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Abstract

The classical Enestrom-Kakeya Theorem, which provides an upper bound for the moduli of the-
zeros of any polynomial with positive coefficients, has been recently extended by Anderson, Saff and
Varga to the case of any complex polynomial having no zeros on the ray [0, -4-oo). Their extension iz
sharp in the sense that, given such a complex polynomial p, () of degree nz>1, a sequence of multipliexr-
polynomials {Q, (2) }5=1 can be found for which the Enestrém-Kakeya upper bound, applied to the
products @, (2) «p, (2) , converges, in the limit as ¢ tends to oo, to the maximum of the moduli of the-
zeros of p,(2) . Here, the rate of convergence of these upper bounds (to the maximum of the moduli of
the zeros of p,(2)) is studied. It is shown that the obtained rate of convergence is best possible.

§1. Introduction

With o, denoting the set of all complex polynomials of degree exactly =, and
with ' ‘

={pn(z> :‘”i;@j 27 (l;>0 for a11j=0, 1,"-) ”}: . (1.1}
j= \ /

a useful form of the classical Enestrom-Kakeya Theorem™% due in fact to.
Enestrom™, is the following

Theorem A. For any p,(2) = i a; 8 in w with n>1, define
i=0

i @ ¢ @ . / J
alpdi=min{ A} glpl: - max{-% ] (1.2)

Then, all the zeros of p,(z) lie in the annulus ‘
alp<[z]|<Blp]. (1.3)

EVidently, if »
p(pa): =max{]z, l : Pa () =0}
denotes the spectral radius of any complex polynomial p,(2) in m, with n>1 thers
the Enestrém-Kakeya Theorem asserts that

Blosl=p(py), for all p,Ea;, for all n>1. (1.4
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for all m sufficiently large. This implies that the rate of convergence of 7,(ps) t0
©(py) is no worse than linear in 1/m, while the example py(z): = (1+2)? in (1.14)
shows that this rate can be exactly linear in 1/m.

§ 2. Proof of (1.3) of Theorem 1

Fix any p,(z) in &,, where n>1. Without loss of generality (cf. [2]), we may
assume that p,(z) is monio, real, and is normalized so that p(p,) =1. Thus, we can
write

pa(®) =16, @.1)
and we can set
£ =1, where 0<r;<<1, 0<6;<1(1<<j<<n). 2.2)
With Z* denoting the set of all positive integers, we next define the sets
Sp={tCZ%: &[0, +o0)}, 1<<j<n, (2.8)

50 that (cf. [2]) 8;=2Z*\{sd;}s4 if ;=ny/d; it rational (where n; and d; are positive
integers, in lowest terms), as well ag §;=Z* if 6, is irrational. Thus,

T 8= 2%\ U {sdhia, @.4)
Smce 1€8; for all 1<<j<\n, we can write ,
T = {ty} =1, Where 1=1;<ty<++, with lim £, = oo, (2.5)

koo
For some elementary number—theoretic properties of the set 7', define
D:=1l.0.m. {d;}}-1 (where D:=1 if all ;s are irrational). (2.6)

“Then, ag a consequence of the Chinese Remainder Theorem (cf. [6, p: 2497), it is
easily verified that 7' is periodic with period D, i.e., if, for any positive integer a,
Zi41s ty42, °*°, Uy aTe the congecutive elements of T in the interval [@, e+ D), then
the consecutive elements of 7' in [a+D, a+2D) are exactly given by ¢ ="1;+.D
for all 1<<h<l. This implies that 7' is an infinite set (¢f. (2.5)), and that the
maximum gap, g, between consecutive terms of 7' is finite:

g:= max [e1 — ] <oo. ‘ 2.7)
= B
‘Next, since p,(z) is also real, we can write (2.1) in the form
2a®) =11 (2 + 8) [T [+~ 2 cos 2024131, (2.8)
= =1

where 0<<9;<<1 (if the first product is not vacuous), and where 0<<§;<<1/2 (if the
second produet is not vacuous). Since the quadratic factors in the second product of
(2.8) are derived only from non-real zeros of p,(z) in the open upper-half plane,
we set '
I:={0): 0, is irrational, with 0<6,<<1/2}. (2.9

Clearly, I is either empty or a finite non-empty set.

For additional notation, let (> denote # minug its nearest mteger for » any
real number, with the convention that {z):=1/2 when s=n+1/2, n an integer.
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Our objective now is to construct a suitable subset U of the set 7', defined in
(2.4). f I=0, set U:=T. If I+(, let » be the largest positive integer for which
numbers 6y, 0, -+, 6, can be found in I such that {f,}}; and {1} are linearly
independent over the rational numbers. Recalling the periodic nature of the set 7'
={t;}52; and the fact that #;—1, then {1+mD};_, is an infinite subset of 7', where
D is defined in (2.6) and where m is any positive integer.

Fixing one such set {6,};_; such that {#,}}_; and {1} are linearly independent
over the rational numbers, consider next the r~dimensional real vector

KA+mD)b:>, {(L+mD)bsp, «+, {(L+mD)b,>] (2.10)
for each m>1,
which, by definition, lies in the r—dimensional “unit” hyperoube |a;|<1/2 (1<i<<
7). Now, the linear independence of the {#,}}_; and {1} insures (of. [7]) that the
points of (2.10) are asymptotically uniformly distributed in this unit hypercube.
Next, let {a;}j—; and 3 be any r+1 positive constants satisfying
0<a;— 0<ay+08<1/2, for all 1<j<r. (2.11)
(Later, a determination of the a;s and & will be made.)

This brings us to

Lemma 1. For any choice of positive mumbers {a;}i=y and & satisfying (2.11),
there ewists an infinite sequence {m;}i.y of positive integers with My < Mo+, such that

o;—d<{(1+m,D)8;><a;+9, for all 1>1, (2.12)
all 1<j<r.

Thus, if U:={wi:=1+m,D}2,, then U is an infinite subset of T. MO’T‘éO?Je’I‘, the
mazimum gap, g, between successive elements of U is bounded:

g = max {wp1 —wr < + o0, (2.138)
-3

Proof. 1f I=@, then U=T by definition, and U is independent of the ay's and
9. That U is an infinite set possessing a finite maximum gap between successive
elements, is a consequence of (2.7). Thus, assume that I+(, and let {0;}5-1 be a
largest subset of I such that {6;};, and {1} are linearly independent over the
rational numbers, and let {éj}j?:rﬂ,r1 denote the elements of the (possibly empty) sot
I\{0;}}-. |

A result of Slater™ - 82 gives that, for any irrational numbers {Y;}j=1 which,
with {1}, are linearly independent over the rational numbers, and for any closed
convex subset ¥ (with nonempty interior) of the unit hypercube (, ®a, v, D),
where |@;|<<1/2 for 1<<i<{r, there exist infinitely many positive integers m,<
Mg, -+ such that

[Kmas>, <mipsp, ~<map > €V forall i1, = (2.14)
and such that
n}:fi [my1—my] < 400, ) (2.15)

Now, the irrational numbers {D§,}_, are, with {1}, evidently linearly independent
over the rational numbers, and (cf. (2.11)) ‘

Vi={(y, m, ey @) oy — K<y +8 for all 1<j<r} (2.16)
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is a particular closed convex subset of our unit hypercube. Thus, an easy
consequence of Slater’s result is that there exist infinitely many positive integers
My < Mmg< -+ such that

[K(1+mD)bs), {(A+mD)s), ++, K(L+mD),)] eV, @.17)

for all 41,

and such that
max [Myyq — My << 400, (2.18)

izl
Clearly, (2.17) and (2.18) imply the desired results of (2.12) and (2.13). §

This brings us to the selection of the positive numbers {a;}}—; and 8, which
satisfy (2.11). If I+(, assume first that the irrational numbers {f;}j—; (which,
with {1}, are linearly independent over the rational numbers) exhaust the set I of
(2.9). In this case, any choice of positive numbers {a;}j_; and 8, satisfying (2.11),
is acceptable. If {#,}}.; does mot exhaust I, let {0,}5_,,1 denote the remaining
elements of I. As {6,}}_, is a largest subset of I for which {¢;}} and {1} are linearly
independent over the rational numbers, then each B, (for r +1<I<s) is a linear
combination (with rational coefficients) of {f}i-, and {1}, i.e., with 6o: =1 for
convenience, we can write

b= 20 014 O, Tor all r+1<I<s, (2.19)
o=

where ¢,; are rational numbers. On multiplying (2.19) by the least common
multiple of the denominators of the non-zero |c,x [, (2.19) becomes

é‘"“%T gol,kek, for all r4+1<I<s, (2.20)
where 0, and C),, are integers. It is evident that 0,0 (r+1<I<s), and, as 0, is
irrational, that 3} Oy >0 (r+1<1<s).
With D deﬁknzéd as in (2.6) and for any positive integer m, (2 .20) yields

(1+mp>é,:.(% 3 a4+ mD)y, rHI<ISs. (2.21)

From the definition of <z, it is evident from (2.21) that
(A+mDYGy =5 4 30,5 (L+mD)BL,

where w;(m) is some integer, so that

IK(A+mDYB| = ﬂé}@* Stk A+mDYB|. (2.22)
Now, for each I with r-+1<I<s,

g o xox=0 (2.23)

is a plane through the origin in r—dimensional space. As the number of such planes
is finite, there is a cone (with nonempty interior) in the positive-hyperoctant of
this real r—dimensional space, having as boundaries the coordinate planes and/or
the planes of (2.23). Thus, we can extract a closed hypercube H from the interior
of this cone, whose coordinate intervals are {ox—9, o+ 8} for 1<h<r. In fact, we
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can choose the positive numbers {a;}}-; and d so that
0< oy —d<ay+8<1/2, for all 1<k<r, (2.24)
and so that the planes

(M) 1 3y =0, 1< <s, (2.25)
1 =

which are translates of the planes of (2.23), do not intersect our hypercube H, for
all choices of w;(m) and for all r+1<I<s.

Fixing our hypercube H in this way, we have, from Lemma 1, the exigtence of
the sequence {m,}i, of positive integers such that (2.12) and (2.13) are valid. In
particular, (2.12) implies that the vector

[ +mD)05>, <A+mD)bsp, -+, (A+mD)b,>]

is in our hypercube H for all m;. Moreover, with this sequence {m;}iy, the fact
that the planes of (2.25) do not intersect [, gives us, from (2.22), that

min{|<(L+mD)Gp |1m € {m}5s and r+1<I<s}=:r>0. (2.26)

This will be used below.
Next, with w:=14+mD (cf. Lemma 1), we set (cf. (2.1))

Py(w):= [11 (w— &) < for each I1>1. (2.27)

Lemma 2. For each 11, there ewists a polynomial Gy(w) such that
1) G, (w) is monic with all its coefficients positive;
i) Py(w) divides Gh(w);
iii) BLG(w)]<n (where B is defined in (1.2)); (2.28)
iv) there is @ constant M (independent of 1) such that
deg (Gh(w)) <M.
Proof. Consider the representation of p,(2) in (2.8). If the first product in
(2.8) is not vacuous, then —3d;= |3;]¢***/? are the real negative zeros of p,(2). In
this case, the set T of (2.4) contains only odd positive integers, so that the same is

true for the set U:={w;:=1+mD}2,, since D is necessarily even in this case. In
general, it follows from (2.27) and (2.8) that

Py(w)= ]‘i (w—+81) ]01 [20? —2ry cos (2awb)w+1r7"], (2.29)
= o=

for =1, : .
Consider any term of the first product of (2.29). As 3,>0, then Blw4d/]=
s<1. Consider next any term of the second product in (2.29), say

73— 20 cos (2muy 0;) < w—+w. (2.30)
For any rational ,, it follows from (2.4) and (2.6) that
cos (2mu, 0;) <cos(2m/D) <1, for all I=>1. (2.81)

Thus, on applying the angle-doubling procedure of the proof of [2, Prop. 1] a
finite number of times (depending only on D), there exists a monic real polynomial
Qm(w), depending on I and 6, but whose degree (which depends only on D)is
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bounded, such that @,(w) times the polynomial in (2.30) has positive coefficients,
and such that (of. (1.2))

. B{Qu(w) » [r2 —2¢% cos (2mwu,b;) ~w+w]} <2, (2.32)
for all I>>1, all §; rational.

Next, we consider the quadratic in (2.80) when 6, is irrational. First, suppose
that 6; is one of the {f;}/-, which, with {1}, are linearly independent over the
rational numbers. Referring to (2.12) of Lemma 1 and the definition w;:=1+mD,
then

0<oyy — d<ubyy <aj+08<1/2, for all 11, (2.88)
where {a;}j-; and & satisfy (2.11). Thus, as in (2.31), (2.33) insures that

cos (2mu; ;) <cos[2m (a;—8)] <1, for all I>1.
As in the previous case of §; rational, the angle—doubling procedure of [2, Prop. 1]
can be applied a finite number of times (depending only on «;—3), and there is
again a monic real polynomial @, (w) whose degree is bounded, such that (2.32) is
valid for all 1>1, when 6, is an irrational number from the particular set {f,}i-;.

Finally, suppose that ; is in {6, 51:=I\{6}}-1. Recalling (2.26), we see that
min | {wf;y | =v>0, foralll>1,
50 that
cos (2aw, 0;) <cosw<1, for all I=1.

As in the previous cases of §; rational and 6; € {6,};-;, the angle-doubling procedure
applied a finite number of times (depending only on ) produces a real monic
polynomial Qn(w), depending on I and §;, but whose degree is bounded, such that
(2.82) is valid for all I>=1.

Now, on multiplying all the terms of (2.29) together, along with their
associated multipliers Q,(w), we obtain a monic real polynomial &,(w), where
P,(w) divides G;(w) and where deg [G4(w)] < M for all I<1. Moreover, from [2,
Lemma 1], (2.28iii) is further satisfied, i.e., B[Gh(w)] <n for all I>1, where n is
the degree of p,(2) in &,. §

This brings us to the Proof of (1.13) of Theorem 1. As in [2, p. 19], we form,
for each 7>>0, the product polynomial

H,(z; )= (n“ t4n" 24 oo 4297 1) Gy (2%)  for all j=>1, (2.34)
where G;(w) satisfies (2.28). Because G;(w) has all positive coefficients from (2.28i),
the polynomial H,(z; n) of (2.84) has all positive coefficients, so that the Enestrom-
Kakeya functional B of (1.2) can be applied to it. Setting m;:= (B[G;]1)Y™, it
follows, as in [2], that

BLH, (5 n)]= (BIG)™<uit, for all j>1, (2.35)
the last inequality following from (2.28iii). As n, the degree of our given p,(z), is
fixed and as u;~>co as j—>oo from Lemma 1, the inequality of (2.35) then gives us
that

;g ) as j—>co. (2.36)

BLH,(z npl<1+221 o
t J
Now, deg (H;(z; 1;) =u;(deg Gy) +u;—1, so that (2.36) implies (ef. (1.7)) that
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Inn 1 .
T tdest 4 11-1-n S L +——+0 ( ), as j—>oco0,
Uj u,

which further implies, from (1.8) and (2.28iv), that

Tuj(M+1)<1 _I_ll'_l_ﬁ +0 ( ), as j"")oo. (2 .37)
’ U; uj
Thus
wy(M+1) (7 vy~ 1] <+ DIan0 (<), as j->so,
, i
so that
lji—ﬁ.l{uj(M—Fl) [T,0re0— 11 < (M +1)1nn. (2.88)
Next, consider any integer 4 satisfying.
u; (M A1) <b<w; . (M +1). (2.89)
Because of the monotone decreasing nature of the 7,’s from (1.18), it follows that
bl — 1] <wypa (M +1) [v0,a040— 1], (2.40)

for all k satisfying (2.89). But as w3 <u;+g from (2.18) of Lemma 1, then (2.40)
yields

k [’D‘k"’].] <u5(M+1) ['D'uj(u.;_l) *1] +g(M+1) [TuJ(M+1) _1] . (2 .4.'1)
As the last term of (2.41) tends to zero from (1.9) of Theorem B, we deduce with
(2.88) that

Tim m[fvm—l:l (M+1)1Inn,

m—reo

which gives the desired result (1.18) of Theorem 1. l
We remark that our proof of Theorem 1 assumes only that pn(z) Edf, with
n>>1. Obviously, if p,(2) € &,, then from (1.11), there holds

3}1_)13 ™ [T (00) —p(Pn)1=0,

i.e. o of (1.18) is necessarily zero in this case.

§ 3. Proof of (1.14) of Theorem 1

Consider

Pa(2) 1= (1+2)2=1+2z422, (3.1)
50 that p(ps) =1. Olearly, P5(2) is an element of both w# and @a, 50 that ity associated
nonnegative integer my (of. (1.7)) is given by mo=0. Next, as py(z) has a zero of
multlplmlty two at z= —1, then (1.10i) fails, so that P2 € &3\ #a. Moreover, as both
zeros of Po(z) have argument m= 2759,, there are no irrational #,s, so that the
hypotheses of Theorem 1 hold for p.. Moreover, 7, = 7,( a), defined in (1.7),

necessarily satisfies (of. (1.12))
7,>1, for all m=0. 3.2)
For each nonnegative integer m, we next set ‘

Jm(e):=(@m~+1)c*+3 — (2m+8) @™+ —2, (3.3)
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Lemma 8. For each nonnegative integer m, fm has a unique pPositive 2610, Cm,
which satisfies

cn>1. (8.4)
Moreover,
2=GO>61>'°'>0m>Cm+j>“'0 . (3‘5>
In addition,
2m 42
>1. .6
S T for every m=>1 (3.6)

Proof. By Descartes’ Rule of Signs, f. has a unique positive zero for each
nonnegative integer m. Since fn (1) =—4 and since Fm(c)>0 for all sufficiently
large c, then ¢,>1, establishing (3.4). Now, fo(2)=0, whence co=2. Next, with
(3.8) and (3.4),

Fmsa(0m) = 2@m+3)en* (e —1)*>0,
80 that ¢,>Cmsy for all m=>0, which gives (8.5). Finally, with (8.3),

)~ () mrd) a0

2m +2 . .
for all m=>1, so that cm>(2$ +1>, which establishes (3.6). R
Lemma 4. For each nonnegative integer m,
Tom <Cme (3.7)

2m
Proof. Consider Qun(2) : = SV g2, where the gj's are recursively defined by
i=o

) ¢jat(@—0m) g1~ (2em—1)¢i=Cngs+1, =0, 1, -, 2m—1, (3.8)
where g¢_gi=0=:g_1, and where ¢o:=1. Bocause these ¢/s in (8.8) satisfy a
homogeneous linear difference equation, it can be verified that the g;'s can be
explicitly expressed as

gi= (em+ 1) {(= 1[G+ G+ (G+2)0n] T o'},

j=—2, =1, -, 2m. (3.9)

Now, rearranging the terms in (8.8) gives ‘
Qo205 1+ Gi=Cn(qima+ 205+ @isa), J=0, 1, o 2m—1, (3.10)

from which it recursively follows that (of. (3.4))
Qi—a+2¢;1+q;=0l >0, §=0,1, -, 2m. (8.11)

Obviously, as the expression on the right in (3.9) contains only positive terms
when j is even, then ¢s;,>0 for all j=0,1, -, m. In particular,

sn>>0. (3.12)
Moreover, with (3.9) and with the fact that Fm(em) =0, it can be verified that
Qom—172G3m= Cngom >0 (3.13)

(In fact, it is (8.13) which, upon working backwards, leads to the definition of
Fu(c) in (3.8))
Next, multiplying (3.18) by ¢, and using the case j=2m of (3.9), gives
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en(@om—1+2qom) = (Cn+1) 726, { (2m 1) 4+ (2m+-2) eZm+3 162 }.
As ¢,>1 from (3.4) and as m>0, it follows that
em(Gom—1+2qem) > (n+1) 262" {1+ 20, +cp} = ;2™
Thus, with the case j=2m of (3.11),
n (Gom—112¢2m) > Qom—2+29am—11 qom- (8.14)

~ 2m 3 .
Next, the product Qom(2) e pa(2) =<§] g% ) (1+2)? can be expressed as
=0

~ 2m+2 2m+2
Qom (2) + pa(2) = Z}) vl = jgo (Q:—2+291—1+Qi)zj; (3.15)

wheTe ¢ ot =¢_1'=qoms1 : =gamsai=0. Clearly, from (8.11) —(3.18), we see that
Qom* P2 € Wy se. Next, from (3.10) and (3.18), we deduce that the ratios 7;/v;.1 of
the coefficients of Qo (2) * Pa(2) in (3.15) satisfy

Vi —¢,, forj=0,1,:,2m—1,and 2m+1,
Vi+1
while (3.14) gives that the remaining coefficient ratio satisfies
Yom rem - Cm,
Y om+1

50 that, by definition (cf. (1.2)), B[Qun- P2l =cm. Hence (cf. (1.7)), 7am<¢n, which
establishes (3.7). §

Lemma 5. For each nonnegative inieger m, let ¢ be a ﬁazed number satisfying
1 <6< Cm, and, let the associated numbers {py}ini? (depending on ¢) be defined recursively

by
—opje1— (26 —1)p;+ (2—06)Pjsa+p42=0, §=0,1, -, 2m, (3.16)

where p_yt=0= Doy, and where po:=1. Then, ;
p;>>0, for all =0, 1, -, 2m-+1. 8.1D
 Proof. Set

g (8) 1= — 334 (25 +3) ¢+ (2k+2), £k=0,1, -, m, (3.18)
so that ;
g (t) = — (2k+3) (#*+?-1)<0 for any ¢>1; k=0, 1, .-, m

Thus, as 1<<¢<¢, and as cyp1<<c; (cf. (3.5)), then ;
i (Cri1) > g (), and gm(e) > gm(cm). (8.19)
Now, direct use of (3.18) and the fact that fi(c;) =0 gives that

gu(ow) = <§]€+i )gk—l(ok),

so that with (3.19),

(2848 2%k+3 o
gx(cx) = 2k—|—1 >gk 1(0k>><2k+1>!]k—1(0k~1), k=1,2, ., m

Thus, with the second inequality of (3.19), the above inequalities can be used
recursively to deduce ‘

gm<0> >gm(cm) >(gzi?>gm—1<cm‘-1) >

But as ¢o=2 from (8.5) of Lemma 3 and as go(co) =0, then

(2m+ 3)

gm-2<cm—2> e > Go (00)

<2m+3)
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gn()>0, m=0,1, ==, (3.20)
which will be used below.
Now, the explicit solution of the coeflicients {pe}2rt? in (8.16) can be verified
to be

1

By (1) w2 = ()T + GmeA 8,

j=—1, 0, -+, 2m+2, (8.21)
where p_y:=0:=ponya, and where po:=1. In the case when 4 is odd, say j=20+1,
(8.21) gives

Parsa= gmj{c) ((@1+2) ™4 (2m+8) @ — 2mA1-2D)}, 1=0,1, «:, m.
As ¢>1, the quantity in braces above is bounded below by 41+4, so that with
(3.20),
Poy1>>0 for 1=0,1, -, m. (3.22)
In the cage when j is even, say j=2I, the assumption ¢>1 and (8.21) give (cf.
(3.3)
G (€) (Dor— Patra) = 26°™*2 — (2m +-3) (P —1)+2
‘ >2¢2m+8 — (2m+8) ™™ (¢?—1) +2= —fm(e),
for any 1=0,1, +--, m. But as 1<c<cn, We see from Lemma 8 that fm(c)>0, so
that
Po>>Pa>>+++ > Pam > 0= Dam2- - (3.23)
Thus, (3.22) and (8.23) give the desired result of (3.17). §
Lemma 6. For all nonnegative integers m, / ‘
Tom=Cm. (8.24)
Proof. From (8.7) of Lemma 2, 7sn <¢n for any nonnegative irteger m.
Suppose, on the contrary, that there is a nonnegative integer m, for which ron<<0m;
so that (of. (3.2)) 1<7m<Cm. For any choice of ¢ with 1< 7op< <6y, there exists a

2m

Qom(2) in way, with QomP2 € Wy such that BlQanps] <c. Writing Qam(2) S’L% g,
BlQaomps] <c¢ implies that :
Q2 t29;1+q;<e(gi-1+2¢5+¢5en), =0, 1, -, 2m-+1,
or equivalently,
giat+ (2—0)g;1— (2e—1)¢;—69;11<0, j=0, 1, e+, 2m+1, (3.25)
where ¢_si=¢_1:=0="Qams1=:Qame2. With this value of ¢, let the positive

numbers { py}2"¢t (depending on ¢) be defined from (3.16) of Lemma b. Multiplying
(3.25) by p; and summing on j gives

2m+1
jgo pi[giat (2—0) g1 — (26—1)¢;— 044421 <0-

However, the left side of the above expression is

2m+1

;2:(:) ¢;[—opj1— (2e—1)p;+ (2—6) P41t pjsal =0.
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from (3.16) of Lemma 5. This contradiction establishes the desired result of (3.24)

that Tom=Cm. | ‘
It now follows, for pp(z):= (1+2)® in #;\®., that the associated optimal

generalized Enestrém-Kakeya functionals va,(ps) satisfy (cf. (3.24) and (3.6))

rgm(’§2>=cm>1+é-w-§ﬂ, for all m>1. (3.26)

However, a sharp asymptotic behavior of ¢, can be obtained. Let A>1 be the
unique positive zero of (A—1)e¢*—1, i.e.,

A=1.278464543. (3.27)
It can then be verified from (8.3) that
B A AZ—2 1
c’"—1+2m it 2(2m+1)2 +0 ( (2m+1)3>’ a8 mm>eo. (8.28)

With (3.28), we now establish
Lemma 7. We have (¢f. (3.27))

lim 7 (7, ( pa) —1) =A. (3.29)

m=roo

Proof. From (8.24) and (3.28), it follows that lim (2m + 1) (zsn—1) =A. But
as (2m~+1) (vam—1) =2m (zon— 1) + (vam — 1), and as zgy = ¢, —>1 as m—> oo from
(3.28), then

lim 2m (wap —1) =A. (3.80)

Similarly, we know (ef. (1.8)) that zonia<Tams1<72m for all m>=0, whence
2m+1) (Tamea—1) < (2m +1) (Tamsr— 1) <@m+1) (7am—1),
or equivalently,

(2m+2) (’Fﬂm.;.g - 1) jand (’B’gm+g - 1) < (2m +1> ('D‘gm+1 - 1) <2m ("l;’gm - 1) + (’E’gm - 1) o
Since Tomse—1 and s, —1 both tend to zero as m—>co, the above inequalities, with
(3.80), imply that

lim (2m—+1) (Tomes—1) =A,

Moo

which, with (8.30), gives the desired result of (3.29). §
We state without proof that, for this polynomial py(z):= (1+2)?, the following
sharper result can be shown:

Tomsd (52) =w2m(5g), for all m>=0,
s0 that
7o (P2) =71 (P2) >72(P2) =T5(Pa) > 220
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The sharpness of this inequality in (1.4) had already been studied in 1913 by
Hurwitz. For a recent (corrected) form of Hurwitz's original contribution
which gives the precise conditions on p,(z) in %} so that equality holds in (1.4),
see [1].

To go beyond the case of polynomials having only positive real coefficients, as
treated in (1.4), consider more generally any complex polynomial p,(z) in m, with
m=>1, and suppose that a multiplier polynomial @Q,, (2) in @, can be found such that
Qn(2) » pa(2) is in @},,. Then, applying the Enegtrom-Kakeya Theorem to the
product Qu(E)pa(s) gives (of. (14)) Bldupi] =p (@up), but a3 p(@np) > (20,

en

BLQn 4] >P(pn) . (1 5)
This upper bound B[Qmp.] for p(p,) is called a generalized Enestrém-Kakeya
functional for p,(z), when such a multiplier polynomial exists. On setting

fin i ={pu(2) €E@Wn: Pa(2) has no zeros on the ray [0, +<0)}, (1.6)

for any n>1,
it was shown in Anderson, Saff and Varga [2, Prop. 1] that the existence of
such a multiplier polynomial @y, (2) € w, for p,(z) for which Q,(z) * pu(2) €}y, is
equivalent with p, €&,. Moreover, for p, € #,, it easily follows (cf. [2]) that there
exists a least nonnegative integer my (depending on p,) such that the seb

On(Pn) 1= {Qm(2) Emm: Qn(2)Pa(2) €}

is nonempty for each m>=>m,. Now,

Tm=7m(.pn): =j~nf{18 [Qmpn] : Qm E@n(%)}, m>'m’0: (17)

gives the optimal (least) upper bound estimate of p(p,) of this generalized
Enestrém-Kakeya functional, when restricted to polynomial multipliers Q,(z) of

degree m. Moreover, with (1.5) and (1.7), it is evident that the v,(p,)’s are
monotone decreasing:

Tmo (P») =Ty ( pn) >7m.+2('pn> ==p(Pp). 1.8)

Because of the inequalities of (1.8), it is natural to ask if the sequence
{Tm (Pn) Yri=m, tends to p(p,), as m—>co. An affirmative answer to this question,
established in [2, Theorem 1], is stated as

Theorem B. . For any p,(z) in &, with n=>1,

Lim () = p(ps). (1.9)
Another question that can be asked is to characterize those elements Pa(2) in &,
(with n>1) for which there exists some positive integer

my=my (Py)
guch that
T ( Dn) ='0(00)

for all m = my(p,). To answer this question, it is convenient to define the subset
@y of &, (for each n>1) by
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i) all zeros of p,(z) of modulus p(p,) are simple;

i) if {£;)5=1 denotes the set of all zeros of p, () on the
circle |z| =p(p,), then arg &; is a (nonzero) rational
multiple of 207, i.e., there is a positive integer D and
positive integers n; such that arg &;=2mwn,;/D with 0<n;
<D for all 1<j<r;

iii) for every zero ¢ of p,(2) with |&|<p(p.), then &°¢
[0,4c0).

Then (cf. [2, Theorem 2]), we have
Theorem C. Given p,(z) in &, with n=>1, there ewisis a positive integer

My =m4(p,) such that

Pa(z) €y iff 4 (1.10)

Tm (pn) = p(Pa) for all mz=my ( Pn) (1'11>
iff p.(z) is an element of #,.
We remark that the condition (1.10iii) above, used in defining #,, strengthens
the analogous condition in [2, eq. (1.14iii)].
With the above results, we come to the main problem of this paper. For each
pa(2) in &,\ &, with n>>1, it necessarily follows from Theorem O that
T (D) >p(ps) for all m=mo(pa), (1.12)
while from (1.9), /\

Lim T (Dn) =p(Pa)-

What then is the rate of convergence of 7, (p,) 10 p(p,), as m > oo, for each p,(2)
in #,\ &, Our main result, Theorem 1 below, gives an upper bound for this rate of
convergence. ’

Theorem 1. For each p,(2) in @,\&, with n=>1, there ewists a nonnegative
constant o for which

s m (7 (pr) — o (pa)] =0 o @a13)

This result is best possible in the sense that there is a polynomial, namely Pa(2) =
(1+42)2 with p(ps) =1, which satisfies the above hypotheses, for which

K 7 [ Pa) —1]1=A4, (1.14)

where A==1.2T7846 is the unique positive zero of (A—1)e*—1=0.

It may be of independent interest that the proof of (1.18) makes use of
number—theoretic results. The proof of (1.13) will be given in Section 2, while
that of (1.14) will be given in Section 3.

‘We remark that Theorem 1 automatically applies to any p,(2) in &,\#&, whose
zer0s &= |y | €*™* are such that all §,s are rational numbers. This is the case for
the particular polynomial pa(z):= (1+2)? of Theorem 1.

For any p,(z) satisfying the hypotheses of Theorem 1 and for any &>0, it
follows from (1.12) and (1.13) that :

o+8
m E)

P () <Tm(ps) <p(ps) +



