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n
Abstract. Consider any complex polynomial pn(z)= 1+ 2: ajzj which
J=1

n
satisfies la.] =1 and let Fn denote the supremum of the
=
minimum moduli on lz] =1 of all such polynomials pn(z) . We show
that
L otop o fi-Yr ., fora;l mz1o
n— n- n -
1f the coefficients of pn(z) are further restricted to be positive
numbers and if Fn denotes the analogous supremum of the minimum modu-
1i on Jz] = 1 of such polynomials, we similarly show that
1 - _ 3
1 5= In < Jr-- , for all n > 1

(2n+ 1)

We also include some recent numerical experiments on the behavior of

Ty v as well as some related conjectures.
1. Introduction
} n
Consider any non-constant complex polynomial pn(z)= E: ajzj
3=0

with p_(0) + 0 , and normalize p (z) so that

n : n
(1.1) p,(2) = 1+ ajzJ , where E: ]ajl +£ 0

3=1 9=1
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well-known result of Cauchy (cf. Marden (4, p. 126}), if R (the

ﬁchy radius of pn(z)) is the unigque positive zero of

hen each zero z of pn(z) of (1.1) satisfies lz) > R . oOn fur-
her normalizing the cauchy radius R of pn(z) to be unity, i.e.,

n assuming

then any polynomial pn(z) in (1.1) which satisfies (1.3) evidently

‘has no zeros in |z| <1 . (It may have zeros on lz| =1 , as the

examples 1 + zn show.)

Our interest is in the following problem, which is related to the

~ recent study of global descent functions for determining zeros of

Henrici [2,3] and Ruscheweyh [6]) . Consider the set

polynomials (cf.

of normalized polynomials

n n
(1.4) S, {py(z) =1+ 2: ajzJ : 2:1ajl:=l} , for each n > 1
j:l j:l
and put
. i8
(1.5) m(p,):= mln{]pn(e ) 8 real} , for any p_ € s, -

Our main question is: How large can m(pn) be on the set S, ? Thus,

on setting

(1.6) rL= sup{m(pn): pnéf Sn} , (n > 1)

our goal here is to establish rigorous upper and lower bounds for 21 ,

as a function of n . We also report on some numerical experiments,

which in turn have inspired some related mathematical conjectures.

2. Upper and Lower Bounds for ry

The following inequality, based on conformal mappings, was derived

in Ruscheweyh [6]:

PE—————
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n
2 2
(2.1) me(p ) + ;g%]ajl <1 , forany p €S,
As the Cauchy-Schwarz inequality applied to (1.3) gives that

n
2:‘aj|2 > % , it follows from (2.1) that
j=1

, for any pne Sn ’

Sk

(2.2) m(p ) <1 -

which yields (cf. (1.6)) the upper bound

(2.3) P <J1-% , forall n>1
n — n -
To similarly derive a lower bound for Fn , consider the specific
polynomial
n
_ 2 _ k
(2-4) Qn(Z) =1 + m k;l(n"”l k)z ’

which is an element of Sn for each n > 1 . Now, Qn(z) can also

be expressed as

0 (2) _n(n+1) -2n’z+ (n-2) (n+ 1)z + 22" * 2
n I

n{n+1)(1 ~z)2

and evaluating the above expression for 2z = -1 gives
1 s .
1 - TFT C for n an even positive integer;
(2.5) Q (-1) =
n 1
1 - Y , for n an odd positive integer

Next, on defining

n

o K )
(2.6) g, (2) := m);) (n+1-kz° (n=1,2,...0 .

then Qn(z) and gn(z) are related through

n-2

(2.7) Q (z) = + %gn(z)

Writing gn(z) of (2.6) as
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o n+1l-k , k=0,1,...,n
Y ot
'8) g (z) = a, (nyz  , where «, (n):=
n k:Ok k 0 ,kin+l ’

‘then the coefficients ak(n) of gn(z) can be seen to be doubly

monotonic, i.e.,
(2.9) uk(n) >0 , and ak(n) —ak+1(n) > ak+l(n) —uk+2(n) ,

for all k > 0 and all n > 1 . From a well-known result of

Fejér [1], it follows that
(2.10) Re g _(z) > = , for all |z| <1 .

Consequently (cf. (2.7)),

(2.11) Re Q_(z) = 2=2 4 2 Re g_(2)

v
bt
i
|

, for all |z] <1 ,

which implies that

' 1
(2.12) m(Qn) > 1 - oo for all n > 1 .

(Note that because of (2.5), equality evidently holds in (2.12) for
every odd positive integer n .) But, as Qn(z) is an element of
Sn , (2.12) implies that

(2.13) 1 -

S

< Fn , for all n>1 .

Combining (2.13) and (2.3) then yields our first result of

Proposition 1. For each positive integer n ,

1
(2.14) 1 -=<T < J1 -2 .

n —

55 |

Obviously, the bounds of (2.14) are tight for n = 1 and give
Pl =0 . For n >1 , there is however a gap between the upper and
lower bounds in (2.14).

Because of the bounds of (2.14), it is reasonable to express Fn

as
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(2.15) r =1 -
n

so that from (2.14),

(2.16) n(l -‘)l - %) < Yn <1 , for all n >1 .

Now, the lower bound in (2.16) is strictly decreasing as a function of
n and has the limit 1/2 , so that

(2.17) <y <1 , forall n>1 .

n

Next, consider the following subset, én , of Sn :

n
(2.18) S, = {p, (z) =l+j;l ajzj : p €S, and aj>0 for all 1<j<n}.

For Sn , we can associlate the analogous quantity Fn

.

(2.19) fn := sup{m(pn) :p, € én) , (n > 1) .

Obviously, as Sn C Sn , then

(2.20) r <rT

n , for all n >1 .

n

But, noting that Qn(z) of (2.4) is also an element of Fn , then

from (2.12), we also deduce
(2.21) 1 -2<T_ , forall no>1 .
n-— n Z

From (2.20) and (2.21), the upper and lower bounds of (2.14) apply
equally well to fn . But, for an improved upper bound for fn , we

establish

Proposition 2. For each positive integer n ,

- 3
S ENY T mary

Proof. To obtain the upper bound in (2.22), set

(2.22) 1

1
S

(2.23) M(p ) := max{lpn(ele)[ : 0 real} , for any P, € S,
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Note that M(p ) = for any p, € S , for each n » 1 . Next,

for each P,

2
n
Z: (with ao :=1) in én , consider the

real trigonometrlc polynomial

n
10, 2
(2.24) T, (8ip ) == ]pn(el )T - é:() a

which has the explicit form (without constant term)

n-k
(2.25) Tn(e;pn) = 2 2: cos (k8) ;;% aj aj+k .
n
: Z 2 S )
Setting AO t= aj ; 1t 1is evident from (2.24) that
max T (8;p ) = MP(p)- A = 4 - ) and
n' Py Pn 0 o n

6 real
(2.26)

]

. 2
min Tn(e,pn) AO - m (pn) .

6 real

From P61ya—Szeg6 [5, p. 84, Exercise 58], it is known that
. < . 3 -
mgx Tn(e,pn) < -n mén Tn(e,pn) ,

Or equivalently, using (2.26),

(2.27) 4 + n'mz(pn) <l .
n

But since 2: aj2 <1~ mz(pn) from (2.1), then
j=1

n
A0:=1+Za.2<2—m2(p)
j=1 J - n

Substituting the above in (2.27) then vields

2 2n -2 _ 3 -
(2.28) m (pn) i Frra 1 '2T+—I , for all pne Sn ,

which gives the desired upper bound of (2.22). o]
In analogy with (2.15), we similarly define
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(2.29) T _:=1--—= , forall n>1

Thus, from (2.22),

(2.30) n{l —"1 - EE%FT} < Y, < 1 , forall n>1 |,

which further yields

(2.31) 0.732213 ... = 3(1 '\[%) < ?n <1 , forall n>1 ,
as well as

(2.32)

W
A
[
[N
=l
2

3. Computational Results

Intrigued by these numbers Fn R A and ?n , we embarked

on some numerical calculations to give further insight into their
behavior as n - « . First, we conjecture that Tn = fn for all
n >1 , and we hope to establish this in a later work. Thus, our
calculations (to be described below) were aimed at determining sharp
lower bounds for fn .

The idea in our calculations was to find an "extremal" ﬁn(z) in

S such that
n

}n

(3.1) ﬁn(e ) = m(in) in precisely n distinct points {ej 3=1

For convenience, all calculations were performed for n even, say

2k
n=2k , k>1 . Then, for p,,(z)=1+ 2: a.z? in s (so that
Z 2k = 2k

aj >0 for j=1,...,2k , and al +a2 + ... +azk::l) , Wwrite

2k

isp 2 k 2

(3.2) 1+ 0 a3 P cn2p ) 422K 4 7 (ci4cos M2

a0 2k 2k 40y 03

with the objective of maximizing m2(p2k) . Writing
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2k 2k
s 2 k
(3.3) 1+ 2: a.elje| = 2: A.cosjO ,and [l (e. +cos 9)2 =
j=1 3 j=o0 ) j=1

2k
= 2: B.cosjo ,
j=o0

where Aj = Aj(al,...,azk) , and where Bj = Bj(el,...,ek) , then

(3.2) and (3.3) give us that

2 _ L2k
mopyy) = Ay - 277ay, By,
2k
(3.4) Ay - 2%a,, Bi=0 L 3= 1.2k
al+a2+...+a2k=l .

We then formulate this as the following Lagrange multiplier problem.
Consider

(3.5) F(al,...,a A

2k'€l""'£k’ll"" 2k)

2k-1

2k 2k
2 a, BO) +j§l )\j(Aj 2 asy Bj) +>\2k(a

1= (AO— l-i'...-f-a:Zk-—l),

subject to the conditions

IF . . dF _ . )
(3.6) é—a—j——O,]—l,...,2k,—ng—0,3~l,2,...k,

IF .
gk—j‘o,j—l,Z,...,Zk .

As a start-vector, we used the polynomials QZk(z) of (2.4), to give

2k
the initial estimates for the coefficients {aj}j=l . Similarly, the

negative cosines of the points of local minima of sz(ele) were used

k

as initial estimates for {Ej}j=l

, from which the associated constants

{Aj}gk and {Bj}gk were determined. Then, solving the linear system
{ oF 0}2k (in the parameters A,,...,A_ ) determined our initial
ba 3=1 177 "2k
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}2k
ji=1
procedure was used and this converged quadratically in all cases
sz(z) .
These calculations were carried out by Timothy S. Norfolk using

estimates for {A . From this point, a standard nonlinear Newton

treated, thanks, no doubt, to the good start polynomials

Richard Brent's MP (multiple precision) package on the VAX-11/780 in
the Department of Mathematical Sciences at Kent State University.
. A 11 :
Below, we give the converged values {FZk}k=l from our numerical

experiments (rounded to twelve decimals), along with the associated

2k

bounds for P2k and sz , but we conjecture that F2k = sz in all

cases below.)

numbers §2k 1= 2k(1-—f2k) . (These constants T are surely lower

k Tox Y2k

1 0.544 331 053 952 0.911 337 892 096
2 0.778 192 979 320 0.887 228 082 721
3 0.853 294 443 051 0.880 233 341 695
4 0.890 391 158 846 0.876 870 729 236
5 0.912 511 021 366 0.874 889 786 340
6 0.927 201 419 083 0.873 582 971 010
7 0.937 667 439 454 0.872 655 847 650
8 0.945 502 263 242 0.871 963 788 123
9 0.951 587 367 216 0.871 427 390 110
10 0.956 450 029 314 0.870 999 413 712
11 0.960 425 000 586 0.870 649 987 104

Table 1

Finally, it seems reasonable to suppose that constants UO ,

My s exist, independent of 2k , such that
R Wy M,
(3.7) 2k(l-F2k) = uo + 3% + (2k)2 + ... , for k = « .

Assuming (3.7), the Richardson extrapolation method (with X, = ;K )

was then numerically applied to the column of numbers {QZk}iil of
Table 1, to accelerate the convergence of these numbers. Numerically,

this Richardson extrapolation converged very rapidly, so much so that

we were led to our final two conjectures. Vle conjecture that
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1>

lim 2k(1 - ) exists, i.e.,
2k
k> o

(3.8) }}iiv 2k (1 - er) = My o

and we further conjecture that

(3.9) $ 0.867 189 051 .

Ho
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