p-Cyclic Matrices and the
Symmetric Successive Overrelaxation Method

R. S. Varga* and W. Niethammer
Institut fiir Praktische Mathematik
Universitit Karlsruhe

D-7500 Karlsruhe, West Germany

and

D.-Y. Cai

Department of Applied Mathematics
Qing-Hua University

Beijing, People’s Republic of China

Submitted by Hans Schneider

ABSTRACT

In this paper, the new functional equation,
[7\ —(1- w)2] PoA[A+1- w]? 32— w) wPp?,

which connects the eigenvalues p of a particular weakly cyclic (of index p) Jacobi
matrix B to the eigenvalues A of its associated symmetric successive overrelaxation
(SSOR) matrix S,,, is derived. This functional equation is then applied to the problem
of determining bounds for the intervals of convergence and divergence of the SSOR
iterative method for classes of H-matrices.

1. INTRODUCTION

The first purpose of this paper is to derive the new functional equation
(see Section 2)

[A= (1= 0)]" =A[A+1-0]" %2 - @) eru?, (1.1)
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form
[0 B, 0
B=| 0 0 B,;|,
| By, O 0
[0 0 o0
L=]0 0 0}, (2.9)
| B;, 00
K B, 0
U=|0 0 By;|
0 O 0
A direct calculation with the above matrix L gives that
(1-w)I 0 0
M(L)= 0 (1-w)I 0 , (2.10)
w(2—w)B;, 0 (1-w)I
while a similar computation for the matrix U of (2.9) gives
(I-w)l ©@-w)B, w(2- w)By 5B, 5
M(U)= 0 (1-w)I w@—-w)By, | (211)
0 0 C(1-w)I
Hence, from (2.8), we have
§,=(1-w)I+T,, (2.12)
where
0 woB, , «:ztyBl,sz,3
T,:= 0 0 woB; 5 ,

2
woB; ‘*’2(2 - w) B3,1B1,2 "’3(2 - "-’)233,131,232,3

(2.13)
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and where
o:=(1-w)(2-w). (2.14)

Cleatly, 7 is an eigenvalue of T, iff

}\:=(1—w)2+'r (2.15)

is an eigenvalue of S,

We now derive a relationship between the eigenvalues of B and those of
S, Assuming that 7 is an eigenvalue of T, there is a nonzero vector
[X,, X5, X;]7 such that

Xy X,
T,| Xy |=7| X, |, (2.16)
X3 X3

where the vector [ X, X,, X;]” is partitioned conformally with respect to the
partitioning of the matrices in (2.9). It follows from (2.13) that the subvectors
X,, X, and X satisfy

woB, o Xy + 0B, 4B, s X=X, (2.17)
woB, 3 X3=1X,, (2.18)

woBy X, + (2 - w)zBs,lBl,zxz +w’(2- W)ZB3,131,232,3X3 =7X35.

(2.19)
Assuming 7 # 0, equation (2.18) gives that
X, = 9;‘{32’3)(3, (2.20)

while (2.17) and (2.20) together give that

2

(0202 (020'
x1={ - +-—T—}31,232,3x3. (2.21)
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On substituting (2.20) and (2.21) into (2.19) and on multiplying through by
2, there holds, after some simplifications using (2.14) and (2.15), that

P2 = w)’A[A+1-w]By B 1By ;X5 = [A = (1-0)’X,. (2.22)

As a consequence of (2.22), it follows, under the assumption that 7 # 0,
that X is not zero, for if, on the contrary, X, were zero, then the same would
be true for the vectors X, and X, from (2.20) and (2.21), which contradicts
the assumption that [ X, X,, X;]7 is an eigenvector of T.

Next, under the assumptions that 7 # 0 and that 0 < w < 2, the coefficient
of By B, 3B, 3X; in (2.22) can vanish only if A=0 or if A=w—1. If we
assume first that A = 0, it follows from (2.22) that the right side of (2.22) must
vanish, and as X, # 0, then w = 1. But, from (2.15), then 7 = 0, a contradic-
tion. Thus, A # 0. If, in the remaining case, we assume that A = w — 1, it again
follows that w = 1, which from (2.15) again yields the contradiction that 7 = 0,
whence A +1 — w # 0. Consequently, under the assumptions that 7 # 0 and
that 0 < w < 2, we can write (2.22) as

[A--o)
P2 - 0)’A[A+1-0w]

B; (B, 4B, 3X3= X3, (2.23)

i.e., X5 is an eigenvector of the matrix B; | B, 4B, 3 with associated nonzero
eigenvalue [A — (1 — 0)2]3/w3@2 — w)’A[A +1— w].

We now make use of the weakly cyclic of index 3 character of the matrix
B of (2.9). By direct computation,

Bl,2B2,3B3,l 0 g 0
B3= 0 B2’3B3’1B1’2 0 s (2.24)
0 0 33,131,232,3

where the three diagonal submatrices of B> are easily seen to have all the
same nonzero eigenvalues. Moreover, it follows from a result of Romanovsky
(cf. [10, p. 40]), that

B; B, 3B, 3Y; = NSYS (N #0, Y;# O) (225)

iff p is a nonzero eigenvalue of B. Thus, the combination of (2.23) and (2.25)
gives that u® = [A — (1 — 0®)]3/0*@ — w)?A[A +1 — w], whence

A= (=) = AN +1-0](@2 - ) s, (2.26)
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where pu is an eigenvalue of B. In other words, we have shown that if A is an
eigenvalue of the SSOR matrix S, for which A —(1 - 0)?# 0, if 0 <w <2,
and if p satisfies (2.26), then p is an eigenvalue of the block Jacobi matrix B of
(2.9).

Conversely, we claim that if p is an eigenvalue of B, if 0 < w <2, and if A
satisfies (2.26) with A # (1 — w)?, then A is an eigenvalue of S. To establish
this, it is evident from the hypotheses that pu cannot be zero. As before, p. is a
nonzero eigenvalue of B iff By B, ,B, ;Y;=pY; for some Y;#0. With
#:=h — (1 — w)?, where A is the solution of (2.26), then by hypothesis, 7 # 0.
Hence, we define the vectors Y, and Y; by means of

w02

wo w?o
Yor=—Byg¥s, Y= {7 += } By oBysY;.  (2.27)

One can then verify from (2.17)—(2.19) that T, [Y,, Y,, Y;]7 = #[ Y, Y5, Y5)7, so
that A is an eigenvalue of §w, as claimed.

Actually, the above technique of proof for the case p = 3 can be extended
to the case of any weakly cyclic matrix B of index p > 2, as considered in
(2.3). Leaving the details of the extension to the reader, we simply state our
generalization of (2.26) as

TaroreM 1. Given the matrix A of (2.2) with nonsingular square
diagonal submatrices A, ;, 1<i<p, let B of (2.3) be its associated weakly
cyclic (of index p) block Jacobi matrix, and assume 0 <w <2. If A is an
eigenvalue of S, for which A # (1 — w)?, and if p satisfies

A= (1= w)?]” =A[A+1-0]"*@ - w) wrur, (2.28)

then p is an eigenvalue of the block Jacobi matrix B of (2.3). Conversely, if p
is an eigenvalue of B and if A satisfies (2.28) with A # (1 — w)?, then A is an
eigenvalue of S,,.

The functional equation (2.28), relating the eigenvalues p of the block
Jacobi matrix B of (2.3) with the eigenvalues A of the SSOR iteration matrix
S,,, has very much the flavor of Young’s equation (cf. [12, p. 142))

A+w— 1)2 = A2, (2.29)

which similarly relates the eigenvalues of a consistently ordered weakly cyclic
(of index 2) Jacobi matrix B with the eigenvalues A of the associated SOR
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iteration matrix L, as well as of Varga’s extension of Young’s equation (cf.
[10, p. 106))

(A +w—1)" = AP~ loPp?, (2.30)

which relates the eigenvalues of a consistently ordered weakly cyclic (of index
p > 2) Jacobi matrix B with the eigenvalues of the associated SOR iteration
matrix L . It is interesting to remark that the textbook proofs usually used to
establish (2.29) or (2.30) involve first results on determinantal invariance (cf.
[10, p. 102], [12, p. 141]), a step which has not been directly used in the
technique of proof of our Theorem 1. Now, this lack of such a determinantal
invariance in the SSOR case may account for the fact that such extensions
(relating the eigenvalues of the SSOR iteration matrix S, with the eigenvalues
of the Jacobi matrix B when it is weakly cyclic of index p) have not appeared
earlier in the SSOR literature. Thus, Theorem 1 appears to fill this gap in the
SSOR literature.

Some easy consequences of Theorem 1 are worth mentioning. If p =2,
then (2.28) reduces to

[A= (- )] =AE2 - 0) el (2.31)

which was obtained earlier by D’Sylva and Miles [2]. In particular, on setting
&:=w(2 — w), the above takes the more familiar form

[A+6—1]=ro%2, (2.32)

which is Young’s equation (2.29). From this, we recover earlier results of
Niethammer [8] and Lynn [4] concerning the SSOR method in the case that
the Jacobi matrix B is weakly cyclic of index 2.

We further remark that our explicit technique for deriving (2.28) of
Theorem 1 can also be used to directly derive Varga’s functional relation

A+o-D)"=2"1wPu? (p>2) (2.33)

between the eigenvalues 1 of a consistently ordered weakly cyclic (of index p)
Jacobi matrix B and the eigenvalues A of the associated SOR iteration matrix
L, without using results on determinantal invariance. In fact, this technique
allows one to similarly derive the analogous results (cf. Kjellberg [3], Nichols
and Fox [7], and Varga [10, Example 2, p. 109])

A+o-1D"=Xoru? (k=12,....p—-1; p=2) (2.39)
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between the eigenvalues p of a weakly p-cyclic Jacobi matrix B and the
eigenvalues A of the associated SOR matrix L, where the effect of ordering is
seen in the exponent of A in (2.34).

We finally remark that functional equations, similar to (2.28), can also be
derived for permutation transformations applied to the weakly cyclic of index
p Jacobi matrix B of (2.3). For example, if in place of B of (2.9), we consider
its “permuted” matrix

0 0 By,
B=|B,, © o | (2.35)
0 B, O

which is also weakly cyclic of index 3, then it can be verified that the
functional equation (2.28) of Theorem 1 is unchanged. On the other hand, if
we consider the weakly cyclic (of index 4) matrix

0 0 B, 0

., |0 0 0 B

B= . S (2.36)
0 B, O 0
B,, 0 O 0

4,1

which is a permutation of that matrix considered in (2.3) for p =4, one
obtains instead the functional equation

[A= (1= )] =22 - o) uiut, (2.37)

relating the eigenvalues p of the matrix B with the eigenvalues A of the
associated SSOR matrix S,

3. APPLICATIONS TO H-MATRICES

In this section, we use the result of Theorem 1 to deduce new upper
bounds for the domain of convergence of the SSOR iterative method when
applied to H-matrices. We first begin with some necessary notation.

Let C™" (R™") denote the set of all n X n matrices A= [a, ;] with
complex (real) entries. For each A=[a, ;] in C™7, let M(A):=[e; ;] in
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R™" be the comparison matrix for A, defined by

i i,

a; 2=la; |, 1<i<n; o g=—|a; |, i# f; 1<i, j<n. (3.1)
Further, for any A = [a; j] eC™", we set
Q(A):={B=[b, JeC™™:|b, ,|=la, jforall 1<i, j<n}. (32)

We call Q(A) the equimodular set of matrices associated with A. Note that
both A and M(A) are in Q(A).

Next, let C™™ denote the subset of matrices in C™" having all diagonal
entries nonzero. Then for each A =[a; ;J€C;", we can decompose each
B=[b; ;]€Q(A) into the sum

B=D(B)— L(B)-U(B) (3.3)

where D(B):=diag[b, , by s,...,b, ,], and where L(B) and U(B) are re-

spectively strictly lower and strictly upper triangular matrices. We then
define

J(B):=(D(B)) '{L(B)+U(B)} [forall BeQ(A)] (3.4)

to be the associated (point) Jacobi matrix for B.
Next, any matrix B = [bi’j]GR"’"Withbi,jSOfora]li¢ j>1<i, j<n,
can be expressed as

B=rI-C, (3.5)

where 7:=max, _; ., b; ;, and where C=[c; ;] €R™", having nonnegative
entries, is defined by

C’zT_’b’>O, C’=_bl’]>0,z'—7{:], 1<l9j<n- (3.6)

Following Ostrowski [9], such a matrix is said to be a nonsingular M-matrix if
7> p(C), where p(C):=max{|A|:det(AI — C)= 0} is the spectral radius of
C, and any matrix A€ C™" for which MM(A) is a nonsingular M-matrix is
similarly called a nonsingular H-matrix. Finally if B={[b, ;]J€C™", then
|B:= Hbi, ]” ER™".
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Now, from the work of Alefeld and Varga [1], Neumann [5], and Varga
[11], it can be shown that, given any A€ C'", n>2, the following are
equivalent:

(i) A is a nonsingular H-matrix;

(ii) for any B € Q(A), p(J(B)< p(|[J(B))=p(J(M(A)) <1

(iii) for each B€ Q(A) and for each w in the interval 0 <w <2/[1+
o(JJ(B)]), the associated SOR iteration matrix L (B) satisfies

p(L,(B)) < wp(J(B))+[1—w| <1, (3.7)
i.e., L (B) is convergent;
(iv) for each BE Q(A) and for each w in the interval 0 <w <2/[1+
p(|J(B)))], the associated SSOR iteration matrix S, (B) satisfies
p(S.(B)) < wp(IF(B))+1—-w|<1, (3.8)

i.e., S (B) is convergent.

To discuss the sharpness of the first inequality in (3.7), set

H:={A€C™", n arbitrary: A is an H-matrix with p(|J(A))=r}
for each » € [0, 1). 3.9)

With this notation (3.7) can be expressed as

p(L,(B)) < wv+|l— |, forall O<w<—2—, all BeJt,

1+»
(3.10)
from which it is evident that
2
sup{p(L,(B)):BE#}<wr+1—w| foral O<w<y—.
(3.11)

It was shown by Neumann and Varga [6] that equality holds in (3.11), i.e.,

sup{p(L(B)):BE X} =vw+|l—w| forall 0<w<—1—_%,

(3.12)
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so that the inequality of (3.10) cannot be improved (relative to the set /). In
this sense, the first inequality in (3.10) is sharp.

It is natural to similarly ask if the first inequality of (3.8) in (iv) is sharp,
but this remains an open question. A simpler question is if the interval of
convergence in w, namely (0,2/[1+ p(|J(A)}]), is sharp in (iv) for each
B € Q(A), where A is a nonsingular H-matrix. Since S; = I from (2.3), it is
trivial that convergence cannot hold at the left endpoint of (0,2/[1+
o(JJ(A)DD). As for the right endpoint, Neumann [5] has recently shown,
somewhat surprisingly, that

2

P(SAA) <1 |wi= sy

for any nonsingular H-matrix A, unless p(JJ(A)])= 0. This suggests that the
upper bound for w, namely 2 /[1+ p(|J(A)])], in (iv) might be improved.

To contribute to the above question, we now apply Theorem 1 to deduce
new upper bounds for the domain of convergence of the SSOR iterative
method when applied to H-matrices. Specifically, consider the n X n matrix
A = I — B, where B is given by

B= R (n>2). (3.13)
- a
B 0
Clearly, B is a weakly cyclic matrix of index n, with »™ =a™ 18 an eigenvalue
of B". Thus, (2.28) of Theorem 1 becomes in this case

[A—(l—w)z]n—?\[)\+1—w]"“2(2—w)zw"v"=0. (3.14)

On setting A = — s, and on choosing any complex number » such that
—»" = |»|" and such that |»|" < 1, the above equation can be expressed as

G.(s;0, 7)) =0, (3.15)
where

G, (s;w,v):= [s +(w— 1)2] "es[stw—1]""%2 - w)wmrm. (3.16)
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In particular, for s =1 and for any 0 < w < 2, we have

G,(1;0,7)=[e*— 20 +2]"-(2—w-‘i)2[vw2]". (3.17)

It is evident that if

re?>?—2w+2  (for 0<w<2), (3.18)
then
G, (1;0,v)<0  for each n sufficiently large. (3.19)
On setting
GJ(V):=——2-———— for each » with $ <» <1, (3.20)
1+V2r -1

so that &(»)>1, one verifies directly that (3.18) holds, for 0 < w <2, pre-
cisely when

a(r)<w<2. (3.21)

On the other hand, (3.16) shows that G, is a real polynomial in s with leading
coefficient positive, so that

G, (s;w,v)>0  forall s > 0 sufficiently large. (3.22)

Thus, for each w satisfying (3.21) and for each n sufficiently large, we see
from (3.19) and (3.22) that there is an s, (w; »), satisfying

1<s,(w;v), (3.23)

for which G, (s,(w;?); w,7)=0. Equivalently, there is a j\n: =—s,(w;7)
which satisfies (3.14). Now, as

2

A= —s(w;v)< -1 (3.24)

n

from (3.21), then A, # (1 — w)? for each n. If S{® denotes the SSOR matrix
associated with the Jacobi matrix B of (3.13) (with — a" 18 =y"), then on
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w
2.0
ivergence ~ - 2
///Hn(\)) Eall e
=1
1.5 - 2
G{v) := p—
’/,wl ) 1+v/2v-1
=
(1/2 s vs 1
Onvergen ’
1.0-/
.5
0] .1.2 5 1 v
Frc. 1.

applying the last part of Theorem 1, A, must be an eigenvalue of S for each
w satisfying (3.21). But as |A | > 1 from (3.24), then

p(SM)>1 (3.25)

for each w satisfying (3.21), for each n sufficiently large, so that the associated
n X n SSOR matrix S{™ is necessarily divergent. Obviously, as the n X n
matrix A, (»), corresponding to the choice of the matrix B in (3.13) (with
— a™ 1B =p™), is by construction a matrix in the set H#,, we have established
the result of

Tueorem 2. For each v with §<w<1, and for each w satisfying
BA(v) < w < 2 (cf. (3.20)), there holds

sup{ p(S,(B)): Be 5} > 1. (3.26)

To illustrate the result of Theorem 2, we have drawn Figure 1, indicating
the open region where divergence may take place [i.e., 2 > @ > &(»)], as well
as the open region where convergence takes place [ie., 0 <w <2/(1+ )],
within the class of matrices 5£.
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It is an open question whether convergence, divergence, or both occur in
the unshaded region of Figure 1.

As directly suggested by Figure 1, we remark that the two curves there
[i.e., @(») and &(»)] can be shown to be tangent to one another at » =1. In
particular, this implies that the interval of uncertainty in w, corresponding to
the unshaded region in Figure 1, is small for » close to unity. For example,
when » = 0.8, we have

(1) convergence, for each 0 < w < @(0.8) = 1.111, of the associated (point)
SSOR matrix associated with any matrix in ¢ 4;

(2) divergence, for each 1.127 = $(0.8) < w < 2, of an associated (point)
SSOR matrix associated with some matrix in 5 .

Note added in proof: This open question is essentially answered in A.
Neumaier and R. S. Varga, “Exact convergence and divergence domains for
the symmetric successive overrelaxation (SSOR) iterative method applied to
H-matrices,” this issue, pp. 261.
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