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ABSTRACT

Recently, special attention has been given, in the mathematical literature, to the
problems of accurately computing the least-squares solutions of very large-scale
overdetermined systems of linear equations, such as those arising in geodetical
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network problems. In particular, it has been suggested that one solve such problems,
iteratively by applying the block-SOR (successive overrelaxation) iterative method to a
consistently ordered block-Jacobi matrix that is weakly cyclic of index 3. Here, we
obtain new results (Theorem 1), giving the exact convergence and divergence domains
for such iterative applications. It is then shown how these results extend, and correct,
the literature on such applications. In addition, analogous results (Theorem 2) are
given for the case when the eigenvalues of the associated block-Jacobi matrix are
nonnegative.

1. INTRODUCTION

There has been much recent interest in accurately computing the least-
squares solutions of very large sparse overdetermined linear systems of
equations. In geodetical network problems, for example, such overdetermined
systems have the form

Ax=b. (1.1)

Here, A (the observation matrix) is a given real m X n matrix (i.e., A€ER™")
with m > n, where it is assumed that A has full column rank n, and b is a
given real vector with m components (i.e., b € R™). The least-squares solution
of (1.1) is the unique vector x in R" for which

b~ Axll, = min |b— Ayl (where [uf|3:=u*u).  (1.2)

We recommend the recent papers of Golub and Plemmons [3] and Plemmons
[5], where extended bibliographies for such geodetic problems are given.

An equivalent formulation of the above least-squares problem is the
following: determine vectors x € R" and r € R™ such that

r+Ax=b, A'r=0. (1.3)

Since A has full column rank n, we may assume that the rows of A have been
permuted so that A has the block-partitioned form

Ao [ﬁj (1.4)
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where A,, in R™", is nonsingular. With the vectors r and b of (1.3)
partitioned conformally with respect to the partitioning of A in (1.4), i.e.,

N A I h b, €R", w,b,eR™ ", (L5
“lwl P b, | where v,b;€R", w,b, € ., (15)

the system of equations (1.3) can be expressed as the following linear system
of m + n equations in m + n unknowns:

Cz=d, (1.6)
where
A, 0 I X b,
C:= A2 I O , z:=| W 5 d::: b2 . (1.7)
0 AL AT v 0

Because A is nonsingular, it can be easily verified that the (m + n)X(m + n)
matrix C of (1.7) is also nonsingular.

Our interest in the reformulation (1.6) of (1.2) stems from the fact that the
block-SOR (successive overrelaxation) iterative method can be conveniently
applied to the solution of (1.6), an observation which was first made in Chen
[2]. To define the iterative method, set D: = diag(C) = diag(A,, I, AY), so that
D is a nonsingular block-diagonal matrix. The associated block-Jacobi matrix J
for the matrix C of (1.6) is then given by

0 0 — A7! 0 0 B
Ji=I-D'C=| — A, 0 0 |=|B, 0 0
0 —ATAL 0 0 B, 0

(1.8)

Next, on writing the block-Jacobi matrix J of (1.8) as the sum J = L + U where

0O 0 O 0 0 B
L:=|By, 0 0] U:={0 0 0| (1.9)
0 By O 0 0 O
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the block-SOR iterative method, applied to (1.6), is, as usual, defined by

20" D = 20 4 o ( Lz(™*D — 2(™ + Uz(™ + D~ d} (m=0,1,...),

(1.10)

where z@ is an arbitrary vector in R™*", and where « is the associated
relaxation parameter. Equivalently, (1.10) can be expressed as

2D = & M4 y(I-wL) 'Dd  (m=0,1,...), (1.11)
where the block-SOR iterative matrix, %, , is defined as
Zi=(1-wL) Y{(1-w)+wU}. (1.12)
For the convergence properties of the block-SOR iterative method (1.11),
it is essentially to observe, as in Chen [2] and Plemmons [5], that the

block-Jacobi matrix J of (1.8) is a consistently ordered matrix, weakly cyclic of
index 3 (cf. Varga [6; 7, p. 101]). Moreover, from (1.8), it directly follows that

J3=diag( — A{'PTPA;; — PPT; —P"P)  (where P:=A,A7")
= diag(B, B, B,; B,B,Bs; B;B,B,), (1.13)

so that J® is similar to a real symmetric negative semidefinite matrix.
Therefore the eigenvalues of ] lie in the real interval

I_:=[-¢*(J),0]; (1.14)
here, p(J) denotes the spectral radius of J. Because J is a consistently ordered
matrix that is weakly cyclic of index 3, the special case p =3 of Varga ([6,

Theorem 4] or [7, Theorem 4.3]) can be applied to deduce the following
known relationship between the eigenvalues of %, and those of J:

TueoreMm A. If B is an eigenvalue of the block-Jacobi matrix J of (1.8),
and if A satisfies

(A + w—1)° = X383, (1.15)
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then A is an eigenvalue of the block-SOR iteration matrix £, of (1.12).
Conversely, if w # 0, if A is a nonzero eigenvalue of &,,, and if B satisfies
(1.15), then B is an eigenvalue of J.

In the next section, our new results, concerning the exact convergence
domain of the block-SOR iterative method, are stated (Theorem 1) for the
block-SOR iterative method of (1.12), when the eigenvalues of J° are assumed
to lie in the interval I_ of (1.14). As an important consequence of Theorem 1,
applications of the block-SOR iterative method can be made even in cases
when the associated block-Jacobi matrix is divergent, a case not treated
heretofore in the literature. In analogy with Theorem 1, the exact conver-
gence domain for the block-SOR iterative method (1.12) is stated (Theorem 2)
for the case when the eigenvalues of J° are nonnegative, and connections with
existing literature are made.

It should be noted that, in general, there will be many choices of A, (with
A, nonsingular) possible in (1.4), and each choice clearly affects the spectral
radius p(J) of the associated block-Jacobi matrix of (1.8). Now, Theorem 1,
which applies to each such choice of A,, gives precise convergence and
divergence regions (as a function of w) for the associated block-SOR iterative
method, these regions depending only on p(J) [cf. (2.1)-(2.2)]. Thus, from a
practical point of view, one is interested in techniques for selecting nonsingu-
lar matrices A, in (1.4) which minimize (or nearly minimize) the associated
spectral radius p(J) of the associated block-Jacobi matrix. The discussion of
such practical techniques, which is beyond the scope of this paper, can be
found in [2] and [5].

2. STATEMENT OF NEW RESULTS

With B8: = p(J) denoting the spectral radius of the block-Jacobi matrix J of
(1.8), our first result (whose proof is given in Section 3) is

TaeoreM 1. The block-SOR iterative method of (1.11), applied to the
matrix equation (1.6), converges for

0<w<w(B):= when 0<B<2, (2.1)

2
1+8

converges for

‘*’2(13):=g:%<“<‘01(ﬁ) when 2<B <3, (2.2)
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and diverges for all other values of w. The optimal relaxation factor w, = w,(B)
is the unique positive root of

483 +27Tw—27=0 (0<B<3), (2.3)
and w), satisfies
it<w,<1 forall 0<B<3. (2.4)
Further, there holds
o(£,,)=21-w,) forall 0<B<3. (2.5)

It is clear from Theorem 1 that one can find values of w for which the
block-SOR iteration matrix %, is convergent, even when the block-Jacobi
matrix J is divergent, i.e., with 1 < 8: =p(J) < 3, there are intervals in w [cf.
(2.1) and (2.2)] for which p(%, )} <1. In this respect, Theorem 1 extends what
is known theoretically in the literature for such block-SOR applications. More
important, however, is the fact that Theorem 1 greatly increases the applica-
bility of this block-SOR iterative method to least-squares problems, such as
those arising in geodetical network problems.

It is also important to note that Theorem 1 corrects results stated in the
literature for such least-squares applications. Under the assumptions of Theo-
rem 1, one finds in Plemmons [5, p. 166] the statement that for any p(J) <1,
the associated block-SOR iterative method converges for all w satisfying

0<w<g [0<p())<1], (2.6)

whereas from (2.1) of Theorem 1, the correct statement is that the associated
block-SOR iterative method converges in the subset of (2.6) consisting of all w

satisfying

O<w< [0<p())<1]. 2.7

_2
1+po(J)

The same error occurs in Berman and Plemmons [1, p. 179].

In contrast with the behavior of the familiar SOR iterative method which
arises in applications to the numerical solution of positive definite matrix
problems derived from elliptic boundary-value problems, we remark that it is
now preferable-to underestimate, rather than to overestimate, the optimum
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relaxation factor w,(@), for the above applications to least-squares problems.
This is particularly evident in Figure 2, where it is seen that even overestimat-
ing w, by a very small amount harms the associated rate of convergence of
the block-SOR method more severely than does underestimating w, by the
same amount. In this regard, we further remark that any overestimate of
B:=p(]J) yields, fortunately, an underestimate of w,(), which can either be
deduced from (2.3) of Theorem 1, or seen graphically in Figure 1.

It is interesting to note that Theorem 1 can also be derived from the
results of Niethammer and Varga [4], where k-step iterative methods are
studied from the point of view of summability theory. The idea there is to
write the block-SOR iterative method as a three-step iterative method, in the
same way as it was done in [4] for deriving two-step iterative methods for
matrices that are weakly cyclic of index 2.

As a counterpart of Theorem 1, we now present results for the case where
the eigenvalues of J3 are nonnegative, i.e., the eigenvalues of J° lie in the
interval

Li=[0,(7)]. (2.8)

THEOREM 2. Let a block-Jacobi matrix J be a consistently ordered matrix,
weakly cyclic of index 3, such that the eigenvalues of J° are real and
nonnegative. With B:=p(]), the associated block-SOR iterative method con-
verges for

O<w<wy(B)i=5— when 0<p<1, (2.9)

and diverges for all other values of w. The optimal relaxation factor w, = w,(B)
is the smallest positive root of

4B%P - 27w +27=0 (0<B<1), (2.10)
and w,, satisfies
I<w,<3  forall 0<B<L. (2.11)
Further, there holds

p(Z,,)=2(w,—1). (2.12)
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Interestingly enough, while the proof of (2.10)—(2.12) is given in Varga
[6], the precise upper bound ws(B) for convergence in (2.9) is new. Previ-
ously, it had been shown in [6], under the assumptions of Theorem 2, that
convergence of the associated block-SOR method holds in the subset of (2.9)
defined by

O<w<? [o<B:=p(J)<1]. (2.13)

We now describe the results of both Theorems 1 and 2 in Figure 1. For
convenience, we introduce the variable B, where B: =p(J) if the eigenvalues
of J3 are nonnegative (cf. Theorem 2), and where f8:= — p(J) if the eigen-
values of J° are nonpositive (cf. Theorem 1). Thus, we obtain an open
bounded region € in the B-w plane, such that for each point in € (shown as
the shaded region), the associated block-SOR iterative method, with relaxation
factor w [when applied to a system for which p(J)=p or p(J)= — B] is
convergent, and is divergent for all points in the complement of Q. Also
included in Figure 1 is the set of all optimum relaxation factors w( B), as a
function of B, and the difference D of the sets of (2.6) and (2.7), as well as the
difference E of the sets (2.9) and (2.13).

In Figure 2 is a plot of p(Z,(8)) as a function of w, for B = —2.0 and for
B = — 2.5, Here, one sees graphically that underestimating w;( B) (for B <0)
is in general much superior to overestimating w;( B).

™t

Fic. 1.
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3. PROOFS

For the proof of Theorem 1, we begin with Equation (1.15) of Theorem A,
in the form

(A+w—1)°= - 220383, (3.1)

where, from (1.14), we assume that 0 <8 < p(J). Consider next the poly-
nomial in @

Glw)=G(w;B8):=B%+Zw—Z, (3.2)

Clearly, G(w) has, by Descartes’s rule of signs, a unique positive zero
@, = &y(B), and as G(0)= —% and G(1)=B>>0, then evidently &,(8)
satisfies

‘0<<:>b(/3)<1 [0<B<p(])] (33)

as well as

By (B) =% [1—a,(B)]. (3.4)
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Using (3.1), with w = &,, and (3.4), it follows that
A(B):=2[ay(B) 1] (35)

is a zero of multiplicity two of the polynomial (3.1) in A. Moreover, since the
product of the zeros of (3.1) is, in this case, — (&, — 1)°, we see that the third
associated zero of (3.1) is necessarily smaller in modulus than A(B)):
Returning to (3.2), there is an &, for each f=p;, where B; is an
eigenvalue of the block-Jacobi matrix J. On dlfferentlatmg (3.4) with respect
to B, it follows that &,(B) is a strictly decreasing function of 8> 0, whence
|7\( B)| is a strictly increasing function of 8> 0. Since we are interested in
p(Z,), we are then justified in considering (3.1) and (3.2) with 8= p(J).
Consequently, with &,: =&,(p(J)), it follows from (3.5) and (3.4) that

P(gab)=2(1_‘:’b)" (3.6)

Note from (3.4) that &,(3)=3, so that p(%, ;) =1 from (3.6). Thus,
since @,(B) is a strictly decreasing function and |)\(B )| is a strictly increasing
function of B> 0, it is evident that only in the interval 0 <8 =p(J)<3 do
we have p(%,, ) <1. Moreover, for each p(J) with 0 < p(J) < 3, there is an

open interval SZ( o(J )) in w such that p(£,) <1 for each w € Q(p(J])).

We now set A =:— z° in (3.1), so that on taking cube roots in (3.1), we

obtain the associated polynomial

go(z;0)i=2—wPz2+(1—-w), where B:=p(J)>0. (3.7)

[Note that if Z is any other solution of the cube root of (— 2+ w—1)°=
— 2%°B%, then Z = zexp(2wik), k = 0,1,2, so that |Z| = |z].] This brings us to

Lemma 1. With &, defined in (3.4), then

(@) for 0 < w < &y, g4(3; w) has no positive real zeros;

(ii) for w= &y, g4(z; ) has a unique real positive zero of multiplicity
two;

(iii) for &, < w <1, g5(z; w) has precisely two positive real zeros;

(iv) for w>1, g4(z; w) has precisely one positive real zero.

Proof. (ii): For w = &,, the root }\ < 0, of multiplicity two, of equation
(3.1) given by (3.5) yields, via A = — 23, a positive solution 2 of multiplicity
two of g4(z; wp).
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(iii): For &, <w <1, g4(2; w) has at most two real positive zeros by
Descartes’s rule of signs. With z =:{(1 — v)'/3, then g;(z; @) can be written
as -

gx(z0)=(1-w){{~e(w){>+1} =:(1-w)hs(§;0),  (3.8)
where &(w) is defined by

e(w):=a_if)—l—/§. (3.9)

Since

de(w) _ B3~ 20)
do  3(1-0)¥*

then &(w) is a strictly increasing function of w in 0 < w <1. Since we have
from (3.5) that gs(%; &,)=0 where 2 =[2(1 = &,)]"/%, then {,=2""is a
zero of multiplicity two of hy(21/3; &,), ie.,

hy(2'3; &, ) =0. (3.10)

From the monotonicity of &(w) in &, < <1, we conclude from (3.8) that
ha(§: @), and thus g4(2; w), have exactly two real positive zeros for &), < w <1.
(iv): For w > 1, Descartes’s rule of signs directly shows from (3.7) that
g4(z; ) has exactly one positive real zero.
(i): Since from (3.10) we know that {, = 2'/% is a zero of multiplicity two
and that h4(0; w) =1 from (3.8), it follows from the monotonicity of &(w) that
there are no positive real zeros for 0 < w < &, [ |

For fixed B=p(J)>0, let us denote the three zeros gs(z; w) by
%y, %4, and z,, remembering that the z,’s are functions of w and 8. From
M (z—2)=2~- wPBz? + (1 — w), we evidently have

z,+ 29+ 25 = WP, (3.11)
218y + %133+ 2523 =0, (3.12)
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Next, we examine the case for w satisfying 0 < w <&, [where &, is
defined in (3.4)]. We know from Lemma 1(i) that there are no positive real
zeros of g3(z; w). Replacing z by — ¢ in (3.7), we see that g4(z; ) has exactly
one negative real zero, so that the two remaining zeros of g,(z; w) are
necessarily complex. Thus, we can write, for 0 < w < &,, that

2,<0, zy=ne'®, z5:=ne '®, where 0<¢<m.  (3.14)
Using (3.11) and (3.12), we obtain

z; +2ncos ¢ = wf, (3.15)

2zmcos ¢ + 72 =0. (3.16)
On eliminating 27 cos ¢ from (3.15) and (3.16), then
| =5~ aBsy> 2, G.17)
since z; < 0. In other words,
1=|zs|=1|73|>|2;] for 0<w<w,. (3.18)
From (3.13), we further deduce that

o= 178 g 0<w< 3.19
lz5(@)| =17 @) or w < wp. (3.19)

Clearly, as z, is a zero of g5(2; w), then
23— wBzi+1—w=0. (3.20)

Now, a straightforward calculation, based on (3.17) and (3.20), shows that
1 = n(w) satisfies

dn _ 2z,—pRe—1)
dw 2n(3z12 - 2w,8z1)

for 0<w<a, (3.21)
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Obviously, from (3.21) there follows
-To<0 for i<w<&,. (3.22)

Next, we see from (3.21) that dn/dw =0 for

z1=51:=——6—(—12;2-‘ﬁ, where 0<w<3. (3.23)

As this Z, must satisfy (3.20) as well, a short calculation shows that the
associated value of w in (3.23) satisfies a quadratic equation whose only
acceptable solution in the range 0 < w <73 is

11 1+
w4(B)=—§—E— .

(3.24)

Now, as w,(8)> 0 only for §> 2, then dn/dw =0 can occur in 0 <w <1
only for 8 > 2. In other words, from (3.22), dn/dw <0 for all 0 <w < &, and
0<B<2 anddn/dw<0forall w(B)<w<d,and2<p.

Next, on assuming that 7 = 1, we deduce that z, = @ — 1 from (3.19). On
the other hand, as z, = w — 1 is by definition a zero of g;(z; w), we easily
derive from (3.7) that n =1 implies that

w———wz(ﬁ):=%—:—§ for 0<w<w,. (3.25)

As we have seen previously, &,(3)= 3, and from (3.25), we similarly see that
wy(3)=14. Further, we see from (3.24) and (3.25) that wy(2)=w,(2)=0;
moreover, direct computation with (3.24) and (3.25) gives that

w(B)<wy(B)<i  forall 2<B<3. (3.26)

Thus, we have precisely one zero of dn/dw in the interval [0, wy(8)] for
2 < B, which occurs when « = w,(f). On the other hand, 7(0) =1 = n(wy(8)),
the latter holding for all 8 > 2, while dn/dw < 0 for w = wy(B), B > 2. Thus,

nw)>1 forall 0<w<wy(B), B>2. (3.27)
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We have plotted the function w, (with 8: = — ) in Figure 1, in order to help
interpret the above results graphically.

On putting together the above facts for the case 0 <w <&, and on
relating these back to the variable A by means of A\: = — z3, we have thus
established

Lemma 2. The following are valid:

o(Z,) <1 forall 0<w<a,(B) when 0<B<2; (3.28)
p(Z£,) <1 forall o(B)<w<ay(B)  when 2<B<3; (3.29)

p(Z)>1 forall 0<w<wyp) when 2<p. (3.30)

Moreover, p(£,) is a decreasing function of w when either 0 < w < &,(8)
and B <2, or w(B)<w <@,(B)and B> 2.

We now consider the case when &, < w < 1. From Lemma 1(iii), we know
that in this range of w,

z(w)<0 and 0<zy(w)<z3(w). (3.31)

Moreover, from gi(z; w) of (3.7), it follows that if &, <w <w <1, then
Zo(w) < 2o(w’) and z5(w”) < z5(w). Also, since g4(z,(w’); w) <0, then z,(&;)
<z{(w)<z(w)<0, so that z4(w) is the largest (in modulus) zero of
g24(%; w) for &, < w < 1. Moreover,

z5(w) is a strictly increasing function of w in &, < . (3.32)

We next consider the case when w > 1. From Lemma 1(iv), g5(z; w) has
one positive zero, and on replacing z by — ¢, we see that gs(z; w) has no
negative real zeros. Thus, the zeros of g,(z; w) in this case can be expressed
as

z(w)=ne"  z(w)=me ",  z3(w)>0 for I<w, (3.33)
where 0 < 6 < #. Now, in the same way we derived (3.17), we get

P=z2—wPz;<z2 for l<w. (3.34)
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Next, assume z; = 1. Then from (3.7), we obtain that & must satisfy

w=w1(ﬂ):=1—i—g. (3.35)

But, as (3.32) holds for all &, < w, we have deduced

Lemma 3. The following are valid:
(L)<l forall &,<w<w(B), (3.36)
and
o(Z)=>1 foral w(B)<ow. (3.37)

Moreover, p(£,) is a strictly increasing function of w for all &), < w.

To conclude the proof of Theorem 1, we remark that it is well known (cf.
[7, Theorem 3.5]) that the block-SOR iterative method is necessarily divergent
for w <0 or for w > 2. With this and Lemmas 2 and 3, Theorem 1 is thus
proved. |

The proof of Theorem 2 follows along the same lines as above, if Lemma 1
in [6] is used in place of Lemma 1 of this section.
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