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Abstract. With E,,(]x]) denoting the error of best uniform approximation to
|x| by polynomials of degree at most 2n on the interval [— 1, +1], the famous
Russian mathematician S. Bernstein in 1914 established the existence of a
positive constant 8 for which

lim 2nE,, (Jx) = B.
n—* o0

Moreover, by means of numerical calculations, Bernstein determined, in the same
paper, the following upper and lower bounds for :

0.278 < f < 0.286.

Now, the average of these bounds is 0.282, which, as Bernstein noted as a
“curious coincidence,” is very close to 1/(2\/'7?) = (0.2820947917... . This ob-
servation has over the years become known as the Bernstein Conjecture: Is
B=1/ @y )? We show here that the Bernstein conjecture is false. In addition,
we determine rigorous upper and lower bounds for §, and by means of the
Richardson extrapolation procedure, estimate B to approximately 50 decimal
places.

1. Introduction

For any real function f(x) with domain [—1, +1], its modulus of continuity is
defined as usual by

(1.1) w(8;f) = sup ff(xl) = f(x).

[xp—x;]<8
X, X €[—1, +1]

With 7, denoting the set of all real polynomials of degree at most n (n = 0,1,...),
the following is a well-known result of Jackson (cf. Meinardus [8, p. 56], Rivlin
[10, p. 22]):

Date received: February 22, 1985, Communicated by P. Henrici.

AMS classification: 41A25.

Key words and phrases: Best uniform approximation, Polynomials, Chebyshev series, Remez al-
gorithm.

333




334 R. 8. Varga and A. J. Carpenter

Theorem A. Iff € C[—~1, +1], then

(1.2) E,,(f)s&»(%;f) (n=1,2,...),
where
(1.3) E,(f)=inf{||f - glleoi-1.+1: g E 7, }.

For the particular continuous function |x| on [—1, +1], it is easily seen that
w(8;|x)) =8 (0<8<1),
so that from (1.2) of Theorem A,

(1.4) En(|xl)s-2— (n=1,2,...).

Since |x| is an even continuous function on [—1, +1], then so is its (unique)
best uniform approximation from #, on [—1, +1], for any n > 0 (cf. Rivlin [10,
p. 43, Exercise 1.1]). Combining this observation with the Chebyshev alternation
characteristic of best uniform approximation by polynomials, it readily follows
(cf. [10, p. 26)) that

(1.5) Ey,(Ix) = Ey, iy (Ix) (2 =0,1,...).

Hence, it suffices for our purposes to consider only the manner in which the
sequence { E,,(|x])}%_, decreases to zero. From (1.4), we evidently have

(1.6) 2nE, (|x)) < 6 (n=1,2,...).
Actually, on expanding |x| in a Chebyshev series on (—1, 1), i.e,,

41 & (=0)"'1,(x)
(1.7) |x}=;{§ X (2m—1)(2m+1)}’

m=1

where T, (x) denotes the nth Chebyshev polynomial (of the first kind), the famous
Russian mathematician S. Bernstein [2] showed in 1914 that

4af1 & (-D)"'D,(x) 2
Xl = ;{E+ m{"’l @2m—1)2m+ 1)} = 7(2n + 1)

(1.8)

for all x € [—1, +1] and all » > 1. Since the approximation to |x|in (1.8) is a
particular polynomial of degree 2, it follows from (1.3) and (1.8) that

an 2 06366197723,

(1.9) 2nE,,(Jx]) < Tt 7

which improves the upper bound of (1.6).

It turns out that (1.9) can be significantly sharpened. In his fundamental paper
[2], Bernstein gave a long and difficult proof that there exists a positive constant,
which we call 8 (B for “Bernstein”), such that

(1.10) lim 2nE,,(|x]) = B-

(We remark that a simple proof of (1.10) has yet to be found.) In addition, not
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being content with just the existence of this constant 8, Bernstein, using crude
calculations based on extremely ingenious methods, deduced in [2] the following
rigorous upper and lower bounds for §:

(1.11) 06.278 < B < 0.286.
Moreover, Bernstein noted [2, p. 56] as a “curious coincidence” that the constant
1
1.12 —— = (0.2820947917 ...
(1.12) Y-

also satisfies the bounds of (1.11) and, as one quickly sees, is very nearly the
average of these bounds. This observation has, over the years, become known as
the Bernstein Conjecture:

(1.13) gl

W
In the 70 years since Bernstein’s work appeared, the question of the truth of this
Conjecture has remained unresolved, despite numerical attacks by several authors
(cf. Bell and Shah [1], Bojanic and Elkins [3], and Salvati [11]). The reasons that
this conjecture has remained open so long appear to be that (i) the determination
of E,, (|x|) for n reasonably large is numerically nontrivial, and (it) the conver-
gence of 2nE,, (Ix|) to B [cf. (1.10)] is quite slow.

The main results of this paper are the following:

I. In Section 2, the numbers {2nE,,(|x|)}32, are determined with accuracies of
nearly 95 decimal digits.

I1. In Section 3, upper bounds {2p,,}2%, for B [cf. (1.10)] are determined,
where

(1.14) B < 20100 < 2pg9 < ... < 2py.
20

m=1
(1.15) L <Ily< ...<lyy<B.

IV. In Section 5, Richardson extrapolation (with x, = 1/n?) of the numbers
{2nE,,(]x])}32, of result I gives an approximation of B that is probably accurate
to 50 decimal places.

Based on results I, IT, and 111, it follows that

(1.16) 1,y =0.2801685460... < B < 0.2801733791 ... = 2puyq,

which, from (1.12), is sufficient to disprove the Bernstein Conjecture of (1.13). We
further see from the bounds of (1.16) that 8, when rounded to five decimal places,
is exactly 0.28017. Similarly, the bounds of (1.16) give

(1.17) B =0280171 + 8,  where |8] <2.5-107°.

Actually, the numerical results of Section 5 similarly indicate that, to 50 decimal
places,

(1.18) B = 0.28016 94990 23869 13303 64364 91230 67200 00424 82139 81236.

It remains an open question whether the constant §, as approximated in (1.18),
can be expressed in terms of known mathematical functions and /or constants.

II1. In Section 4, lower bounds {/,, for 8 are determined, where
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Finally, based on our extrapolations of Section 5, we make the following new

Conjecture. 2nE,, (|x]) admits an asymptotic expansion of the form
K, K, K
(1.19) mE, (x) 2 B-2+22-224 . (0> ),

1 e
n*  n*  nf

where the constants K (independent of n) are all positive.

The approximate values of {K,}}2,, determined from Richardson extrapola-
tions of {2nE,,(|x])}3%,, are given in Section 5. We hope to attack the above
conjecture in the future.

2. Computing the Numbers {2nE, (]x])}3% | with High Accuracy

n=1

Let p,,(x) in 7,, denote the unique best uniform approximation of |x| from ,,
on[~—1, +1}; ie. [cf. (1.3)},

(2.1) x| _}A’zn(x)HLm{—l.H] = E,,(|x]) (n=1,2,...).

As mentioned in Section 1, because |x| is even on [—1, +1], so is its best
approximation p,,(x), so that

n

(2.2) Py (x) = ;Oaj(n)x” (n=1,2,...).

As was similarly done by Salvati {11] in his calculations, we make the change of
variables x? = 1, ¢ € [0, 1], which changes our approximation problem to

(23) By, (Ix) = £, (73 [0,1]) = inf {IVF = 1, ()11 01y° 1o € 7, ).

If we write

(2.4) En(‘/;; [0>1]) =Vt - iln(t)HLw{O,l] (where h, € )

then clearly [cf. (2.2)]

(2.5) Do (x) =h,(x?) (n=1,2,...).

Thus, determining E,,(]x]) and p,,(x) is equivalent to determining E (V1;]0,1])
and h,(1).

The minimization problem (2.3) was solved using the following essentially
standard implementation of the (second) Remez algorithm (cf. {8, p. 105]):

Step 1. Let S := {1, }j’.’:(} be a set of n + 2 distinct (alternation) points in [0, 1]
satisfying
(2.6) O=t,<t,<..<t,,,=1

Step 2. Find the unique polynomial %,(¢) and the constant A, a linear problem,
such that

(2.7) h()+(=1)A=\;  (j=01,...n+1).
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Table 2.1.  {2nE,,(IxD)3%,.

n . 2nE,, (|x)) n 2nE,,(|x])
1 0.25000 00000 00000 00000 27 0.28010 9236522206 18525
2 0.27048 35971 1113710107 28  0.28011 34608 89950 28384
3 0.27557437240117538604 29  0.28011 72562 49499 61792
4 0.27751 78246 75052 69646 30 0.28012 06787 72662 82833
5 0.27845118553550860152 31  0.2801237757 31660 88450
6 0.27896 79174 64958 70636 32 0.28012 65871 38731 91844
7 0.27928 29449 5851802460 33 0.28012 9147043904 51720
8 0.27948 88375 9450744771 34  0.28013 1484570012 61069
9 0.27963 0657410128 20125 35 0.28013 36247 44030 04676
10 0.27973 2433771973 82968 36  0.28013 55891 6927111713
11 0.27980 79172 88743 87383 37 0.28013 73965 72336 69662
12 0.27986 54321 2379327279 38  0.28013 90632 50782 89591
13 0.27991 02543 1555769036 39 0.28014 06034 41582 48218
14 0.27994 58584 8578213247 40  0.28014 20296 25997 94087
15 0.27997 46066 8640749231 41 0.28014 33527 83104 08169
16 0.27999 8151956316 72827 42 0.2801445826 01611 08707
17 0.28001 76771 3329725379 43 0.28014 57276 57645 50097
18 0.28003 4047414993 50964 44 0.28014 67955 64600 41624
19 0.28004 79072 8590585156 45 0.28014 77930 9995913546
20 0.28005 97447 6042315265 46 0.28014 87263 13048 74446
21 0.28006 99348 3180943067 47  0.28014 96006 16931 43684
22 0.28007 87694 7528753423 48 0.28015 04208 67046 95023
23 0.28008 64787 5707557049 49  0.2801511914 28744 92326
24 0.28009 32459 38808 50547 50  0.28015 19162 3546527355
25 0.28009 92184 5238283558 51  0.2801525988 39017 81632
26 0.28010 4515986556 70489 52 0.2801532424 53163 84249

Thus, A,(1) is the best approximation from =, to Vt on this discrete alternation
set S, with (alternating) error [A|, so that, in analogy with the notation of (2.3),

(2.8) Ve = h (Ol 5= E,(V158) =]
Because S is a subset of [0, 1], then evidently

(2.9) H\/; - hn(t)”Lm[O,l] — A= 0.

Step 3. If Wt = h(Dll,_jo1 — Al is sufficiently small, the iteration is
terminated. Otherwise, find a new alternation set S from the set of local extrema
in [0, 1] (with alternating signs) of the function Vi — h (1) from the previous Step
2, and repeat Steps 2 and 3, etc.

We remark that the sequence of |A['s generated from repeated application of
this Remez algorithm is monotone increasing.

Starting with the particular alternation set S©@ = {1} ], where

1 Jjr .
(2.10) t;oll,j:=§<1+cos<n+l)} (j=01,...,n+1)
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are the n + 2 extreme points of the Chebyshev polynomial 7, ,(2¢t — 1) on [0, 1],
and using Brent’s MP package [4] to handle the multiple-precision computations
on a VAX 11/780 in the Department of Mathematical Sciences at Kent State
University, the iterates of the Remez algorithm were terminated when ||y —
B, (Ol o,y and |A] agreed [cf. (2.9)] to 100 decimal digits. Because of quadratic
convergence, at most nine iterations of the Remez algorithm were needed for
convergence in each case considered. Taking into account guard digits and the
possibility of some small rounding errors, we believe that the numbers
{ E,,(]x])}>2, we determined are accurate to at least 95 decimal places.

To conserve space, we give the products {2nE,,(|x])}32, to 20 decimal digits in
Table 2.1 to show the slow convergence of this sequence. (Printouts of
(2nE,,(]x])}32, to 100 decimal digits are available on request.)

It appears that the products {2nE,,(|x])}3%, in Table 2.1 have converged to
four decimal digits. Based on the asymptotic estimates of Section 5, in order to
have 2nE,,(|x|) — B| < 10°° one would need n > 210. This truly formidable
computation would require finding polynomials of best uniform approximation to
Vt on [0,1] of degree at least 210.

3. Computing Upper Bounds for the Bernstein Constant

An ingenious step in Bernstein’s analysis [2] of the convergence [cf. (1.10)] of the
sequence {2nE,,(|x])}2, was the introduction of the real function F(z), defined
by

o0

(3.1) F(t)= Y d

k=0 (t+2k+1)" =%

(z=0).

As shown by Bernstein [2], this function admits a representation in terms of the
psi (digamma) function ¥(z) (cf. Whittaker and Watson [12, p. 240]),

(32) Y(z) = d%(logf(z)) — 1;((;))
by means of
R (L IS

Other representations for F(t) (cf. [2]) include

31 1207324z 1 o e %du
A 2] 1
J 2,

(34) F(1)= 2°2 z+1 cosh (u/2t)’

_
2t + 1
where F(a, b; ¢; z) denotes the classical hypergeometric function (cf. Henrici {7,

p. 27]). The last integral in (3.4) shows that F(z) is strictly increasing on [0, + c0),
with F(0) = 0 and F(+o0) = 3.
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The connection between the function F(t) and the Bernstein constant § of
(1.10) is the following. For each positive integer m, set

(3.5)
m ak
p,, = inf cos(m){F(t) —(ao + 3 ” },
,zo.r.e.él.am{ C1t =1k -1)2) L0,
and for m = 0, set
(3.57) Bo = aiggal{IICOS(ﬂf)[F(t) — ay] Hl«mmw'eo)}'
Note that
k
(3.6) lim cos (1) _(Dw (all positive integers k),

i—k-1/2 12 — [(2k — 1)/2]2 C 2k-1

so that the poles of the sum in (3.5) are cancelled by zeros of cos(7f). As a
consequence, by standard arguments there exist real constants {a,(m)}7_, such
that

3.7) w,= (:os('rrt){}?(t)_(&O(m)Jr f a,(m) ﬂ

i 2 =2k -1)2]°

L,[0,+c0)

i

1t is evident from the definition of (3.5) that the sequence of positive constants
{ B, }oo_o is nonincreasing:

(3.8) Po=fig = fhy = .on

Now, Bernstein [2, p. 55] proved that the Bernstein constant 8 of (1.10) and the
limit of the sequence {1, }*_, are connected through

(3.9) =2 lim p,,.

m-—> o0

Thus, with (3.8), each constant p,, of the approximation problem (3.5) provides
an upper bound for §:

(3.10) B <2p,  (each nonnegative integer m).

Because of the monotone character of F(t) on [0, +00) and the fact that
F(0) = 0 and F(+ c0) = 1, it immediately follows that g, = %, whence

(3.11) 2y =

Bojanic and Elkins [3] numerically estimated the solution of (3.5) for m =1 and
claimed that

(3.12) 2p, < 0.30981 60614

Interestingly, Bernstein [2] numerically estimated the solution of (3.5) for m = 3
in 1914 and found that g, < 0.143, so that

(3.13) 2p, < 0.286,

=
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which is the upper bound for 8 mentioned in (1.11). (More accurate estimates of
2p, and 2pu4 can be found in Table 3.1.)

It turns out that the solution of the approximation problem in (3.5) has an
interesting oscillation character that permits the use of a modified form of the
(second) Remez algorithm. (It should be mentioned that the work of Bernstein [2]
in 1914 predates the 1934 appearance of Remez’s algorithm [9]!) The minimiza-
tion problem (3.5) was solved using the following modified (second) Remez
algorithm:

Step 1. Let S:= {tj.}"’H (m=>=1), be a set of m + 2 distinct (alternation)

=0
points in [0, + o] satisfying
(3.14) O=ty<t,<...<t,<m—3<t,,,=+©

Step 2. Find the m + 2 unique constants {a;}/_, and A, a linear problem, such
that

(3.15)

cos(wtj){ao + kgl & [(2k - 1)/2]

ag

} +(=1)"""'\ = cos (mt;) F(1,)

ay+A=4%=F(+o0).

The solution of the linear problem (3.15) forces the function

a, + 3 i ”
k=112 = [(2k — 1) /2]

to equioscillate on the subset {7,}7., of S with (alternating) error |A|, and, in
addition, forces R, (1) to oscillate between +|A| and —|A| as 1 — oo (see Fig.
3.1). Thus, in analogy with (2.8),

(316) R, (1)= cos(m‘)[F(t) -

(3-17) HRm(f>“Lm(§) = Al
and because S is a subset of [0, + o0}, then [cf. (2.9)]
(3.18) IR (N 10,400y — 1IN 2 0.

As background for the conditions of the next step of this modified Remez
algorithm, we remark that

%{F(z)—

= F(1) + 2tk§1 [ =@k -2

(3.19)

o f )

p-1 12 =2k - 1) 2]

ay
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Table3.1. {2u,,).

m 2l m 2u,,

0 0.50000 00600 00000 10 0.28056 81480 84662
1 0.30981 66482 77486 20 0.28026 79181 28026
2 0.28964 46428 36759 30 0.28021 3001347551
3 0.28458 56232 64382 40 0.2801938951 81171
4 0.28268 16444 08752 50  0.28018 5082723738
5 0.28177 99926 24272 60  0.28018 03067 66681
6 0.28128 65208 69723 70 0.28017 7431742434
7 0.28098 84334 65837 80  0.2801755680 33390
8 0.28079 50582 78019 90  0.280174291500582
9 0.28066 2672087176 100  0.2801733791 01718

Thus, if the solution of (3.15) is such that the a/’s (0 <7 < m) and A are all

positive numbers, then the monotone character of F (1) glves . with (3.19), that

Ay

0u0) = Flo) =g+ T =ty

is strictly increasing from —oo to +A on the interval (m — 3, + 00). Defining
., = 7,(S) to be the unique value of ¢ in (m — %, +o0) such that G, (,,) = —A,
then because |R, (1) = |cos(mt) G ()| < |G, (1) <A for all 1> 7,, and be-
cause G, (1) > 3 —ay= A as ¢ = + oo, it follows that

HRm(t)“Lw[ 1 too) = A

On the other hand, since {7,}7., is a subset of [0,m — 3], then from (3.17)
R, (O 0.m-1,2= A. Hence since [0, m — 1] is a subset of [0, 7, ],

(3.20) IR, (), L0 (] ”Rm({)ﬁl,m[()‘+m) )

mr

and it can then be numerically determined whether the stronger statement
(3‘20,) HRm(t)”Lx[O,m——x/z] = ”Rm(f)”Lx( 0, +00)

is valid or not. [We remark that in the special cases treated thus far in the
literature for determining upper bounds for B, such as m =1 of Bojanic and
Elkins [3] and m = 3 of Bernstein [2], the choices of the associated sets $ were
such that the a,’s (0 < j < m) and A of step 2 were positive, and (3.20) was also
satisfied.] This brings us to

Step 3. If the solutions {a,}7., and A of step 2 are all positive numbers, if
(3.20%) is satisfied, and if [|R,,(D)]|, o, m-1,2) — A 1s sufficiently small, the itera-
tion is terminated. Otherwise, find a new alternation set S consisting of a set of m
local extrema of R, () (with alternating signs) in (0, m — 1], in addition to
o=0and 1, , = oo, and repeat Steps 2 and 3, etc.
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Fig.3.1. R5(1).
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Starting with the particular set §© = {1} 7!, where
2j-1
(321) 1©®=0; (©= 1—2- (j=1,2,....,m); 19, = +oo0,

the associated system of linear equations (3.15) was solved for {a{”}"; and A©,
using Gaussian elimination with partial pivoting. In every case considered in the
tabulation in Table 3.1, the starting values (3.21) for the set S of alternation
points were sufficiently good so that Steps 2 and 3 of the above modified Remez
algorithm always produced positive numbers {a, }7_, and A, as well as alterna-
tion sets satisfying (3.14) and (3.20"). Moreover, the convergence of this algorithm
was, as might be expected, quadratic, and at most ten iterations of this modified
Remez algorithm were needed for convergence in the cases considered.

In Fig. 3.1, we graph the function R(7) of (3.16), which is associated with the
best approximation constant ps of (3.7). In this figure, there are six alternation
points (denoted by small dark disks) in the interval [0, 9 /2], as well as oscillations
in (9/2, + o) that grow in modulus to p5 as 1 = co.

Unfortunately, the above calculations were not carried out to the same high
accuracy (100 decimal digits) as were the calculations of {2nE,,(|x])};%, of
Section 2. One reason for this is that the modified Remez algorithm applied to the
minimization problem of (3.5) necessarily requires repeated evaluation of the
function F(r) of (3.1). Here, we used the representation (3.3) of F(¢) in terms of
the psi function ¢ (x), and ¢ (x) was approximated, based on the work of Cody,
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Strecok, and Thacher [6], by
(3.22) Y(x) = (x — xo)Rs5(x), fori<x<3,

where x, = 1.46163... is the unique positive zero of ¥ (x), known to 40
significant digits, and where R ¢(x) is the ratio of two specific polynomials in x
of degree 8 from [6]; and by

(3.23) x[z(x)#lnx—2—1~+R6'6(%) (for 3 < x < 00),

where R (u) is the rauo of two specific polynomials in u of degree 6 from [6].
For the range 0 < x < 4, we used the known recurrence relation for the function

¥(o)
(3.24) MOETTEESIEES

and the approximation of (3.22).

Now, the above approximations of ¢ () are good to about 20 significant digits
(cf. [6]), so we estimate that our calculations of {2p,, 100 "are accurate to at least
15 decimal digits. To conserve space, a subset of the numbers {2, }10%, is given
to 15 decimals in Table 3.1.

It is evident from Table 3.1 that from (1.12) and (3.8)—(3.9),

(3.25) L 02820947917 -+ > 2 > B,

2w

so that the Bernstein Conjecture is false!
4. Computing Lower Bounds for the Bernstein Constant 3

We have seen that our calculations in Section 3 of the upper bounds {2p,, 1%, of
the Bernstein constant 8 [cf. (1.10)] are sufficient to disprove Bernstein’s conjec-
ture (1.13). Thus, in terms of settling Bernstein’s conjecture, it is obviously
unnecessary to determine lower bounds for 8. However, for completeness, we
include here calculations of lower bounds for 8 based on another ingenious
method of Bernstein. The calculations of these lower bounds for 8 proved to be
the most laborious of all the calculations we performed.

To describe Bernstein’s method [2] of determining lower bounds for 8, we
define

m~—1

(4.1) on(x) = T1(x*=/2)  (m=1)

Jj=1

and
(42)  9n(x) = dm(x: A0 Ao A,) = fj (x2-2)  (m=1).

(Here, we use the convention that [T7_ ; == 1if a < B.) The parameters appearing
in (4.2) are assumed to satisfy

(4.3) j—1<h<j  (j=z1).
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Then, for each m > 1, set
2,
A+ 3

£ osl (el 3)

é -—-—-———jm((i‘\; [;27 +tan (T =i+ 1))

where the function F (1) is defined in (3.1). Note that from (4.1) and (4.2), we can
write

(44) B, (A, A,...,A,) =

|

1 m-—1

(A=) T1 (/2 =%)

i

w9 B w=i2m)
Vu(h) A TT(R=-%) - TT (¥ -%)
j=1 Jj=i+1

With the conditions of (4.3), we see that the above ratios are all positive. Thus,
since F(r) is monotone increasing on [0, +o0) with F(0) = 0 and with F(+ o0)
= L (cf. Section 3), we deduce that each term of either sum of (4.4) is necessarily
positive, whence B, (A, A5, ..., A,) > 0.

With 8 as defined in (1.10), Bernstein [2] showed that B, (A, A,,..., A, ) is a
lower bound for 8; i.e.,

(4.6) B=B, (AL As i\,

for each positive integer m and for each choice of {A;}7; satisfying (4.3). The

best such lower bound for 8 for each m > 1 is evidently given by
(4.7) Ly=sup{ B, (A, Ay N0 (A, )L satisfies (4.3)},

so that
(4.8) B=>1,>0 (m=1).

Next, consider any parameters { A} j’;ﬁl satisfying (4.3). On fixing {A}7.; and

on letting A, , decrease to m, it can readily be verified from (4.4) and (4.5) that
(4.9) lim B, (ALAy . A A ) =B (AL AL, A,

"
m+1">

As a consequence, we see from (4.7) that
(4.10) Lo >0, (m=>1),

so that, with (4.8), {/,}>_, is a bounded nondecreasing sequence of positive

m=1

numbers. Now, Bernstein [2] further showed that the limit of this sequence is §:
(411) B= lim /,.

00

Bernstein in fact numerically estimated /; and /, and found that (cf. [2])
(4.12) I, > 027 and 1, > 0.278.

This last estimate of /, appears as the lower bound of 8 in (1.11). (More accurate
estimates of /; and /, can be found in Table 4.1.)
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Table 4.1, {/,}2_,.

m L m .,
1 0.27198 2359030477 11  0.28016 34641 87524
2 0.27893 0922849406 12 0.28016 48933 27009
3 0.27981 1000437231 13 0.28016 59052 38063
4 0.28002 4333928903 14  0.28016 6641527680
5 0.28009 7791315214 15  0.28016 71898 92928
6 0.28012 9183079687 16  0.28016 76066 00825
7 0.28014 4691009336 17  0.28016 79288 71653
8 0.280153187711753 18  0.28016 8181990114
9 0.280158217699044 19  0.28016 8383539180

10 0.2801613794 71687 20  0.28016 85460 02042

We now describe our calculations of the lower bounds /,,. It is evident from
(4.4) that the parameters A, A,,..., A, enter nonlinearly in the definition of
B, (A, A, ..., \,). Computationally, we used a fairly standard optimization
(maximization) routine, without derivatives, to optimize the real parameters
{X,}™,, subject to the constraints of (4.3), to determine /,,. Again, because the
function F(1) appears explicitly in the definition of B, (A, A,, ..., A,) of (4.4),
we used the approximations of (3.22)—(3.24) for the psi function ¢ (7) and the
representation (3.3) of F(r) in terms of /(). As in our calculations of the upper
bounds 2y, of B [cf. (3.10)], our calculations of the lower bounds /,, of B were
not carried out to the same high accuracy as were the calculations of 2nE,,(|x|)
(100 decimal digits) in Section 2. For reasons similar to those applying to the
numerical results of Section 3, since our approximations of (¢) are good to
about 20 significant digits (cf. [6]), we estimate that the optimization calculations
of {1,120, are accurate to at least 15 decimal digits. The numbers {/,,}5_, are
given to 15 decimal places in Table 4.1.

On comparing the upper bounds of Table 3.1 with the lower bounds of Table
4.1, we see that the lower bound 7, of (4.7) is a considerably more accurate
estimate of B of (1.18) than is the upper bound 2y, of (3.5), for each 1 < m < 20.
In fact, the error in /,, in approximating f is roughly 9.53 - 10 7, while that of
2p,00 is only 3.88 - 1076, However, this gain in accuracy was largely offset by the
increased computer time necessary to find the numbers /,, by our optimization
routine. We also remark that this greater accuracy of the lower bounds /,, in
approximating B explains why the m values in Table 4.1 do not range as high as
those for the upper bounds 2y, in Table 3.1.

5. The Richardson Extrapolation of the Numbers {2nE,,(|x)}3%~
The numbers {2nE,,(|x|)}3%, appearing in Table 2.1 indicate that the conver-
gence [cf. (1.10)] of these numbers to the Bernstein constant f is quite slow. One
typical scheme for improving the convergence rate of slowly convergent sequences
is the Richardson extrapolation method (cf. Brezinski [5, p. 7]), which can be
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described as follows. If {S,}Y_,, where N > 2, is a given (finite) sequence of real
numbers, set T4 =358, (1 <n<N), and regard {T"W})_, as the zero-th
column, consisting of N numbers, of the Richardson extrapolation table. The first
column of the Richardson extrapolation table, consisting of N — 1 numbers, is
defined by

+1
anO(n ) — xrr+lT0(n)

Xn 7 Xpt1

(5.1) T =

(1<sn<N-1),

and inductively, the (k + 1)-st column of the Richardson extrapolation table,
consisting of N — k£ — 1 numbers, is defined by

T T.m
(52) T, = lnk ALEEALYS (l<n<N-k-1),

Xn 7 Xndk+1

for each k = 0,1,..., N — 2, where {x, },’,"=1 are given constants. In this way, a
triangular table, consisting of N(N + 1)/2 entries, is created. In our case
of {2nE,,(|x)}3%,, a triangular table of 1,378 entries was created. As for
the numbers {x,}>%, of (5.1)~(5.2), preliminary calculations indicated that
2nE,,(|x) = B + K/n? + lower-order terms, so we chose x, = 1/n? We re-
mark that the potential loss of accuracy in the subtractions in the numerators and
denominators of the fractions defined in (5.1) and (5.2) suggested that the
calculations of 2nE,,(|x]) be done to very high precision (100 decimal digits).

The Richardson extrapolation of {2zE,,(|x|)}3%, produced unexpectedly
beautiful results. Rather than presenting here the complete extrapolation table of
1,378 entries (giving each entry to, say, 95 decimal digits), it seems sufficient to
mention that of the last 20 columns of this table, all but 3 of the 210 entries in
these columns agreed with the first 45 digits of the following approximation of 8
in (1.18):

(5.3) B = 0.28016 94990 23869 13303 64364 91230 67200 00424 82139 81236.

In addition, 182 entries of the 210 entries in these 20 last columns of this
Richardson extrapolation table agreed with «ll 50 digits of the above approxima-
tion of B!

The success of this Richardson extrapolation (with x,:=1/n?) applied to
(2nE,, (|x}32, strongly suggests that 2nE,,(|x|) admits an asymptotic expan-

=

sion of the form

K K K
—21+——f——?3+..., n— oo,
n n

n

(5.4) 2nE,,(1x) £ B -

where the constants K, are independent of n. (This is the basis for the new
conjecture of Section 1.) Assuming that (5.4) is valid, it follows that

K K
(5.5) n*(2nE,,(|x)) — B) = —K1+—22—-3-+..., n— 0.

n

n4

Thus, with the known high-precision approximations of 2nE,,(|x|) of Table 2.1,
and with an estimate for 8 determined from the last entry of the Richardson
extrapolation table for {2nE,,(|x[)}3%,, we can again apply Richardson extrapo-

n=1
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Table 5.1. {K;}1%,

J K;

1 0.04396 75288 8
2 0.02640 71687 7
3 0.03125 34264 6
4 0.05889 00165 7
5 0.16010 69971

6 0.59543 53151

7 2.92591 5470

8 18.49414 033

9 146.94301 23

10 1438.032717

lation to {n?(2nE,,(|x)) — B)}3%, (with x, = 1/n?) to obtain an extrapolated
estimate for K, of (5.5). This bootstrapping procedure can be continued to give,
via Richardson extrapolation, estimates for the successive K, of (5.4). As might be
suspected, there is a progressive loss of numerical accuracy in the successive
determination of the K, in this way.

In Table 5.1, we give estimates of { K}/, rounded to ten significant digits. As
Table 5.1 indicates, the constants K, begin to grow quite rapidly. That these
constants all turned out to be positive has been incorporated into the new
conjecture of Section 1.

Finally, because the Bernstein constant 8 has a connection [cf. (3.9)] with
particular rational approximations to the function F(¢), where F(r) can be
expressed [cf. (3.4)] in terms of the classical hypergeometric function, it is not
implausible to believe that 8, as well as the constants K, of (5.4), might admit a
closed-form expression in terms of the classical hypergeometric function and/or
known mathematical constants.
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