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ABSTRACT

In this paper, exact convergence and divergence domains for the SSOR iterative
method, as applied to the class of H-matrices, are obtained. The theory of regular
splittings and the recent results of Varga, Niethammer, and Cai are used as tools in
establishing these convergence and divergence domains.

1. INTRODUCTION

Today, a popular preconditioning method, used in conjunction with the
conjugate gradient method, is one or more sweeps of the symmetric succes-
sive overrelaxation (SSOR) iterative method (cf. [2]). This new use of SSOR
has, interestingly enough, sparked recent interest into the general theory of
this method. The purpose of this paper is to obtain exact domains for the
convergence and divergence of the SSOR iterative method, as it pertains to
H-matrices. As is well known, the classes of M-matrices and H-matrices were
introduced by A. M. Ostrowski in his fundamental work [8].
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for any A in S, unless v = 0, indicating that the interval (0,2 /[1+ v]) cannot
be the largest such interval, unless v=0. On the other hand, Varga,
Niethammer, and Cai [12] have shown that for each v with { <v <1 and for
each w satisfying

2
— < w<2, 1.12
I1+y2v—1 ' (112)

there is a matrix B in £ for which (S,(B))> 1.

The main result of this paper in fact precisely determines the largest
interval in w for which S (A) is convergent for any A in 5%, answering the
above question. We remark that the proof of our Theorem of Section 2 makes
use of the theory of regular splittings of matrices (cf. [9], [10]) and the recent
results of Varga, Niethammer, and Cai [12].

2. STATEMENT OF THE MAIN RESULT
Our main result (to be proved in §3) is the

TaeoReEM. For each v with 0 <v <1, set

2 if O<vs<i,
o(v): = 2

(2.1)
1+v2v—=1 ‘

if i<v<l.

Then, for each matrix A in 3%, and for each w with 0 < w < &(v),

o(8.(A)) <1, ; (2.2)

i.e., S, (A) is convergent. On the other hand, for each « with w < 0 or with
w > &(v), there is a matrix B in £, for which

o(S.(B)>1, (23)

i.e., S,(B) is divergent.

From our Theorem, we see that the curve &(v), for 0 <v <1, as defined
in (2.1), separates the convergence and divergence domains for matrices in
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7, as shown in Figure 1. Only on this curve is the convergence or divergence
of matrices in S, unsettled. For comparison purposes, we have also drawn the
curve «'(v) of (1.11) in Figure 1.

For any A in 5, the upper bound (of Neumann [6]) in (1.9) gives that

sup{p(S,(A)): Ae A} <wv+[l—w] (foral O<w<2/[1+v]).
(24)

In light of our Theorem, it can be verified that equality cannot hold in (2.4)
for any w satisfying 2/[1+v]<w <&(v) [cf. (2.1)]. In a later paper, we
propose to find sharper upper bounds, as a function of w and v, for
sup{ p(5,(A): A € £, }, much in the spirit of sharp upper bounds which have
been found for the related successive overrelaxation (SOR) iterative method
for matrices in 5, (cf. Kahan [4], Kulisch [5], and Neumann and Varga [7]).

3. PROOF OF THE THEOREM

In this section, we first establish some needed preliminary results for the
proof of our Theorem. In what follows, let J=L+U be an n X n Jacobi



266 A. NEUMAIER AND R. S§. VARGA
matrix [cf. (1.4)], and set
v=p(]J|),  where we assume that O <v<1. (3.1)

Next, for arbitrary nonnegative real numbers s and ¢, set

Q,:=(I—-sL)Y(I-sU), Q,:=(I—s|L))(I-s|U]), (3.2)

P:=s"Q; LU, P: =5%Q; -|L|-|U}, (3.3)
M, ;:=1-s]+tLU, M, ,:=1—s|J|+¢t|L|-|U|, (3.4)
N, ;:=(1-s)J+¢LU, N, ;:=[1—s||J|+¢|L|-|U|. (3.5)

Because of the strictly triangular character of the matrices L and U, it is
evident that Q, and Q, are nonsingular for any s > 0. Moreover, as

Q;t=(I-sU) '(1-sL)™"
=[1+sU+ - +(sU)" Y [1+sL+ - +(sL)" 7],
it follows that
o7 < (I- slU) NI-sL) "' = (Cs)-l, whence (Q,) >0,
(3.6)

Hence, with (3.6) and (3.3),

- ~\-1 5
Pl < s4Q; Y- ILI- U < s¥(Q,) -|LI-|U|=:B,. (3.7)

Lemma 1. For any s satisfying 0 < s <1/v (where 1/v: =0 if v=0),
then

p(B)<o(IB)<p(B) <L (3.8)

Proof. 'The first inequality of (3.8) is a well-known consequence of the
Perron-Frobenius theory of nonnegative matrices (cf. [10, p. 47]), while the
second inequality of (3.8) follows from (3.7). Now, the assumption 0 < s <1/v
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implies that p(s|J|) <1, so that I — s|J|is, by definition [cf. (1.6)], a nonsingu-

lar M-matrix, whence (I — s|J|)~! > O (cf. [3, p. 137]). Next, from (3.2) and
(3.3), it can be verified that

I-P =07 H{I-s|I1}. (3.9)
Thus, I — P, is nonsingular, and it follows from (3.9) and (3.2) that
(I-B) '=I1+sI-sJ) YL|-|U|> 0. (3.10)

But as I — P, is a matrix in Z™" satisfying (3.10), then I — P, is a nonsingular
M-matrix (cf. [3, p. 137]), so that [cf. (1.6)] p(P,) <L |

Lemma 2. For any s and t satisfying 0 <s<1/v and 0 <t < 52,

M N<(M,,)"",  whence (M,,) >0 (3.11)

Proof. Let e:=(s2—1t)/s%, so that 0<e<1. From the definitions
(3.2)—(3.3), it can be verified that

Ms,t=Qs(I_£Ps) and Ms,t=cs(1_£‘l_:;)‘ (312)

As 0<e<1, Lemma 1 gives that both I — ¢P, and I — ¢P, are nonsingular.
Thus, from (3.12) and from (3.6) and (3.7),

MY <|(T-<B) 100 < (T dB) Q< (I-¢B)(Q.)
so that with (3.12)

M <(M,,) "

LemMa 3. For any s and t satisfying 0 <s <(v+1)/2v and 0 < t < 52,

p(MS_,%ZVs,t)gp((Ms,t) Ns,t)<1' (3.13)

Proof. Setting A, ,: =M,
and (3.5) that

~N, ,, it follows from the definitions (3.4)

A ,=I—(s+L—s)JI (3.14)
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Now, as A_ , is evidently in Z™" with p{(s+ |1 —sD|J|} <1 since 0 <s <
(v +1)/2v, we have [cf. (1.6)] A, , is a nonsingular M-matrix with (4, ,)7' >

0. Next, clearly N, ,> 0 from (3 5), and as 0<s< (v +1)/(2v) anhes

0 <s<1/v, then (3 11) of Lemma 2 gives that (M, t) > 0. Thus, A,
M,,—N,, isa regular sphttmg of AS . with (As t)_ = 0. Consequently (cf

s, t S,

[10, p. 89)), p((M, ,)"'N, ,) <1. But with (3.11), then
o(M;IN, ) <o(M; 1IN, ) <o((H,,) 'R, ,)<1,  (3.15)

establishing (3.13). ]

For the SSOR iterative method, it is well known (cf. [13, p. 462]) that the
associated (point) SSOR iteration matrix S, can also be represented as

S,=I-w(2~w){(I-eL)(I-wU)} Y(I-]) (3.16)
for any w. On setting
=Q.(I-17), (3.17)
it is evident from (3.2) that S, in (3.16) can also be expressed as
S,=I-w(2-w)C,. (3.18)

For any s with 1 <s <(v+1)/2v and for any « with 1 < w <2, set

_@s=1) (3.19)

w—1

Then it can be verified from the various definitions above that

w= (2o [r+(£22)e]

Ni=(5=7)e.1-cl.

(3.20)

so that

01,0 N = |1+ ($)e] Ha-a). e
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Now, if 1 < s < w, then £ of (3.19), regarded as a function of w, is positive and
decreasing on [s,2). Hence, the maximum value of f on [s,2] occurs when
w = s, so that 0 <{ < s for all w in [s,2). But then, Lemma 3 applies, so that
p(M_ N, ;)<1 for all 1<s<w, where s <(v+1)/2v and where w <2.
This, however, implies that if A is any eigenvalue of the matrix C,, then from
3.21)

<1 (3.22)

1- =y, (3.23)

and if vy is positive, the above is equivalent to
IL—yAl<1 (3.24)

for any eigenvalue A of C,.
Now, the eigenvalues p of S, from (3.18) are evidently connected to the
eigenvalues A of C, through

p=1-0w(2-w)A, (3.25)
and on rewriting (3.24) in terms of p, we obtain, assuming vy > 0, that

w(2—w)’

. (3.26)

o — 1) <1—pg, where po:=1-

Geometrically, |, — u| <1—p, is an open disk, with center u, and radius
1 — g, which lies completely in |z| <1 if p, > 0. But then, if g, >0 and if
y > 0, all eigenvalues p of S, lie in |z| <1, so that S is convergent.

Now, the condition that g, is nonnegative is equivalent, from (3.26) and
(3.23), to the condition that

W~ w+1
s>

>———. 3.27
w?—=2w+2 ( )
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On the other hand, as we have assumed that s <(v+1)/2v, we must also
have from (3.27) that

w—w+1 v+1
< 3
W?-2w+2 2V

or, equivalently, that
(1-v)w®-2w+2>0, (3.28)
where 1<s<w<2.

Two cases arise from (3.28). If 0 < v <3, the quadratic equation in w in
(3.28) is positive for all real w, while if 3 <v <1, then (3.28) is satisfied for

O<w< (d<v<1). (3.29)

2
1+y2v—1

This brings us to the

Proof of our Theorem. Choose any w satisfying

2 if O<v<s,
l<w< - 22v_1 i j<v<l, (3.30)
and define [cf. (3.27)]
8(w): f‘“’“ (3.31)
@ — 20w +2

where $(w) places the role of s in our previous discussion [cf. (3.19)-(3.27)].
As §(w)>1 is from (3.31) equivalent to w>1, then §(w)>1 for all w
satisfying (3.30). Next, from (3.19), we find that

L 0?(8(w)—1) _ w?

w—1 o2 —2w+2’

#(o) (3.32)

so that #(w)<[§(w)]? for all w satisfying (3.30). Note that as §(w)< w is



SSOR ITERATIVE METHOD APPLIED TO H-MATRICES 271

equivalent, by (3.31), with (v —1)*> 0, then §(w)< @ for all w satisfying
(3.30). Next, we compute from (3.23) and (3.31) that

oy w=8w) o
g:=1 o) -1 =w(2-w)>0 (3.33)

for all w satisfying (3.30). Finally, we note that (3.27) is trivially satisfied from
(3.31), and our choice of w in (3.30) was selected so that (3.28) is also
satisfied. We therefore conclude that, for any n X n Jacobi matrix J with
v: = p(|J|) satisfying 0 <v <1, the associated SSOR matrix S, is convergent
for all w satisfying (3.30).

From the equivalence (iii) and (i) of § 1, it is clear that [cf. (1.8)] for any A
ins%, p(S,(A)) <1 for all 0 < w < 1. Thus, with the above development, the
first part of Theorem 1, concerning convergence, has been established.

To complete the proof of Theorem 1, suppose w > &(v), where &(v) is
defined in (2.1). It has been shown in [12] that, for n sufficiently large, a
particular matrix E can be found in 5, (whose associated Jacobi matrix is
weakly cyclic of index n) for which

p(S,(E))>1, (3.34)

i.e., S,(E) is divergent. Finally, for each v with 0 <v <1, it is easy to verify
that there is a real positive definite matrix E in 5£. But it is known (cf. [13, p.
463]) that p(S,(E)) <1 implies 0 < w <2, so that for any w <0 we have
p(S(E)) > 1, completing the proof. |
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