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Abstract. For Gaussian quadrature rules over a finite interval, applied to analytic or meromorphic
functions, we develop error bounds from contour integral representations of the remainder term. As in
previous *work on the subject, we consider both circular and elliptic contours. In contrast with earlier work,
however, we attempt to determine exactly where on the contour the kernel of the error functional attains
its maximum modulus. We succeed in answering this question for a large class of weight distributions
(including all Jacobi weights) when the contour is a circle. In the more difficult case of elliptic contours,
we can settle the question for certain special Jacobi weight distributions with parameters +3, and we provide
empirical results for more general Jacobi weights. We further point out that the kernel of the error
functional, at any complex point outside the interval of integration, can be evaluated accurately and
efficiently by a recursive procedure. The same procedure is useful also to evaluate certain correction terms
that arise when poles are present in the integrand. The error bounds obtained are illustrated numerically
for two examples—an integral representation for the Bessel function of order zero, and an integral related
to the complex exponential integral.

1. Introduction. We consider Gaussian quadrature with respect to some positive
measure dA (t) on a finite interval which we normalize to be [—1, 1]. Thus,

1 n
(1) | roano= 5 a0re)+Rup),

where 7{" are the zeros of the nth degree orthogonal polynomial 7, (-;dA) and A

the corresponding Christoffel numbers. If f is single-valued holomorphic in a domain
D which contains [—1, 1] in its interior, and I is a contour in D surrounding [—1, 1],
the remainder term R, (+) can be represented as a contour integral

1
(1.2) Ru(f=5— L Ko(2)f(2) dz,

e

where the kernel K,, is given by

(1.3) K(2)=Ra(—2),

or, alternatively, by

(1.4) K.(z)=
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Here, m,(z) is the orthogonal polynomial ,(-;dA) evaluated at z, while pa(z) is
defined by

1
(1.5) pn(z)=I E'f_(—tt)d)a(t);

-1 2
see, e.g., [4, § 1.4].

There is an extensive literature using (1.2) to estimate the error R, in (1.1); see
the references cited in [4, § 4.1.1] and more recent work in [1], [11], [12]. Basically,
the estimates take the form

[(T)
(1.6) IRA(f)| =7 max K, ()] - max f(z)],
a zel zell

where /(I') denotes the length of T'. The first maximum depends only on the quadrature
rule (i.e., on dA) and not on f, while the second depends only on f. Similar estimates
hold for meromorphic functions, if the contributions from the poles are separated
out. In all the literature on the subject, max, .y [K,(z)| is either bounded from above,
or estimated asymptotically for large n (or large z, or both). Our objective here is to
point out that for a large class of measures dA (including the Jacobi measure dA t)y=
A=)+ dt for arbitrary a >—1, 8 >—1), and in the case where I' is a circle
lz|=r, r>1, this maximum can be expressed exactly as either K,(r) or |K,, (—r)|
(Theorem 3.1) and can be evaluated accurately and efficiently by recursion (Section
4). For elliptic contours T ={z: z =3(p e +p e ™), 0= 9 =27}, p >1, the problem
is considerably more difficult. We are able, however, in the case of Jacobi measures
with a =8 =+3 and o = -3, B=3, to give explicit representations of the kernel K,
on I, and from these to determine the maximum points on the ellipse (Section 5).
The latter turn out to be located on the real positive axis (Theorems 5.1 and 5.3),
except when a =8 =3, in which case they are located on the imaginary axis, if n is
odd (Theorem 5.2), or nearby, if n is even. For more general Jacobi measures we
present empirical results. Section 6 contains numerical examples illustrating the quality
of the error bounds obtained.

We begin by recalling a preliminary result from [7].

2. Inequalities for moment quadrature sums. Here and in the following we restrict
ourselves to measures dA of the form ‘

(2.1) dA(t)=w(t) dt, -1<r<1,

where the function w is nonnegative and integrable on [—1, 1], with moments
1

(22) w= [ Fao, k=012,
-1

where wo>0. The orthogonal polynomials associated with (2.1) are denoted by
() =, (+; dA), their zeros by " and the corresponding Christoffel numbers by
A, The following theorem, proved in [7], shows that, for a large class of weight
functions w, the Gaussian quadrature sums for approximating the moment u; approach
this moment monotonically. (To suit our present purposes, we have slightly weakened
both the assertions and the hypotheses of the theorem.)

THEOREM 2.1. Let

(2.3) wi =Y AV, k=1,2,3,--, n=1,2,3,---.
v=1
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(@) If w(t)/w(—t) is nondecreasing on (—1, 1), then
(2.4) T e R T T L T

(b) If w(t)/w(—1) is nonincreasing on (—1, 1), then
25) 0=ul Sul s =D WD Ly,

if k is even and
@6) == < g Y 2 2 S
if k is odd.

We note, in particular, that for the Jacobi weight function w(¢) = (1—¢)*(1 +1)8,
a>—-1, 8>-1, one has

w(t) (1+t)3_°"

w(—t) \1-r

1—¢
which is strictly increasing on (-1, 1) if @ <3, equal to 1 if a = B, and strictly decreasing
on (=1, 1) if @ >B. Accordingly, (2.4) holds if « =8, and (2.5), (2.6) if « > 8.

3. The maximum of the kernel K,, on a circle and corresponding error bounds. We
assume a measure dA of the form (2.1) and propose to find the maximum of the
kernel K,,(z) in (1.3) on the circle C, ={z: |z|=r}, where r > 1.

THEOREM 3.1. There holds

K, (r) if w(t)/w(—t) is nondecreasing on (-1, 1),

3.1) e K (2)] = {lKn(—r)I if w(t)/w(~t) is nonincreasing on (-1, 1).

Remark. If w(t)=w(~t) on (-1,1) then, by symmetry, K, (r)=|K,(~r)|, and
either statement in (3.1) is valid.

Proof of Theorem 3.1. By expanding (z —¢)”" in powers of t/z, one obtains from
(1.3), when |z|>1, that

© k
(3.2) K.(z)= Y R"k(il)-
k=2n Z

We have used the fact that R,,(t*) =0 for 0=k <2n. Therefore,

© k
(3.3) max [K, (z)|= 3 Rsll)
zeCy k=2n T

If w(£)/w(—t) is nondecreasing, then, by Theorem 2.1(a), since [k/2]§n for k =2n,

([k/2]+1) (n+1 (
Mk = [k zul ™ zul, kz2n,

hence, by (2.2) and (2.3),
R.(t")=0 forallk =2n.

Therefore,
2 R.() = |R.(M)
K.(r)= Y o= L } k+1'
k=2n F k=2n T

Comparison with (3.3) shows that max, .c |K,(z)| =K, (), proving (3.1) in case (a) of
Theorem 2.1.
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If w(t)/w(—t) is nonincreasing, one obtains from (2.5), when k is even, as before
that
R,(t*)=0 forall k (even) =2n,

while for k =2n +1 odd, i =" =u Y =u by (2.6), so that
R,(t“)=0 forallk (odd)=2n +1.

Consequently,
(-1)*R,(t*)=0 forall k =2n,
and
© (=1)*R, (¢" © R, ("
|Kn(_r)|= - ( )k+1( ) = Z I k(+1)”
k=2n r k=2n T

yielding max,.c, |K,.(z)|=|K,(-r). O

In-the situations described in Theorem 3.1, the modulus of the kernel K, (z) thus
attains its maximum on the circle C, either at z =r or at z = —r on the real axis. For
the Jacobi weight function w(#) = (1 -¢)*(1+ t)?, the remark after Theorem 2.1 implies
that the maximum occurs at z =r if a =3, and at z = —r if « > .

We remark that the “bound” used in [12, Egs. (5) and (6)] for max..c, |K.(z)|
in the case of Gegenbauer measures is actually K, (r), hence, by Theorem 3.1, equal
to the maximum in question. The form given in [12] for K, (r) involves infinite series
and the zeros of Gegenbauer polynomials. It requires considerably more effort to
evaluate than the simple recursion (Egs. (4.3)-(4.5)) to be described below in § 4.
The approach via recursion, moreover, is not restricted to Gegenbauer measures, but
is valid for essentially arbitrary measures.

The error bound (1.6), in combination with, say, the first case of Theorem 3.1,
now yields the final error bound

(3.4) Ru(HI=r - Ku(r) - max |f(z)].

Whether or not this represents a realistic estimation of the error depends largely on
the behavior of f on the contour C,. If f is highly oscillatory on C,, then (3.4) is likely
to be conservative. Some improvement, for specific functions f, may be achieved by
optimizing the bound on the right of (3.4) as a function of r; see § 6 for examples.

If f is meromorphic, with poles close to the interval [—1, 1], the quadrature rule
(1.1) will converge only very slowly. Moreover, (3.4) ceases to be applicable, since f
may no longer be analytic in C,, r>1. Valid error bounds can still be obtained by
employing elliptic contours (see § 5), but they are of limited interest in cases of slow
convergence.

It is well known, however, how the poles can be taken into account so as to
restore the fast convergence one is accustomed to in the case of analytic functions.
Assuming for simplicity that there are only a finite number of poles p; in the finite
complex plane, and that all are simple, then in fact (see, e.g., [10])

1 n
(3.5) | royano= £ arnat) LK (potres o+ R,
where 7\, A are as before, and (res f),, denotes the residue of f at the pole p;. For
the remainder R,, we have the same representation as before,

1

(3.6) Ruf=5= j K.(2)f(z) dz,
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where I' is a contour enclosing the interval [—1, 1] as well as the poles p;; the error
bound (3.4) continues to hold if the circle C,, r > 1, contains all poles p; in its interior.
As a simple example, suppose that

(3.7) f(1y =22

t2+w29
with g an entire function, real-valued on the real axis. Then (3.5), by an elementary
calculation, reduces to

(3.8) Lt i)sz(z)_ z M")

w >0,

g(f(”))

the remainder being bounded by (3.4), where r >max (1, w) and f is given by (3.7).

%Im (K, (iw)g (i) + Ro (),

4. Computation of K, (tr) and K, (z). For computational purposes, the second
of the two expressions (1.3) and (1.4) for K,,(z), that is,

pnlz)

(4.1) Kn(2)=m(z),

is the more suitable one, as it is not subject to any loss of accuracy. (This is not
sufficiently recognized in the literature; Lether [11], for example, refers to the form
(4.1) as being “‘inconvenient”.) Indeed, {px(z)} and {m(z)} both are solutions of the
basic recurrence relation

4.2) Yier1 = (2 = i) ¥k — BrYr—1, k=0,1,2,--

satisfied by the (monic) orthogonal polynomials 7 (-) = mc( ) whereby y_1 =0,

vo=1for {m}, and y_; = 1 for {p,}. (It is assumed that B, = f_ dA@®) )M z==xrr>1,
so that z £[—1, 1], the solution {p,(z)} is the minimal solution of (4.2), hence uniquely
determined by the single initial value y_;=1; see [5]. It can be computed most
effectively by backward recursion [5, § 5]: Let

43)  M@=0, Ah@)=—LP k=u-1,-,1,0.
7 —ar—E2)

Then, if z 2[~1, 1], the limit lim, -« %3, (z) = r_1(z) exists, and
(4-4’) P—l(z):‘l, Pk(z):"k—l(z)Pk~1(Z), k=07 1, 2" P (

Thus, to compute p,(z) to within a relative error of ¢, one starts with some initial
value vo>n of the index v, and keeps increasing », say by 5, until [r "7 () — i1 (2)| =

elrt P (z) forallk =0, 1,2, - - -, n. Thereafter, (4.4) is applied, with r_1(z) approxi-
mated by ri* ) (z) for the final index v. The computation of m,(z) proceeds directly
from (4.2), applied for k =0,1,- -, n—1, withy_; =0, yo=1.

In the important special case of the Jacobi weight function w(f) = (1—1)%(1+1)",
a>-1, B>-1, the iteration on the index v in (4.3) can be dispensed with. An
appropriate value for », when z ==r, r>1, is indeed known to be [5, Eq. (5.6")],
independently of @ and B, the smallest integer v satisfying

In(1/g)
2In (r+vri-1)
In this case, the computation of p,(z) by (4.3), (4.4) is particularly efficient, even for

z ==r relatively close to the interval [—1, 1]. Some numerical values of v/n in the
case £ =.5x 107" are shown in Table 4.1.

4.5) vzn+
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TABLE 4.1
Numerical values of v/n for e = .5x107°, where v is the smallest integer
satisfying (4.5).

r n=10 n=20 n=40 n =280
1.01 5.4 3.20 2.100 1.5500
1.05 3.0 2.00 1.500 1.2500
1.10 2.4 1.70 1.350 1.1750
1.50 1.7 1.35 1.175 1.0875
2.00 1.5 1.25 1.125 1.0625
5.00 1.3 1.15 1.075 1.0375

Doubling the accuracy to £ =.25x 107 '° has the effect, essentially, of doubling
(v/n)—1, as can be seen from (4.5). For the purpose of error estimation, however,
five decimal digits are more than enough.

We stress the fact that the algorithm (4.3), (4.4) is valid for arbitrary complex
z £[—1,1]. The estimate for v in (4.5), when dA is the Jacobi measure, however,
becomes a bit more complicated. We now have to take the smallest integer satisfying
[5, Eq. (5.6)]

- In(1/e)
(4.6) vER T lz+Cz -+

where the principal values of arg (z ~1) and arg (z + 1) are to be used in evaluating
the square roots. If z =iy is purely imaginary, (4.6) reduces to

In(1/¢)
2In(y +V1+y?)’

(4.7) vn+

In particular, the algorithm (4.3), (4.4) may also be used to compute the numerators
of K,(p:))=pa(p:;)/ma(p:) in (3.5) and of K,(iw)=pn(iw)/m,(iw) in (3.8). The
denominators can be computed directly from the recursion (4.2).

S. The maximum of the kernel K, on an ellipse and corresponding error
bounds. Another frequent choice of the contour I'is an ellipse €, ={z: z =3(u +u ),
‘u =pei", 0=9 =27} with foci at z =+1 and sum of semiaxes equal to p, p >1. As
pl1, the ellipse &, shrinks to the interval [—1, 1], while with increasing p it becomes
more and more circle-like. Since

1 2 1 & Ult)

2=t wu =2t t+1 Z—: uktt

where U, denotes the Chebyshev polynomial of the second kind, the expansion
analogous to (3.2) now reads

(5.1) Kiz)=2 Y —1, z=zlu+-).
k=2n U 2 u

R, (Uy) 1( 1)

One has symmetry with respect to the real axis, i.e., |K,,(£)| = K, (z)], but the maximum
of |K,.(z)|, z € &, is no longer always attained on the real axis.

The case of the Jacobi weight function w(t) = (1—-)*(1+¢)®, a >-1, 3 > -1, is
of sufficient interest to be considered in some detail, although precise results are
difficult to obtain for general parameter values. Note, however, that the known
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identity for Jacobi polynomials, = (z)=(~1)"7'"" (~z), implies K (z)|=
KR (~2)|=|K " (=%)|, so that an interchange of the parameters amounts to a
reflection in the complex plane with respect to the imaginary axis. It suffices therefore
to consider a = 8.

5.1. Chebyshev measures of the first and second kind. Let first « =8 = -1 that
is, dA (1) = (1 —t*) "% dt, the orthogonal polynomials thus being the Chebyshev poly-
nomials T} of the first kind. From the well-known formula

(5.2) To(z) =3z +Vz" =1 +(z V2" =1)"],
putting z =3(u+u "), one gets

T (2)=3"+u™), z=3u+u).
Furthermore, using [9, Eq. 3.613.1], one finds

(5.3) J' L0y gy = JMM T——(z—\/ -1,
1 z—t o z—cos T Jz
hence
1 _
j T(’)a AV g =—2T Ly,
12—t (u—u Hu 2

It follows that

pnlz) 4
m(z) (w—u Hu"w"+u"y

1
=+,
from which, in particular,

1K (2)] = %1:{[@@) — cos 28][aan(0) + cos 2n T2,

54 z =%(pei'9+p_1e“i’9)e%p,
where
(5.5) aip)=30"+p7, . j=1,2,3,--+, p>1
LEMMA 5.1. The functions in (5.5) satisfy
(5.6) %znz, n=1,2,3,--+, p>1
Proof. Multiplying numerator and denominator in (5.6) by 2p°", and using (5.5),
one gets

amlp)—1__ p*"+1-2p™ _{ pr -1 }2
axp)—1 p* " P*+1-20") " -1
Observe that

2n
—n-nyp 1 —(n—1)p _2(n-1 2(n—2
P —p [p2" D 4 o202 44 1]
o 21
=p —1+pn~*3+_ . _+p—(n—3) +p—(n-1)-

Since x +x ' >2 for any x >1, the sum on the right is larger than 2(n/2)=n if n is
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even, and larger than 2[(n —1)/2]+1=n if n =3 is odd, hence >n for any integer
n =2, proving (5.6) with strict 1nequa11ty for n=2. If n =1, (5.6) is an equality. U
THEOREM 5.1. IfdA ()= (1—*)""*dton (-1, 1), then

(5.7) max |K,, ()| = K, Gl +p7),
i.e., the maximum of |K,(z)| on &, is attained on the real axis.
Proof. By (5.4) it suffices to prove
(@, —cos 29)(az, +cos 2nd) = (ar—1)(az, + 1), 0=9=w/2,
where a; = a,(p) is given by (5.5). This is equivalent to
(1-cos 29)az, — (1 —cos 2n¥)a, +1—cos 244 cos 2nd =0,
or, introducing half angles, to

sin’ '39* 2 sin® nd =0,

(5.8) azn+1-(a— 1)

if 4 >0. Since

sin nd

=|U,_1(cos )| =n,

sin ¢
the left-hand side of (5.8) is larger than or equal to
n—1
az+1-n%*(a—1)-2=(a —1){“2 1 nz},
az—

which is nonnegative by Lemma 5.1. 0
For the Chebyshev measure of the second kind, dA (t)=(1-t2)1/ 2 dt, the nth
degree orthogonal polynomial is

Un(z)= P—“[(Z” R L it Vi
which yields
n+1_ —(n+1) 1
Un(z)zu_‘——u__——l—_’ z=—(u+u_1),
u—u 2
while (cf. [9, Eq. 3.613.3))
J’ U, (t)(1 t)l/zdt J‘ s1n(n+1)19sm1‘)d19 _ '717'+1’
12—t z—cos & u
1
=5(u+u_l).
Therefore,
as(p)—cos 29 12
‘K (Z)t n+l{ 2(!3 } >
Aonsa(p)—cos2(n +1)3
(5.9)

z=5(p e +pte e Z,.
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THEOREM 5.2. IfdA(t) = (1—1%)"?dton (-1, 1), and n is odd, then

(5.10) max K. (2)|= lKn(—;-(p—p‘B) ,

i.e., the maximum of |K,(z)| (n odd) on &, is attained on the imaginary axis.
Proof. 1t is obvious that

—cos 29 _ G2t 1
Arnsn—0082(n + 1)~ aznsa—1"
with equality holding when ¢ = 7/2 and n is odd. With (5.9), this gives the desired
result. 0

If, in Theorem 5.2, n is even, computation shows that the maximum of |K,(z)|
on &, is attained slightly off the imaginary axis.

for all 4, all n,

5.2. Jacobi measure with a=—3 and =3}. The orthogonal polynomials in this
case are those with respect to dA (¢) = v (1+8)/(1—1¢) dt, and are given by

T2n+1(~/§(z +1))

where T2n+1 is the Chebyshev polynomial of degree 2n +1. With z = Ju+u™), so
that Vi(z +1) = (u +1)/(2Vw), we find by (5.2), after a little computation,

—n

Ty

1 -1
==(y+ )
u+1 z 2(u u)

paiz) =4

Furthermote,

J' pa(t) 1+t J‘ 2005(2n+1)7§‘/2cosﬂ/2dﬂ
1zt 1— o z —cos 3

" +1)9+ 4
_ J‘ cos (n+1)3+cosn 49,
0

z —cos ¥
hence, using (5.3),

. _
o) (177 . 2m(u+1) 1
J_lz-t 1—tdt_(u—u"1)u"+l’ 2—2(u+u )

There follows

pn(z) 2m(u+1)°
’Tl’n(Z) (u_u~—1)un+l(un+1+u—n)’
and, by an elementary computation,

K.)]= 2o ai(p)+cos ¥
nENE T an(p) —cos 20 Tdans1(p) +cos (2n + 1)1

(5.11)
=E(p eiﬂ+p—1 e—m)e €,

where a;(p) is again given by (5.5).
LeEMMA 5.2. There holds

ai(p)azn+1(p)—1 ( 1)2 ;
5.12 += = IR >1.
( ) aao)—1 >{n 5) n=1,2,3 p
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Proof. A simple computation based on the definition (5.5) of a;(p) yields

2

a1(p)aznsa(p)—1 _1{ p2n+2_1 }2+1{ p2n -1 }
ap)-1 20"’ -D) 2L e -D]
Applying to each of the two squares on the right the reasoning used in the proof of
Lemma 5.1 produces the lower bound %[(n+1)2+n2]=n2+n +isu?tn+i=
(n+3> O
THEOREM 5.3. IfdA(t) =~ (1+1)/(1—¢t) dt on (—1, 1), then

(5.13) max [K,(z)] =K. Glo +p ™)),

i.e., the maximum of |K,(z)| on &, is attained on the positive real axis.
Proof. We shall show that the expression on the right of (5.11), considered as a
function of &4 on [0, 7], attains its maximum only at 4 = 0. Using

ax(p) =2[a:(p)F -1,
we can write this assertion in the form

ai+cos 9 < a;+1
(a1—c0s 3)(@zns1+cos 2n +1)8) (a1—1)(azas1+1)’

0<G =m,

where a; = a;(p). Clearing the denominators, and multiplying out everything, produces
an aggregate of terms that can be combined to suggest the introduction of half angles,
and then yields the equivalent inequality

ai@zntl) 1~ sin® (2n +1)8/2)
a;+1 2 sin” (9/2)

sin® (2n + 1)g> 0.
Now the left-hand side is larger than or equal to

a1(azn+1+1) 1 2 4 aiazn1—1 1\?
AT @ )@n+ ) 1=2a:- 1] - ~(n+3) },

which is strictly positive by Lemma 5.2. O

5.3. Gegenbauer measure. In the case o = 8 we have only empirical results based
on computation. These seem to indicate the following. If ~1<a = —3, we have the
behavior exhibited by the Chebyshev polynomials of the first kind: The maximum of
IK@*) (z)| on €, is attained on the real axis, i.e., we have (5.7). If ~3<a <0, the
maximum is attained on the imaginary axis if n = 1; as n becomes larger, the maximum
point moves along £, to the real axis, more rapidly so, the larger p is. If 0=q, the
maximum is attained on the imaginary axis, except when n is even and p not too
large, in which case it is assumed slightly off the imaginary axis. Thus, the Chebyshev
polynomials of the second kind (cf. Theorem 5.2) are a prototype for the case a = 0.

Another interesting empirical observation is the apparent monotonic decrease of
max, s, IK > (z)] as a function of a, & >—1, for fixed p and n.

5.4. General Jacobi measure. For arbitrary —1<a <f we again have only
empirical information, the extent of computational experimentation being of necessity
more limited. What appears to be happening, nevertheless, is the following: For all
—1<a =-3, a <B, we have (5.7), i.e., the maximum occurs on the positive real axis.
For —3 < a <3, the maximum point for |[K**(z)| on &, is located to the right of the
imaginary axis and is moving toward the positive real axis as both p and n increase.
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As a practical matter, it was determined that a generally good estimate of the
maximum of |[K * (z)| on &, can be found as follows, if « =3:

(5.14) K Gp+pY), if-1<as-3
max |K (2)|~ ;
= nmx{K?ﬁkﬁp+p”DJK$£(5@-m‘5)

}, otherwise.

If a >, the estimate (5.14), by symmetry, continues to hold if K*® G(p +p7 1) is
replaced by |[K® (=3(p +p~1)|. The value of the kernel K @8 (7) on the imaginary
axis, z =iy, y >0, can be computed to a relative accuracy of ¢ asin (4.3), (4.4), where
z =iy, and where v may be taken to be the smallest integer satisfying (4.7).

5.5. Error bound. To obtain the error bound in final form, assume, for definite-
ness, that (5.7) holds. Since the ellipse %, has length [(%,) = 4¢ “'E(e), where

2
(5.15) €= —
p+p
is the eccentricity of &, and
/2
(5.16) E<e)=f J1-¢2sin” & dd
0
the complete elliptic integral of the second kind, we obtain from (1.6)
2 _ _ 2
(5.17) R.(f)l==e 'E(e) - Kule ) maxlf(z)l, e=——=.
T ze¥€, p+p

Again it is possible to optimize the bound on the right as a function of p. Also, the
bound (5.17) can be used in connection with the modified quadrature rule (3.5) if &,
contains all the poles p;.

6. Examples.
Example 6.1.

b cos[w(t+1)] -
= dt =—J(2w), 0.
J’_l JGri-n""2 o2w),  w>

We take for dA the Jacobi measure dA (1) = (1—1)""/? dt with parameters a = —3,’
B =0. Accordingly,
_coslw(z+1)]

6.1
(6.1) f(z) Ny

3

the square root being understood in the sense of the principal value. We first illustrate
the error bounds based on circular contours.

The singularity closest to the origin is the branch point at z = —3; hence all circles
C. with 1 <r <3 are admissible. To bound f on C,, we note

!COS [w (Z -+ 1)]1 _ %Ie —wy eiw(x+1) +emy e——iw(x+1)l

=3e ™ +e*), z=x+Iy,

and

W3tz =vB+z]=V3-]z],
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so that

cosh (wr)
(6.2) (z)| =——=-, eC,.

)l V3—r
Since we are in the first case of Theorem 3.1, we obtain, according to (3.4),
h
(63) IR, (I =r -Kn<r>~°—cj—3_(—£ﬁ, f<r<3,
—r

The bound on the right of (6.3) may be optimized as a function of r by using a
simple dichotomous search procedure in combination with the recursive algorithm
(4.3)-(4.5) for evaluating K, (r). A few optimal values r., of r thus computed, and
corresponding optimal bounds, are shown in Table 6.1, together with the modulus of

TABLE 6.1
Optimal error bound (6.3) and actual error.
) n Topt bound error [3) n Fopt bound error
.5 5 2.853  1.19(-6) 3.93(-9) 8.0 5 1.628 3.29(1) 1.05(-1)
10 2.928 3.83(-14) 6.73(-17) 10 2.481 4.90 (-5) 3.01(-7)
15 2.952  1.05(-21) 1.25(-24) 15 2.851 3.19 (-12) 3.50(-15)
20 2.964  2.68 (—29) m.p. 20 2.925 1.03 (-19) 1.27 (-24)
1.0 5 2.828 4.69 (—6) 4.36 (-9) 25 2.951 2.83 (-27) m.p.
10 2.922  1.57(-13) 6.33(-17) |16.0 5 1.224 1.94 (6) 3.82(—-1)
15 2.950 4.36(-21) 1.10(-24) 10 1.615 3.41(2) 3.10(-2)
20 2.963  1.13(-28) m.p. 15 2.095 1.69 (-3) 9.38 (-7)
2.0 5 2.752  7.63(-5) 3.88 (-7) 20 2.558 5.78 (—10) 5.22 (-13)
10 2.908 2.89(-12) 7.04(-17) 25 2.832 3.70 (-17) 1.90 (-20)
15 2.944  8.28(-20) 1.38(-24) 30 2.917 1.25 (-24) 3.64 (-27)
20 2.960 2.17(-27) 2.27(-28) (32.0 5 1.074 1.33 (14) 5.21(-1)
4.0 5 2.380 1.37(-2) 7.69 (—5) 10 1.203 8.56 (11) 1.63 (-1)
10 2.860 932(-10) 5.98(-14) 20 1.608 3.62 (4) 2.14 (-3)
15 2.929 2.94(-17) 4.92(-25) 30 2.109 8.57 (-7) 3.05(-12)
20 2.952 8.02(-25) 2.35(-27) 40 2.612 7.48 (-20) 1.21 (-24)

the actual errors. (Numbers in parentheses indicate decimal exponents. Close to
machine precision, the actual error may be larger than the bound; this is indicated
by “m.p.” for “‘machine precision”.) The actual error was computed in double precision
on the CDC 6500 computer (machine precision of approx. 29 decimal digits), using
software for Gaussian quadrature rules currently under development and a well-known
recursive procedure (see, e.g., [3]) for evaluating the Bessel function Jo.

Several interesting features are worth noting: The optimal radius 7., increases
with n, approaching the radius of convergence r =3 rather quickly when w is small
or moderately large. This is so, presumably, because of the “weak’ nature of the
singularity. Increasing w, on the other hand, has the effect of reducing r.,.. The bounds
are seen to overestimate the error by several orders of magnitude, becoming ludicrously
large when w is large and n relatively small. The latter is caused by the highly oscillatory
behavior of f on the circle C.. The use of ellipses, snuggling closely around the interval
[-1, 1], improves the matter considerably; see Table 6.3. While it is true that the
bounds are excessively conservative, it must also be noted that the actual errors
decrease rapidly with increasing n. Using the bounds to estimate not the error, but
the appropriate value of n to be used, yields an overestimation of n by only a few
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units (1-2 in most cases, as was determined by additional computation). In this sense,
therefore, the bounds obtained are not without practical interest.

For purposes of reference, we list the true values of the integral (to 27 decimals)
in Table 6.2.

TABLE 6.2
True values of the integral in Example 6.1.

w (m/2)To(2w)

5 1.20196 97153 17206 49913 66624 46
1.0 35168 68134 78300 44589 24008 93
2.0 —.62384 1462521423 05380 16654 91
4.0 26962 84573 43048 89859 64559 11
8.0 —.27473 0822973313 59029 11052 65

16.0 21689 40013 17366 77422 90002 39
32.0 14544 00510 86862 98391 5385172

Using elliptic contours, we have in place of (6.2),

_coshGw(p—p)

(6.4) (2)|=
== F

The empirical information mentioned in § 5.4 suggests the use of (5.17), giving

z€&,

_cosh Gw(p—p "))

V3i—e ’

2
IR.(f)l==¢ 'E(e) - Ku(e ™)

w

(6.5 _
) e=2/(p+p ", 1<p<3+V/8=5828---.

We have also optimized this bound as a function of p, using the polynomial approxima-
tions in [2] to evaluate E (¢). The results are similar to those in Table 6.1, for relatively
small w, with the bounds being consistently somewhat smaller. The improvement
becomes more pronounced with increasing w, and is quite dramatic for w =16 and
w =32, as is shown in Table 6.3. )

TABLE 6.3
Optimal error bound (6.5) and actual error.

® n Popt bound error

16.0 5 1.138 2.64 (1) 3.82(-1)
10 2.116 5.15(-1) 3.10 (=2)
15 3.425 2.05 (-5) 9.38 (-7)
20 4.589 1.91(-11) 5.22(-13)
25 5.367 1.88 (—18) 1.90 (-20)
30 5.625 7.11 (-26) 3.64 (—27)

32.0 5 1.046 7.65(1) 5.21(-1)
10 1.068 5.28 (1) 1.63 (—1)
20 2.063 8.09 (—2) 2.14 (-3)
30 3.442 1.44 (-10) 3.05(—12)

40 4.678 9.87(-23) = 1.21(-24)
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Example 6.2.

1 —t

W=

—1 t2+0)2

dt, w >0,

The integral could be expressed in terms of the complex exponential integral
E{(z) as
1 , 4
Hw)=—{Im[eE{(l+iw)]-Im[e“Ei(—-1+iw)]}
w
(cf. [8, Eq. 5.1.43]). However, it is much simpler to evaluate it by the modified
Gauss~Legendre quadrature rule (3.8) (where g(f)=¢ ).
We illustrate the use of ordinary Gaussian quadrature (i.e., without separating
out the poles +iw), and compare error bounds based on circular and elliptic contours.
Circular contours C, can be used only if w >1 and require 1 <7 <w. If we take
dA (t) = dt, hence

-z

[4
22+w2’

flz)=

we find

—rcosd

i%
= - , z=re" eC,.
{(r* cos 28 +w>)? +r*sin® 29}72 g

lf(2)l

An elementary calculation shows that the denominator attains its minimum at & = /2,
so that

r

4

(6.6) [f(2)|= —7 zeC, 1<r<w, dA(t)=dLt

© 2
We will also consider dA (1) = e ' dt on[—1, 1], a measure for which part (b) of Theorem
2.1, hence the second statement in (3.1), is applicable. In this case

1
f(z)=m,

s

and (6.6) is to be replaced by

(6.7) If(z)léwz1 et zeC, 1<r<w, dir(t)=e 'dt
If w and r are large, one expects the error bound based on (1.6) and (3.1) to be more
realistic in the case dA (1) = e ' dt than in the case dA (f) = d#, on account of the absence
of the exponential ¢” in the bound of (6.7). Some selected numerical examples of
error bounds that result from (1.6), (3.1) and (6.6), (6.7), after optimization in r, are
shown in Table 6.4, together with the true errors. The true values of the integral were
computed by the modified Gauss-Legendre formula (3.8), which converges quite
rapidly, even for very small values of w. We quote as typical the error bounds 1.59(—3),
5.45(-11), 3.11(=26) for n =2, 5 and 10, respectively, with associated optimal radii
6.066, 12.038, 22.022, which hold when w =.1. Some reference values for the integral
I(w) are given in Table 6.5.

Before turning to error bounds based on elliptic contours, we digress briefly to
explain how the Gauss formulae with measure dA (t) =¢ " df on [—1, 1] were obtained.
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TABLE 6.4
Optimal error bounds for Example 6.2, based on circular contours, and actual errors.
dr(t)=dt dA(t)=e""dt
[} n opt bound Topt bound error
1.6 5 1.414 3.20(-3) 1.498 1.06 (-3) 1.19(=7)
10 1.540 1.86 (—-7) 1.544 5.76 (—8) 4.57(-13)
15 1.559 7.99 (-12) 1.561 2.41(-12) 1.73 (—-18)
20 1.569 3.04 (-16) 1.570 9.06 (—-17) 6.54 (-24)
32 5 2.858 9.63 (-7) 2.941 6.32 (-8) 1.97 (-9)
10 3.037 2.43 (-14) 3.060 1.37 (-15) 1.37 (-17)
15 3.094 4.26 (-22) 3.104 2.26 (—23) 9.47 (-26)
6.4 5 5.379 2.87(-9) 5.854 1.10(-11) 4.45 (-12)
10 5.995 7.54 (-20) 6.107 1.92 (-22) 4.70 (-24)
TABLE 6.5

True values of the integral in Example 6.2.

@ IHw)

1 30.30306 13396 82348 89801 1277

2 14.48521 60752 92332 62573 9000

4 6.49657 69543 56769 22643 33955

.8 2.53625 92876 02957 26987 44666
1.6 .80972 41454 64440 32089 68500 1
3.2 22163 0051642300 12649 177359
6.4 .05686 6911777072 55597 11571 19

We found it expedient to employ the modified Chebyshev algorithm [6, § 2.4] to
generate the recursion coefficients for the required orthogonal polynomials from
“modified moments”. For the latter we chose Legendre moments,

1 R——
(6.8) J Pot)e 'dt=~2mi" V2 i1ppi), n=0,1,2,-"
-1

(cf. [9, Eq. 7.321]), where P, is the Legendre polynomial. (Actually, they have to be
normalized to correspond to the monic Legendre polynomials, which requires division
by k., = (2n)!/2"n!?).) Being expressible in terms of Bessel functions, these moments
can be readily computed as minimal solution of the recurrence relation

(6-9) yn+1_(2n+1)yn_)}n~1=0; nzl, 29 33 T,
especially since the initial value is simply
(6.10) yo=e—e .

Once the recursion coefficients for the orthogonal polynomials 7, (- ; e ~* dt, are found,
the corresponding Gauss formulae can be obtained from the associated Jacobi matrix
by well-known procedures (cf., e.g., [4, § 5.1]). ,

Returning now to elliptic contours &,, where p is to be constrained by 1<p <
w +vw?+1, we have in place of (6.6),

If(2)l= exp (—3(p +p ") cos &)
“{Z(p”+p %) cos 28 +w2+%]2+%(p2_p~2)2 S’ 29)

z =%QJ ei‘9+p‘1e7“’)e§§p,

1/2»

6.11
( ) dAr(t)=dt.
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The derivative with respect to 4 of the radicand in the denominator of (6.11) computes
to
—sin 2cos 28 + (p> +p w? +3)},
and hence can only vanish at ¢ =0 and 4 = #/2 (modulo ). The value of the radicand

at & = /2 is clearly the smaller of the two, so that

1 -1
6.12)  |f(z)]= Sip1(2(5(+2ip)_)z), 2e%, 1<p<w+va'+1, dr(r)=dr.
w +3-3p

(The denominator in (6.12) is positive under the constraint imposed on p and w.) A
similar bound, without the exponential in the numerator, holds in the case dA(t)=
e~ 'dt. Neither in the case dA(¢f) =dt, nor in the case dA(t)=e¢ ‘'dt do we have any
theoretical basis upon which to evaluate max. ., |[K,(z)|. Nevertheless, empirical work
alluded to in §5.3 suggests the use of the approximation max,.s |K,.(z)|=
IK,.((i/2)(p —p ~")| in the case dA (t) = dt. When dA(t)=e "dt on [—1, 1], it was found

TABLE 6.6
Optimal error bounds for Example 6.2, based on elliptic contours, and actual errors.
dA(t)=dt dr(t)y=e 'di
w n Popt bound Popt bound error
1 5 1.066 1.81(3) 1.052 6.23(2) 3.11(1)
10 1.056 3.77(2) 1.065 3.45(2) 6.83 (0)
15 1.078 2.74(2) 1.074 1.83 (2) 2.96 (0)
20 1.081 1.11(2) 1.081 9.00 (1) 1.02 (0)
40 1.092 3.98 (0) 1.092 3.39 (0 1.94 (-2)
80 1.098 2.61(-3) 1.098 2.30(-3) 6.54 (—6)
2 5 1.148 1.52(2) 1.136 7.87(1) 3.86 (0)
10 1.167 2.70 (1) 1.169 2.04 (1) 4.65(-1)
15 1.184 5.53(0) 1.184 4.20(0) 6.50 (—-2)
20 1.192 9.82(-1) 1.192 7.68 (—1) 8.90(-3)
40 1.205 6.71 (~4) 1.205 5.38(—4) 3.15(-6)
80 1.212 1.65 (-10) 1.212 1.34 (-10) 3.94 (-13)
4 5 1.359 7.27(0) 1.360 4.45(0) 1.98 (-1)
10 1.410 2.66 (—1) 1.412 1.76 (1) 3.97 (-3)
15 1.431 7.93(-3) 1.432 5.27 (-3) 8.07 (=95)
20 1.442 2.12 (—-4) 1.443 1.41 (—4) 1.63 (-6)
40 1.459 6.99 (—-11) 1.459 4.68 (~11) 2.75(-13)
80 1.468 3.90 (-24) 1.468 2.61(-24) 3.51(-26)
.8 5 1.892 1.02 (-1) 1.909 4.85(-2) 1.68 (-3)
10 1.981 1.32 (-4) 1.987 6.16 (—5) 1.12 (-6)
15 2.013 1.30(-7) 2.016 5.99 (—8) 7.41(-10)
20 2.030 1.14 (-10) 2.031 5.22 (~-11) 4.89 (~13)
40 2.055 4.26 (-23) 2.055 1.93 (-23) 9.46 (—26)
1.6 5 3.142 3.22(-4) 3.191 7.62 (—5) 1.19(=7)
10 3.313 2.53(-9) 3.327 5.54 (-10) 4.57 (-13)
15 3.370 1.45(-14) 3.377 3.09 (-15) 1.73(-18)
20 3.400 7.33 (-20) 3.403 1.54 (-20) 6.54 (—24)
32 5 5.796 5.96 (=7) 5.990 3.38(-8) 1.97 (-9)
10 6.198 9.34 (~15) 6.250 4.49 (-16) 1.37 (-17)
15 6.322 1.00 (-22) 6.346 4.57 (-24) 9.47 (-26)
6.4 5 10.773 2,62 (-9) 11.764 9.38(-12) 4.45(-12)
10 12.047 6.16 (—20) 12.281 1.46 (-22) 4.70(-24)
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by computation that the maximum is attained close to, or on the negative real axis,
thus suggesting the approximation max. s, |K, (z)|=|K,(=3(p +p )| in the case
dA(t)=e "dt. With these approximations replacing K, (e ") in (5.17), the error
estimate (5.17), when optimized as a function of p, yields the bounds shown in Table
6.6. It can be seen that the bounds in the case dA(t)=e¢ 'drt are consistently better
than those for dA (¢) = d, appreciably so, if w is large.
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