A SURVEY OF RECENT RESULTS ON ITERATIVE METHODS
FOR SOLVING LARGE SPARSE LINEAR SYSTEMS

Richard S. Vargal

I. INTRODUCTION

The most spectacular advances, in my opinion, which have
taken place in recent years in the iterative solution of large
sparse systems of linear equations, have come in the following
areas: i) preconditioned conjugate gradient methods;

ii) multigrid methods for solving elliptic difference equa-

tions; iii) efficient adaptation of basic iterative methods
to special computers, such as vector computers; and iv) ro-
bust software. It is not surprising that over fifty percent

of the papers in this Proceedings deal with these same items.

Because these above items are well-represented in these
Proceedings, I have chosen to concentrate here specifically on

the recent development in algebraic tools, which, by virtue of

their reoccurring use in these above items, furnishes a link
between current technology and future advances. As an excel-
lent example of an algebraic tool which opened new doors in
the area of matrix iterative analysis, and which is still
widely used today, it would be difficult to find one better
than Young's famous functional equation (cf. [26] and [27,

p. 142]):

Gtw-1)2 = w2p?, (1.1)

coupling the eigenvalues A of the successive overrelaxation
(SOR) iteration matrix with the eigenvalues u of the asso-
ciated Jacobi matrix, in the consistently ordered weakly-
cyclic of index 2 case. It is interesting that conformal
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mapping ideas were basic both for the analysis of (1.1), as

well as for the analysis of its extension
(A+w-1)P = (PHPP (1.2)

in the consistently ordered weakly-cyclic of index p (p > 2)
case (cf. [20] and [22, p. 106]). While it is true that (1.1)
and (1.2) can be derived by purely algebraic methods, it is
curious that all of the well-recognized textbooks covering
this theory have suppressed such conformal mapping ideas in
favor of a purely algebraic approach to this problem (cf.
[21,1221,1271).

On the other hand, the recent analyses for example of
Niethammer and Varga [16] and Eiermann and Niethammer [5] make

new use of ideas from summability theory and conformal mapping

theory, to study optimized iterative methods. (The latter
work also brings into play the well-known concepts of "maxi-
mal convergence" and "uniformly distributed nodes" from com-
plex function theory and approximation theory, concepts which
should prove to be invaluable as research tools in the future
of the area.) Because these latter papers are long, and will
appear before the publication of the Proceedings of this Con-

ference, I will not survey this topic here.

What, then, are some common algebraic tools used today in
research in iterative analysis? Obviously, diagonal dominance
arguments abound in the literature, but it is perhaps not so
well-known that such arguments have a basis in the theory of
M- and H-matrices, as introduced by Ostrowski [17] in 1937.

It is also true that concepts arising from the Perron-Frcbenius
theory of nonnegative matrices, such as weakly-cyclic matrices
of index p (> 2), are in frequent use today. Because of this,
I have chosen to focus on closely-related algebraic methods
arising in the recent analysis of the symmetric successive
overrelaxation (SSOR) iterative method, in the iterative solu-
tion of sparse least-squares problems, and in extensions in

the theory of regular splittings.

II. A NEW IDENTITY FOR THE SSOR METHOD

Today, a popular preconditioning method used in conjunc-

tion with the conjugate gradient method, is one or more sweeps

.
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of the SSOR method. This new use of the SSOR iterative method
has, interestingly enough, sparked recent interest into the
general theory of this iterative method. The purpose of this

section is to review some new developments in the basic theory
for the SSOR method, in the weakly-cyclic case (of index
p > 2), which parallel those for the SOR method.

To begin with, consider the matrix equation
Ax = k , (2.1)

where it is assumed that the n xn matrix has the partitioned

form
Al'l A ) 0 0 0
0 A A 0 0
A= 2.2 72,3 . (2.2)
0 0 0 oo A A
p-1l,p~1 “p-1l,p
A 0 0 0 A
p,l PP |

Suppose also that p > 2 and that each diagonal submatrix Ai i
¥
is square and nonsingular. On setting D:= diag[Al l;A X
7 ¥

c.3 A 1, the associated block-Jacobi matrix J:=I -D ~A has

P.P
the form

0 By , 0 0 0
0 0 B 0 0

J= 2.3 , (2.3)

B

0 0 0 o-1.p
B,q O 0 0 0

so that J is weakly-cyclic of index p (cf. [22, p. 39]).
Thus, on expressing the matrix J as the sum of a strictly

lower and strictly upper triangular matrix, i.e.,
J =L+ U, (2.4)

the associated SSOR iteration matrix Sw is defined as usual
(cf. [27, p. 461]) as
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(I-00) "1 [ (1-0) T+wl] - (T-wL) "1 [ (1-0) T+wU] , (2.5)

n
i

while the associated SOR (successive overrelaxation) iterative

matrix Lw is similarly defined (cf. [27, p. 73]) as

L := (I-oL) " [(1-0)I +wU] . (2.6)

w

In both of the above matrices, w is the relaxation parameter.

The new identity coupling the eigenvalues A of the SSOR
iteration matrix Sw to the eigenvalues u of the block-Jacobi

matrix J of (2.3) is contained in

Theorem 2.1 ([24]). Given the matrix A of (2.2) with non-

singular square diagonal submatrices Ai i 1l <i<p, letJ
, =1z =&t

of (2.3) be its associated weakly-cyclic of index p block

Jacobi matrix, and assume that 0 < w < 2. If A is any eigen-

value of the associated SSOR iteration matrix Sw (of (2.5))

for which A # (l1-w)? and if p satisfies

D= (1-0) 2P = A[a+1-0]1P"2 (2-0) 2uPLP (2.7)

then 1 is an eigenvalue of the block-Jacobi matrix J. Con-

versely, if y is any eigenvalue of J and if X satisfies (2.7)

with X # (l—w)z, then X is an eigenvalue of Sm‘

It is interesting that the tools used to obtain these re-
sults stem from the Perron-Frobenius theory of nonnegative
matrices, the canonical form of a weakly~cyclic of index p
matrix, and the Frobenius-Romanovsky Theorem on the eigen-
values of a weakly-cyclic of index p matrix (cf. [22, p. 39,
401) .

We first remark that the functional equation (2.7), re-
lating the eigenvalues p of the block-Jacobi matrix J of (2.3)
with the eigenvalues X of the SSOR iteration matrix Sm of
(2.5), has very much the flavor of both Young's functional
equation (1.1) as well as Varga's extension (1.2) of it (for
p > 2) for the SOR iterative method. It is evident, from the
tools used in the proof given in [24], that Theorem 2.1 could
have been derived twenty years earlier. Why wasn't it? One
interpretation for this late discovery of Theorem 2.1 may be
the following. The usual textbook proof of (1.1)-(1.2) in-

volve a preliminary result on a certain determinantal
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invariance (cf. [22, p. 102] and [27, p. 141]1), a step which
is not used in [24] in deriving Theorem 2.1. It is plausible
that this lack of a similar determinantal invariance in the
SSOR case may have been responsible for this delay in estab-

lishing Theorem 2.1.

It should also be mentioned that the special case p = 2
of (2.7) of Theorem 2.1 was derived earlier by D'Sylva and
Miles [19]. 1In particular, on setting £.= w(2-w), the special

case p = 2 of (2.7) becomes

Do+o-117 = ad? , (2.8)
which reduces to Young's equation (l1.1). From this, one
easily recovers earlier results of Niethammer [14] and Lynn
[9] concerning the SSOR method in the case when the Jacobi

matrix is a weakly-cyclic of index 2 matrix.

In the case of applying the SOR iterative method to a
block-Jacobi matrix which is weakly cyclic of index p, the
effect of reorderings (or permutations) of the associated
unknowns appears as a change in the exponent k of Ak in the

functional equation of (1.2):
Oto- 1)P = AKPuyP , (x = 1,2,...,p-1; p > 2), (2.9)

(cf. [22, p. 109, Exercise 2], and Nickels and Fox [131). It
is an open question how such reorderings of unknowns similarly
affect the functional equation of (2.7) of Thecrem 2.1, for
the SSOR iterative method.

III. CONVERGENCE AND DIVERGENCE DOMAINS FOR SSOR, APPLIED
TO H-MATRICES

As mentioned in §II, the popularity of the SSOR iterative
method as a preconditioner, in conjunction with the conjugate
gradient method, has revived interest in the general theory
of the SSOR iterative method. The purpose of this section is
to review new developments in this theory, as it pertains to
H-matrices. As we shall see, these new results parallel simi-

lar results for the SOR method.

To begin with, a certain amount of notation is necessary.

Let (T'"@®™"™) denote the set of all mxn matrices A = la; 3]

7’
having complex (real) entries. For each A = [ai j] in B9,
?
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the comparison matrix for A, M(aA) = [ai j]’ has its entries
r

5,5 defined by

so that M(a) is in R™'". Further, for any A = la; j] in €70,

set

Q@):= {B= [b, .1 « (™" |b

i | = a, ., (3.2)

i,3 1,3

for all 1 < i,j < n}.

The set Q(A) is called the equimodular set of matrices asso-
ciated with A. Note that both A and M(A) are in Q(A).

Next, let &?,n denote the subset of matrices in ("'"
having all diagonal entries nonzero. For each B = [b, .] in
n,n 1.3
{ﬂ , we can express B as the sum
B = D(B){I - L(B) - U(B)} , (3.3)

where D(B) := diaglb ,b PP o} ] is nonsingular, and
1,1'°2,2 n,n
where L(B) and U(B) are respectively strictly lower and

strictly upper triangular matrices. Then,
J(B) = L(B) + U(B) (3.4)

as before in (2.4), defines the associated (point) Jacobi
matrix for B. From a classic paper of Ostrowski [17], we
know that any real nonsingular matrix A = [ai'jli with

ai,j <0 for all i # j (L < i,j < n) and with A having only
nonnegative entries, is a nonsingular M-matrix, and that any

matrix A in @n'n, for which its comparison matrix M(a) is a

nonsingular M-matrix, is by definition a non-singular H-

matrix. Finally, if B = [b; j] is in (™", then the matrix
T L4
|B| is defined as usual as |B| = [|bi j[], and
14
p(C):= max{|A| : det(AI-C) = 0} denotes the spectral radius

of any nxn matrix C.

From the works of Alefeld and Varga [1l] and varga (23],
we also know that, given any A in Eﬁ’n, n > 2, the following

are equivalent:
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i) A is a nonsingular H-matrix;
ii) for any B ¢ Q(A), p(J(B)) < o(|J(B)]) = p(T(M(A))) < 1;
iii) for each B ¢ Q(A) and for each w satisfying
0 < w < 2/[1+p(]J(B)|)], the associated SOR iteration

matrix Lw(B) for B of (2.6), satisfies
p(L (B)) < [1~w| + wp(]J(B)]) < 1 ; (3.5)

iv) for each B ¢ Q(A) and for each w satisfying
0 <w < 2/[1+p(|J(B)|)], the associated SSOR iteration

matrix Sw(B) for B of (2.5) satisfies

p(s,(B)) < 1. (3.6)

We remark that the inequality of (3.5) originates in the works
of Kahan [7] and Kulisch [8].

To discuss the sharpness of the first inequality of (3.5),
we set

H, = {a ¢ (™™, n arbitrary: A is a nonsingular (3.7)

H-matrix with ¢ (]|J(a)]|) = v}, where 0 < v < 1.

Thus, with the definition of (3.7), it directly follows from
(3.5) that

sup{p(L (A)): A « HOY < |1-w] + wv (3.8)

(for all 0 < w < 2/(1+v)),

and it is natural to ask if equality holds in (3.8) for each
wwith 0 < w < 2/(1+v). This was answered affirmatively in

Neumann and Varga [12]:

sup{p(L (2)): A e H } = |1-w| + wv (3.9)

(for all 0 < w < 2/(1+Vv)).

We next ask in what sense iv) above is sharp for the SSOR
iterative method. Since the SSOR iteration matrix Sw(B) re-
duces to the identity matrix when w = 0 (cf. (2.5)), it is
obvious that convergence of the SSOR matrix Sw(B) cannot hold
in iv) at the left endpoint of the interval (0,2/[l+p(|J(A) )1,
for any B in Q(A). As for the right endpoint of this interval

in iv), Neumann [11] has recently shown that
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FIGURE 1.
IV. BLOCK ITERATIVE METHODS FOR SPARSE LEAST-SQUARES PROBLEMS

There has been much recent interest by numerical analysts
in methods for accurately computing the least-squares solu-
tions of very large sparse overdetermined linear systems of

equations. In geodetical network problems, for example, such

overdetermined systems take the form

(4.1)

TS

Ax

b,

where A is a given real mxn matrix with m > n, and b is a
. . . m

given real vector with m components, (written b « R7) .

Usually, m is very much larger than n. Assuming that A has

full column rank n, the least-squares solution of (4.1) is

the unique vector §»in'mn for which
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. 2 *
lléﬁ'A§¥12 = min_ I}g-—AXIlZ (where l]g\|2:= uu) .
yR (4.2)
For excellent surveys containing extensive bibliographies for
such geodetic problems, see Golub and Plemmons [6], and

Plemmons [18].

An equivalent formulation of the above least-squares
problem is the following: determine (unique) vectors x e R™
and E_e'Rm such that

r+ax=b, and A'r =0 . (4.3)

Since A has full column rank n, we may assume, without loss of
generality, that the rows of A have been permuted so that A
has the block-partitioned form

A = ’ (4.4)

where A an element of'@é’n, is nonsingular. Partitioning

l’
the m-vectors r and b conformally with respect to the parti-

tioning of A in (4.4), i.e.,
1

n

, where v, El e R ;

w, b, ¢ R" ", (4.5)

the system of equations (4.3) can be equivalently expressed
as the following system of m+n linear eguations in m+n

unknowns :

Ccz =d , (4.6)
where
A 0 X
1 w
C:= A2 I 0 |; z:= | — B (4.7)
T T v
0 A2 Al_ﬂ —
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d:=1]Db

Because Al is nonsingular, the form of the matrix C in (4.7)
shows that C is also nonsingular, from which it follows that

the vector z in (4.6) is uniguely determined.

Our interest in the reformulation (4.6) of the least-
squares problem (4.2) stems from the fact that the block-SOR
iterative method has been recently suggested as a practical
means of solving (4.6). The purpose in this section is to
review the new theoretical results concerning such block-SOR

applications.

To define this iterative method, set D:= diag(C) = diag
(Al,I,Ai), so that D is a nonsingular block-diagonal matrix.
The associated block-Jacobi matrix J for the matrix C of (4.7)

is then given, as before, by

0 0 -2, 0 0 By
- 1o - —.
J:= I-D C= | -A, 0 0 |=:]B, 0 0
-T,T
0 - TR, 0 0 By 0
(4.8)

Next, on writing the block-Jacobi matrix J of (4.8) as the

sum J = L + U where

0 0 0 0 0 Bl
L:= B, 0 0 ; Uz= 0 0 0 ’ (4.9)
0 B3 0 0 0 0

then the block-SOR iterative method, applied to (4.6), can be

expressed as

L z(m) + (I—wL)_lD_l

2D =g g d, (m=0,1,...), (4.10)

where the block-SOR iterative matrix Lw is defined as usual by

L
w

o

= (T-owD) Y{(1-0)T + wU). (4.11)

For the convergence properties of the block-SOR iterative

method (4.10), it is essential to observe, as in Chen [3] and
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Plemmons [18], that the block-Jacobi matrix J of (4.8) is a
consistently ordered weakly-cyclic of index 3 matrix (cf.
[22],(27]). Moreover, from (4.8), it directly follows that

3

J 1

-PPT;—PTP) (where P:= A a7l

T
P PA oAy )

dlag(—Al 17

(4.12)

diag (B B.B.B

1B3By7 BB B3 ByBoBy)

so that J3 is similar to a real symmetric negative semidefinite

matrix. As such, the eigenvalues of J3 lie in the real inter-

val
I_:= [-p7(J3),0] , (4.13)

where p(J) denotes the spectral radius of J. Because J is a
consistently ordered weakly-cyclic of index 3 matrix, it is
known (cf. Varga [22, Theorem 4.3]1; [20, Thm. 4]) that the
functional equation, coupling the eigenvalues X of Lw of
(4.11) with the eigenvalues u of J of (4.8), is given by

re-17 = 2% . (4.14)
Using (4.14), the following precise domains for convergence
and divergence of the block-SOR iterative, applied to (4.6),
have been determined.

Theorem 4.1 ([15]). The block-SOR iterative method of (4.10),

applied to the least-squares matrix equation of (4.6), con-

verges for

0 <w < w (B):= 125, when 0 < 8 < 2, (B:= p(3)),  (4.15)

Bl

I A

converges for

wz(B):= %}% < w < wl(B), when 2 <

A
w

<3, (4.16)

and diverges for all other real values of w. The optimal

relaxation factor w, = wb(e) is the unique positive root of

33

470> + 27w - 27w =0 (0 < B < 3) , (4.17)

and w, satisfies

—= b
L
2

N <1l for all 0 < B < 3. (4.18)
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Further, there holds

p(Lmb) = 2(l—wb) for all 0 < B8 < 3 . (4.19)

It is clear from Theorem 4.1 that one can find values of
w for which the block-SOR iteration matrix Lm is convergent,
even when the block-Jacobi matrix J is divergent; for example,
for each 8 = p(J) satisfying 1 < B8 < 3, there are intervals
in w (cf. (4.15) and (4.16)) for which p(Lw) < 1. 1In this
respect, Theorem 4.1 extends what is known theoretically in
the literature for such block-SOR applications. More impor-
tant, however, is the fact that Theorem 4.1 greatly increases
the applicability of the block-SOR iterative method to least~-
squares problems which arise, as was previously mentioned, in

geodetical network problems.

It is also important to note that Theorem 4.1 corrects
results in the literature for such least-squares applications.
Under the assumptions of Theorem 4.1, one finds in Plemmons
[18, p. 166] the statement that, for any p(J) < 1, the asso-
ciated block-SOR iterative method converges for all w satis-

fyving

O<w<% (0 < p(J) < 1) , (4.20)

whereas from (4.15) of Theorem 4.1, the correct statement is
that the block-SOR iterative method converges in the subset
of (4.20) consisting of all w satisfying

2

0 <w < T¥oEy

(0 < p(3) < 1) . (4.21)

The same error occurs in Berman and Plemmons [2, p. 179].

As a counterpart of Theorem 4.1, the following new re-
sults on the convergence of the block-SOR iterative method
have been determined when the eigenvalues of J3 are nonnega-
tive, i.e., the eigenvalues of J3 lie in the interval

I,:= 10,0°(] . (4.22)

Theorem 4.2 ([15]). Let the block-Jacobi matrix J be a con-

sistently ordered weakly-cyclic of index 3 matrix, such that

the eigenvalues of J3 are real and nonnegative. Then, the

associated block-SOR iterative method converges for
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+2
+

™

|

0 < w < w3(8):= , when 0 < B < 1 (B:= p(J)), (4.23)

™
-

and diverges for all other real values of w. The optimal

relaxation factor wy = wb(B) is the smallest positive root of

48303 - 27w +27=0 (0 <p < 1), (4.24)
and wy satisfies
l<w <3 forall 0<g<1. (4.25)

Further, there holds

p(Lw ) = Z(wb-l) . (4.26)
b
Interestingly enough, while the proof of (4.24)-(4.26) is
given in Varga [20] as the special case p = 3, the precise

upper bound w,(R) of (4.23) for convergence is new. Previ-

3
ously, it had been shown in [20], under the assumptions of
Theorem 4.2, that convergence of the associated block-SOR

method holds in the subset of (4.23) defined by

0 <w<—§— (0 < B:= p(J) < 1) . (4.27)

The results of Theorems 4.1 and 4.2 are graphically given
in Figure 2. For convenience, we have introduced the variable
é, where é:= p(J) if the eigenvalues of J3 are nonnegative
(cf. Theorem 4.2), and where é = -p(J) if the eigenvalues of
J3 are nonpositive (cf. Theorem 4.1). Thus, an open bounded
region  in the B-w plane is obtained such that for each point
of © (shown as the shaded region in Figure 2), the associated
block-SOR matrix with relaxation factor w (when applied to a
system for which p(J) = é or p(J) = —é) is convergent, and
is divergent for all points in the complement of Q. Also
included in Figure 2 is the set of all optimum relaxation
factors wb(é), as a function of B; this appears as the dotted

line in Figure 2.

V. REGULAR SPLITTINGS OF MATRICES

The theory of regular splittings of matrices has been a
useful algebraic tool in the analysis of iterative methods for

solving large systems of linear equations (cf. [2],[22], and
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Figure 2

[27]). Our purpose in this section is to give some new com-

parison theorems for regular splittings of matrices, which

generalize both the original results of Varga [21]1, and the
subsequent unpublished thesis results of WoZnicki [25].

To begin, if A ¢ ("', then A = M-N is said to be a
regular splitting of A (cf. [21],122]) if M is nonsingular,

and if M_l and N have all their entries nonnegative (written
M-lf_Oansz_O). (We write C > D and C > D if C-D > 0
and if C-D > 0, respectively.) The following results of

Theorem 5.1 and 5.2 are well-known.

Theorem 5.1 ([21}). Let A = M-N be a regular splitting of A.
If a™l > 0, then

-1
e ™) L, (5.1)

o Ny = -7
1+ p(a"N)

Conversely, if p(M_lN) < 1, then At > 0.

Theorem 5.2 ([21]). Let A = Ml--N1 = M2-N2 be two regular

splittings of A, where A—l > 0. 1If N2 > Nq» then

-1 -1
o (M) Ny > p(MTNp) . (5.2)

1

In particular, if N2 Z.Nl with N2 # Nl, and if A"~ > 0, then
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-1 -1
p (M, "N,) > o (Mg Nl) . (5.3)

Suppose we are given the system of n linear equations in
n unknowns:

ax = k , (5.4)

where A ¢ En,n is a given matrix, and where x and k are in En,
with k being given. If A = Ml~—Nl is a regular splitting of
A, we can write (5.4) as

- nl 1
X = MTN)x £ Mk, (5.5)

which induces the following iterative method:

(m+1 -1 m -1
x ) - Ml Nl§‘ ) + Ml k, (m= 0,1,...) ,

(0)

(5.6)

1

where x is an arbitrary vector in (7. When A"~ > 0, the

iterative method of (5.6) is necessarily convergent, by Theorem

5.1, to the unique solution to (5.4), independent of the choice

(0). If A = MZ--N2 is another regular splitting of A, one

similarly obtains the convergent iterative method

of x

gt ™ ot mo= 0,1, (5.7)

If N, > N; with N, # N, and if a"! > 0, the iterative method
of (5.6) is, from Theorem 5.2, asymptotically faster than the

iterative method of (5.7).

From a practical point of view, it is of interest to know
other techniques for determining which of two regular split-
tings of a matrix induces the asymptotically faster iterative
method. One such technique, which is less well-known but
still very useful, is the following thesis result of Woznicki
[25].

Theorem 5.3 ([25]). Let A = Ml--Nl = M2--N2 be two regular
splittings of A, where A_l >0 If M-1 > Mil, then
-1 -1
p(MyTN,) > p(MTNY) . (5.8)
. . -1 -1 . -1
In particular, if Ml > M2 and if A > (0, then

-1 -1
p(M2 Nz) > p(Ml Nl) . (5.9)
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As we shall see (cf. i) of Proposition 5.4), Woénicki's
Theorem 5.3 is more general than Theorem 5.2, and it is
natural to ask if similar, more general results, based on the
comparison of two regular splittings, can be deduced. To

motivate our subsequent discussion, we state the result of

Proposition 5.4 ([4]). Let A = Ml-Nl = M2-N2 be two regular
splittings of A, where At > 0. Then,
i) N, > N, implies that Mil > M;l;
i) w7% > a5l implies that aTTw,aTt > a7t Al
iii) for each positive integer j, A“1N25_1 z»A_lNlA_l

implies that (a tny)Jat > (a7hwp)da7t.

Obviously, Proposition 5.4 gives progressively weaker
hypotheses. As our new generalization of the first parts of
Theorems 5.2 and 5.3, we give

Theorem 5.5 ([4]). Let A = Ml-Nl = M2-N2

splittings of A, where At > 0. Assume that there exists a

be two regular

positive integer j for which

It s T daTt . (5.10)
Then,
1> i) > ptng) (5.11)
2 Mol Z e Ny - =
Continuing, let A = Ml-Nl = M2-N2 be two regular split~

tings of A, where A"t > 0. On setting
g:= {positive integers j: (A_lNz)jA_l > (A_lNl)jA_l} ’
(5.12)
we note that S not empty implies that Theorem 5.5 can be
applied. It is easy to show that 8 is closed under addition,
so that if 1 is in S, then S consists of all positive inte-
gers. Similarly, if S contains two relatively prime integers,
then S necessarily contains all sufficiently large positive
integers. Matrices A and two regular splittings can, however,
be constructed (cf. [4]) such that the smallest positive inte-
ger in the associated set S can be made to be any preassigned

positive integer!
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For results which provide partial converses to Theorem
5.5, as suggested by the second parts of Theorems 5.2 and 5.3,

we state the new result of

Theorem 5.6 ([4]). Let A = My =Ny = M, -N, be two regular
splittings of A, where ALl 0. If
-1 -1
p(My"N,) > p(MTNp) (5.13)

there exists a positive integer jo for which

yydat s (A’lNl)JAfl, for all 3§ > 3_ . (5.14)

(a”
o]

Thus, (5.13) implies that the set S of (5.12) contains all

sufficiently large positive integers. Conversely, if there

is an integer j for which

@ nydat s @tnpdatt, (5.15)

then (5.13) is valid.

We finally remark that the case j = 1 of (5.15) gener-
alizes the second parts of both Theorems 5.2 and 5.3, as

shown in [4].
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