Moreover, the result of (1.14) is best possible in the sense that there is some f(z)€ A o
and some £ with |2|=o'*U" for which the sequence

oo

(1.15) {h,,,d(z; f)——jzz:) Hyoy (23 f)} ,

n=1
with z=% and f=f, does not tend to zero as n- oo

Our second new result, which sharpens Theorem C and gives Theorem 1 as the
special case r=1, can be stated as

THEOREM 2. For each f(z)€A,, and for each pair of positive integers r and I,
the sequence (1.15) can be bounded in at most r+1—1 distinct points in |z|= '+,

This result is sharp, in the sense that, given any r+1—1 distinct points ittt in

!
. It . » .
the annulus "+ < |z|<min {g’+2; 0 "1}, there is an f(z)€A, for which

-1

(1.16)  lim {hm—1(11k§ f)—jé; Hpoq, i f)} =0, k=1,2,..,r+1—1.

Since the proof of Theorem 2 is completely analogous to the proof of Theorem 1,
we shall give only the proof of Theorem 1.
§ 2. Proof of Theorem 1
To establish the first part of Theorem 1, consider any (fixed J€4,, consider

any fixed positive integer /, and suppose that-there are (/+1) distinct points
{viith in |z]= o't for which

-1
@D a0 )= 3 Paa G NI =M, Wnz1 Visk=1+1
If f(z): = > a;z/, then the hypothesis that f is analytic in |z]<¢ with a singu-
=0

larity on |z|=g¢ gives us that

Q2 i Ja, U = é

1> oo
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374 E. B. SAFF and R. S. VARGA

Thus, for any ¢>0 with 1<g—e¢ and with

(2.3) (e—e) T2 =o'
there is an ny(e) for which
1
(24) ‘a"‘ = —(—Q—__“E—)TI“, Vn = nO(B).

Next, since all the points {y it} lie in |z |=0'", then

I+1 . .
2.5) ¢t <oy = min [yl= max [n]=: oy,

and we choose the least positive integer m for which
2.6) 6y < @"*1, (where [ = m).
Applying Theorem B (with / chosen as m), we have that the sequence
Pn-1(z; f)— Z P,z f )} i converges to zero for all z€ Dgm+1. In particular,
as the points {yk 1+1 g][ lie in Dgm+: from (2.5) and (2.6), then there exists a constant

M, such that

2.7 =M, ¥Ynz=l, Vi=k=I+1

Pu-1(Vks f)"lmg—l; Pn—l,j(.yk; )

Using the hypothesis of (2.1), this in turn implies that

m—1

2.8 j;; anl,j(yk; b

=M, Vn=1l, Vi=k=I+1

Recalling from (1.6) the definition of £,_1, ;(z1 f), then it follows from (2.4
that

ey - n—1 121)‘ B 1 n=1( |z k .
]Pn—ﬂl,j(éﬁ f)l = k‘=20 (Q—g)k+j” - (Q—g)ﬂ’ k;:} (Q~8] N Vn = no(e).
Thus,

2.9 1P,y (z O = —(5—8—%:3;, Vn=nyle), Yzl =0, Vj=1.

This can be used as follows. From (2.9), we see that, if /+1=m—1, then

m—1 1 n
@10) | 3 Py )= S”_’_.-E)-a){i‘)‘—z-‘- ¥ = ne(e), ¥zl = e
Hence, from (2.8) and (2.10),
(2.11)

, m—I—1n|pl" ,
Pl 1) = Mat PRy =), w1k 1L
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ON THE SHARPNESS OF J. L. WALSH’S THEOREM
Now, because of (2.11), it further follows that

Mynly|"
@12) DAPO83 D= Basasi Pl = 4 2

for all n=nyle), all 1=k=/+1. Next, because of the definition of P,y i(z; 1),

it can be verified that
l+n

t—1
(2.13) Z'P, ((z; )=Po_y1(z; f) = jZ’ “tn+jZ"j:20 A2

Obviously, the last term in (2.13) is bounded, independent of #, in the points {y, }it1,

whence from (2.12) and (2.13),

l+n

‘ Myn|y,]"
Ain 4§ i/
j;'; in+j Vi

(Q—S)(l+2)" °
On dividing through by [v" in (2.14), we obtain
} ! My Myn

j,:Z; Apa+1y+j Vi = b)kr" + (0—g)t+om>

and so, from the definition of g, in (2.3), there follows

(2.14)

= M;+

i

(2.15)

(2.16)

! il M Myn

for all n=ny(e), all I=k=i+1. If, for convenience, we set

1 1
@17 = max{ ).
then it follows from (2.3) and (2.5) that
1

Next, we write a system of (/+1) linear equations in the “unknowns”

Autyn+ i, 1.,

L.
2.19) 2 Vg =: Jows k=12 .., 1+1
i=0

where, from (2.16) and (2.17),
(2.20) [finl = Mgnr, W= no(e), V1=k=I[+1.

In matrix notation, we can write the system of equations (2.19) as

!
Ly .. Y1 A+ 1y, S
, Ly, .. Vs A1+ 1yn+1 Je
(221)‘ e - i Rl ¢ +‘ I — 2
S VPR Y A+ 1n+1 T
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376 E. B. SAFF and R. S. VARGA

The coefficient matrix, 4, in (2.21) is a Vandermonde matrix, and, as the points
{7 )k} are distinct by hypothesis, then 4 is nonsingular. Using Cramer’s rule, it is
easy to see from (2.20) and the fact that the {yJi** are fixed distinct points, that

(2.22) A ens ;| = Mont"s Vn = ny(e), vo=j=1L
However, (2.22) implies that
(2.23) fm la, [ = 707D < %

the last inequality coming from (2.18). As this contradicts (2.2), then there can be at
most [ distinct points {n;}=1 in |z|=¢'** for which the sequence (1.8) is bounded,
completing thefirst part of the proof.

To establish the second part of Theorem 1, let w,(z) be any monic polynomial of
degree [ with precisely / distinct zeros in the annulus @' <lz|<g'*?, ie.,

i 1
(2.24) wi(z) = i‘CHI(Z"’I:C) = _Z;ﬂjzja
= =
where
(2.25) o+t =<l = @t for k=1,2, .., [

Consider then the particular function

(2.26) ~ f@:= ?%-

Clearly, f€4,, and f has I+ 1 poles on |z|=0. We now show that with these defini-
tions, (1.9) of Theorem I is satisfied. From Theorem B, we know that

[3
(2.27) lim {pn-l(z; H- ZOPM,,-(Z; f)} =0, Vz€Dg+e2.
LR j=
We claim that
(2.28) lim Poy (s ) =0, Vi=k=L

To establish (2.28), write flz):= 2 @z~ Ttfollows from (2.24) and (2.26) that
k=0

(2.29) __ B vozj=1 ym=o.

A+ 1y+j = T DD 2

Next, by definition,
n—1
(2.30) Pn-—1,1(2§ = k% dln-i—kzk:

and we consider the case when n is a multiple of (I+1), ie., n=(+1}s. On regroup-
ing terms in (2.30) for such n, P,_1(z: f) can be expressed as

s—1 1
(2.3 Ps(t+1)~1,l(25 )= RZO A ,Z;d(l+1)[sz+k]+jzj-
= =
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ON THE SHARPNESS OF J. T. WALSH'S THEOREM 377

But, the inner sum of (2.31) can be seen from (2.29) and (2.24) to be

1
N ; w;(2)
(2.32) jgﬂ Qasnsi+r)+j 20 = QUF DG RTT -

Since w,(i,)=0 by definition, it follows from (2.31) that
{2.33) Posny-1,0m; f) =0, Vi=k= I, Vs=1.

Having just considered the case when 7 is a multiple of (/+1), we now suppose that
n=s(I+1)+¢, where 1=¢t=/. On similarly regrouping the terms in (2.30) and using
the fact that w,(y,)=0, it can be shown that

-1

‘(2-34) Ps(z+1)+t—1,1(’1k§ f) = j;; dsz(l+1)+zt+j’71{-

Since the {n,};_, are fixed, and 7 does not exceed /, then, as [d,]~0 as n—c from
(2.29), we have from (2.33) and (2.34) that

(2.35) lim P, ,(p; ) =0, Vi=k=1,

as claimed in (2.28). Thus, with (2.27) and the first part of Theorem 1, the sequence

-1 o
(2.36) {Pn—1(2§ f)"j;(; Pn—l,j(Z; f)} ~

1

is convergent (to zero), only in the points {,};_; and unbounded for all other points
in {z€C: |z|>¢'*1),

Added in proof. (April 14, 1983) The second part of Theorem 1 remains valid if any / distinct
points {m}f., are arbitrarily chosen in lzl>¢'**, with a similar improvement holding for Theo-
rem 2. This has been shown by the author and, more generally by T. Hermann, ”Some remarks
on an extension of a Theorem of Walsh™, J. Approx. Th. (to appear).

References

{11 A. S. Cavaretta, Jr., A. Sharma and R. S. Varga, Interpolation in the roots of unity: an exten-
sion of a theorem of J. L. Walsh, Resultate der Mathematik, 3 (1981), 155—191.
121 J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain,
Amer. Math. Soc. Colloquium Publications Volume XX (Providence, Rhode Island,
fifth edition, 1969).

{ Received December 27, 1981)

CENTER FOR MATH. SERVICES
UNIVERSITY OF SOUTH FLORIDA
TAMPA, FL, 33620

US.A.

INSTITUTE FOR COMP. MATHEMATICS
KENT STATE UNIVERSITY

KENT, OH, 44242

Us.a.

13 Acta Mathematica Hungarica 41, 1983

82-3336 — Szegedi Nyomda — F. v.: Dobé Jézsef igazgaté




Periodicals of the Hungarian Academy of Sciences are obtainable
at the following addresses:

AUSTRALIA

C.B.D.LIBRARY AND SUBSCRIPTION SLRVICE
Box 4886, G.P.G., Sydney N.S.W. 200]

COSMOS BOOKSHOP, 145 Acklund Street

81, Kilda ( Melbourne), Victoria 3182

AUSTRIA
GLOBUS, Hochstiadtplutz 3, 1206 Wien XX

BELGIUM

OFFICF INTERNATIONAL Db LIBRAIRIE
30 Avenue Marnix, 1050 Bruxclles

LIBRAIRIE DU MONDY ENTILR

162 rue du Midi, 1000 Bruxelies

BULGARIA
HIMUS, Bulvar Ruszki 6, Sofia

CANADA

PANNONIA BOOKS, P.O. Box 1017

Postal Station “B”, Toronto, Ontario MST 2T8
CHINA

CNPICOR, Periodical Department, P.O. Box 50
Peking

CZECHOSLOVAKIA

MATD'ARSKA KULTURA, Narodni tiida 22
115 66 Praha

PNS DOVOZ TiSKU, Vinohradska 46, Praka 2
PNS DOVOZ TLACE, Bratislara 2

DENMARK
FINAR MUNKSGAARD, Norregade 6
11635 Copenhagen &

FEDERAL REPUBLIC OF GERMANY
KUNST UND WISSEN FRICH BIFBER
Postiach 46, 7000 Stuttgart 1

FINLAND

AKATEEMINEN KIRJAKAUPPA, P.O. Box 128
SF-00101 Helsinki 10

FRANCE

DAWSON-FRANCE S. A., B. P. 40, 91121 Palaiseau
CUROPERIODIQUES S. A.. 31 Avenue de Ver-
sailles, 78170 La Celle St. Cloud

OFFICE INTERNATIONAL DE DOCUMENTA-
TION ET LIBRAIRIE, 48 rue Gay-Lussac

75240 Paris Cedex 03

GERMAN DEMOCRATIC REPUBLIC

HAUS DER UNGARISCHEN KULTUR

Karl Liebknecht-Stralle 9, DDR-102 Berlin
DEUTSCHE POST ZEITUNGSVERTRIEBSAMT
Srafle der Pariser Kommine 3-4, DDR-J0O4 Berlin

GREAT BRITAIN

BLACKWELL’S PERIODICALS DIVISION
Hythe Bridge Strect, Oxford OX] 2E7T

BUMPUS, HALDANE AND MAXWELL LTD.
Cowper Works, Olney, Bucks MK46 48BN

COLLET'S HOLDINGS LTD., Denington FEstate
Wellingborough, Northants NN8 207 -

WM. DAWSON AND SONS LTD., Cannon House
Folkstone, Kent C119 SEE

H. K. LEWIS AND CO., 136 Gower Sticet

London WCIE 6BS

GREECE

KOSTARAKIS BROTHERS INTERMNATIONAL
BOOKSELLERS, 2 Hippokratous Strect, Athens-143

HOLLAND

MEPULENHOFF-BRUNA B.V., Beulingstraat 2,
Amsterdam

MARTINUS NIJHOFF B.V.

Lange Voorhout 9-11, Den Hang

SWETS SUBSCRIPTION SERVICE
347b Heereweg, Lisse

INDIA

ALLIED PUBLISHING PRIVATE LTD., 13/14
Asaf Ali Road, New Delki 110001

150 B-6 Mount Road, Madras 600002
INTERNATIONAL BOOK HOUSE PVT. LTD.
Madame Cama Road, Bombay 400039

THE STATE TRADING CORPORATION OF
INDIA LTD., Books Import Division, Chandralok
36 Janpath, New Delhi 110007

ITALY

INTERSCIENTIA, Via Mazzé 28, 10149 Torine
LIBRERIA COMMISSIONARIA SANSONI, Via
Lamarmora 45, 5012] Firenze

SANTO VANASIA, Via M, Macchi 58

20124 Milano

D. E. A, Via Lima 28, 00198 Roma

JAPAN

KINOKUNIYA BCOK-STORE CO. LTD.

17-7 Shinjuku 3 chome, Shinjuku-ku, Tokye 160-91
MARUZEN COMPANY LTD., Book Department,
P.O. Box 5050 Tokyo International, 7Tokve 100-31
NAUKA LTD. IMPORT DEPARTMENT

2-30-19 Minami Ikebukuro, Toshima-ku. Tokyo /71

KQOREA
CHULPANMUL, Phenjan

NORWAY
TANUM-TIDSKRIFT-SENTRALEN  A.8.,  Karl
Johansgatan 41-43, 1000 Oslo

POLAND

WEGIERSKI INSTYTUT KULTURY, Marszal-
kowska 80, 00-517 Warszawa

CKP i W, ul. Towarowa 28, 00-958 Warszawa

ROUMANIA
D. E. Y., Bucuregti
TLEXIM, Calea Grivitei 64-66, Bucuregti

SOVIET UNION

SOJUZPECHAT — IMPORT, Moscow

and the post oflices in each town
MEZHDUNARODNAYA KMNIGA, Moscow G-200

SPAIN
DIAZ DE SANTOS, Lagasca 9%, Madrid ¢

SWEDEN

ALMOVIST AND WIKSELL, Gamla Hrogatan 26
101 20 Srockholm

GUMPERTS UNIVERSITETSBOKHANDEL AB
Box 346, 401 25 Goteborg 1

SWITZERLAND
KARGER LIBR! AG. Petersgraben 31, 4011 Basel

USA

EBSCO SUBSCRIPTION SERVICES

P.O. Box 1943, Birmingham, Alabama 35201

F. W. FAXON COMPANY, INC.

15 Southwest Park, Westwood Mass. 02090
THE MOORE-COTTRELL SUBSCRIPTION
AGENCIES, North Cohocion, N. Y, 14368
READ-MORE PUBLICATIONS, INC,

140 Cedar Street, New York, N. Y. 10006
STECHERT-MACMILLAN, INC.

7250 Westfield Avenue, Pennsauken N. J. 08111

YUGOSLAVIA

JUGOSLOVENSKA KMNMIIGA, Terazije 27, Beograd
FORUM, Vojvode Midica 1, 21000 Novi Sud




