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Summary. Given a nonsingular linear system Ax=b, a splitting A=M —N
leads to the one-step iteration (1)x,=7%, ,+¢ with T:=M 'N and
c:=M"'h. We investigate semiiterative methods (SIM’s) with respect to (1),
under the assumption that the eigenvalues of T are contained in some
compact set Q of €, with 1¢Q. There exist SIM’s which are optimal with
respect to €, but, except for some special sets €, such optimal methods are
not explicitly known in general. Using results about “maximal conver-
gence” of polynomials and “uniformly distributed” nodes from approxima-
tion and function theory, we describe here SIM’s which are asymptotically
optimal with respect to Q. It is shown that Euler methods, extensively
studied by Niethammer-Varga [NV], are special SIM’s. Various algorithms
for SIM’s are also derived here. A 1—1 correspondence between Euler
methods and SIM’s, generated by generalized Faber polynomials, is further
established here. This correspondence gives that asymptotically optimal
Euler methods are quite near the optimal SIM’s.
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506 M. Eiermann ct al.
1. Introduction

Given a nonsingular system of linear equations Ax=b, where 4eC"", and
given a splitting A=M —N of 4 with M nonsingular, this system of equations
can be written in the equivalent fixed-point form

x=Tx+e, (1.1)

where T:=M~'N and ¢:=M"'b. With (1.1), there is the naturally induced
iterative method
x,=1x, ;+¢, Xo=a (mzxl), (1.2)

which is well-known to be convergent, for arbitrary &, to the solution x of (1.1)
iff the spectral radius of 1. p(T), satisfies p(T)<1. If the error vectors and the
residual vectors for the iterative method of (1.2) are respectively defined by

e, =X—X,., rLi=c—(—=T)x,, (1.3)

then there holds
e, =T"ey,, 1,=T"r, (mz0). (1.3)
Following Varga ([V1] or [V2, p. 132]), a semiiterative method (SIM) with

respect to the iterative method (1.2) is defined by

Yai= Y TiX, (m20), (1.4)

where the infinite lower triangular matrix

Ty, 0
po—|to T 0 (15)
M0 Ta2,1 722
satisfies
Y =1 (mz0) (1.6)
i=o0

The associated sequence of polynomials, derived from the rows of the infinite
triangular matrix P by

pe)= . T2 (mZ0) (17)

evidently satisfies p,(1)=1 from (1.6). For convenience, we assume 7, , +0, sO
that p,(z) can be represented also as

(z=&")  (mz0) (L.7)

=

P2 =T m

i=1

1
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If we introduce the error vector &,:=x—y,, and the corresponding residual
vector t,:=c—(I —T)y,,, then there holds

€, =pu(Teg,  E,=p, (TN, (mz0). (1.8)

The problem is to choose the matrix P, or equivalently the polynomials p,(z),
such that the error vectors &, decrease rapidly to zero, thereby rendering rapid
convergence of the vectors y,, to x.

In Sect. 2, we introduce the polynomials

1 —p,(2)
s (=22 (1) (19)
—z
Since p,(1)=1, then g¢,,_(z) is a polynomial of degree m —1. It can be directly
seen from (1.9) that ¢, _,(z) interpolates the function 1/(1 —z) at the zeros Em
of p,(2) (i=1,...,m). Writing

m—1

G- 1(2)= Z Vm—l,izi: (1.99

i=0

the coefficients of the polynomials ¢,,_,(z) similarly define an infinite lower
triangular matrix Q. Whereas the matrix P of (1.5) induces a linear transfor-
mation from the sequence of vectors {X,},-o to the sequence of vectors
{¥m} o, the matrix Q induces the same transformation from the series, which
has the sequence {x,,} as partial sums, to the sequence {y,,} (cf. §2).

A third infinite lower triangular matrix ¥ induces the corresponding series-
to-series transformation. There is a simple algebraic relation between these
infinite matrices P, Q and V, i.e., cach of these matrices can be used for defining
a SIM. Euler methods (to be described precisely in §2) are special SIM’s which
can be described by such an infinite matrix V,, which is generated by an Euler
function. A fourth infinite lower triangular matrix, the nodal matrix Kp, con-
sists of the zeros &™ of p,(z) (m=1,2,...;1<i<m), ie., with (1.7),

(1

&y

z(2 2

C(l) é(z) O

Kp:= 5(13) 5(23) 5(33)

(1.10)
™~

In Sect. 3, we describe algorithms for computing the sequence {y,.},,»¢ Of
(1.4). Thus, if an Euler function is given as a power series, a recurrence formula
is described which uses all preceding iterates y, (k=0,...,m—1) and the coef-
ficients of the power series. If the Euler function has the special form

— fo®
L—py = = p*

then a k-step stationary iterative procedure can be derived. If the nodal matrix
K, of (1.10) of a SIM is column-constant which means that for the nodes there

h) (1.11)
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holds &™=¢, (i=1,2,...;m=1), then the vectors y,, can be calculated by a first-
order Richardson method

Yiu= O Tt T (L =0 Y + %G (1.12)

where o, =1/(1—¢,).
In Sect. 4, the asymptotic convergence factor

(T, P)= lim {sup [”ém"]”m} (1.13)

m— o {eg*0 H~e0|l

of T, with respect to the SIM induced by P, is introduced. It is shown that
(T, P) can be expressed in terms of the sequences P @z 05 (Gme 1D}z 1
and {v,(2)},. o> given by the matrices P, Q and V. - -

From (1.1), we can see that the coefficient matrix 4 of the given system is
nonsingular iff 1 is not an eigenvalue of T. Thus, if o(T) denotes the set of all
eigenvalues of T, our assumption that 4 is nonsingular yields 1¢a(T).

In Sect. 5, we assume that a compact set Q in the complex plane with o(T)
= and 1¢Q is known. For a given SIM induced by P, this leads to the
definitions of the asymptotic convergence factor

K(Q, P): = lim {max|p,,(2)|}'"" (1.14)

m—ow el

of Q with respect to P, and the convergence factor of Q
1(Q): =inf{x(€, P): P induces a SIM}. (1.15)

A SIM, induced by P, such that x(Q)=x(L, P) is called asymptotically optimal
(AOSIM) with respect to Q. Results from Eiermann and Niethammer [EN],
concerning maximal convergence of sequences {@p1(2)} s 1, Of uniformly dis-
tributed nodes and of AOSIM’s, are reported. We prove that an optimal Euler
methods for Q defined in Niethammer and Varga [NV] is an AOSIM with
respect to €.

In Sect. 6, regions of convergence for special SIM’s are described. Thus,
after briefly treating cyclic first-order Richardson methods, Euler functions of
type (1.11) are considered. It is shown that the case k=1 of (1.11) has disks for
regions of convergence, while k=2 of (1.11) has ellipses for regions of con-
vergence, which are described by the parameters of the corresponding Euler
function. Conversely, given sets © which are either disks or ellipses, the
parameters of the Euler methods which are asymptotically optimal with respect
to these regions (, are derived.

Finally, in Sect. 7, new results on SIM’s generated by generalized Faber
polynomials, are derived. From known recurrence relations for the Faber
polynomials, recurrence relations for the iterates y,, of (1.4) are found. In
Theorem 21, it is shown that there is a 1 —1 correspondence between Euler
methods and SIM’s generated by suitably chosen generalized Faber poly-
nomials. Our final result, Theorem 22, gives bounds for the norm of the error
iterates @, of (1.8) of a SIM in terms of the best uniform approximation error
of 1/(1 —z), by polynomials, on €.
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From the beginning of the computer age, ie, from about 1950, many
“polynomial” methods for accelerating the convergence of iterative methods
for positive definite linear systems have been considered. A discussion of the
different approaches is, e.g., given by Varga ([V2, p. 159]) or Householder ([H,
p. 1157). Householder points out that, besides the case where the eigenvalues of
all matrices involved are real, “no theory has been developed”. The aim of our
paper is to give a report, partly with new results, on the progress that has been
obtained towards such a theory.

2. Different Forms of Semiiterative Methods (SIM’s)

The idea of semiiterative methods has Been suggested by the classical theory of
summability (cf. [V1; V2, p. 132]). In terms of this theory, (1.4) yields a linear
transformation from the sequence {X,}, >0 of (1.2) to the sequence {y,,},. >, of
(1.4), i.c., the infinite matrix P of (1.5) induces a so-called sequence-to-sequence
transformation. In matrix notation, this transformation can be written in the
form

Yo Xo
Yil-pl 2.1)
Y2 X,
Now, with the residual vector r,,:=c¢—(I —T)x,,, we obtain
X, =T1x,_ ,+e=x,_,+r,_, (mx1),
ie., 1
Xm:XO+ Z ri (mgl): (22)
i=0
or, because of (1.3,
- 1
X, =X+ ( > T">r0 (m=1). (2.3)
i=0

Next, the solution vector x of (1.1) evidently satisfies x=x,+(I —T)" 'r,, since
1¢a(T). Thus, if p(T)<1, we have

oo
X=Xq+({I—=T) "ry=x,+ 3 T'r,. (2.4)
i=0
We see from (2.3) that the sequence {x,,}, o, generated by the iteration (1.2), is
the sequence of partial sums of the series (2.4).

Rather than considering the sequence-to-sequence transformation (2.1) in-
duced by the matrix P, it is useful to consider instead the corresponding series-
to-sequence transformation, which transforms directly the terms {x,,r,,1,...} of
the series (2.2) to the sequence {y,,},>q, generated by (1.4). First, the connec-
tion between the sequence {X,,},», and the terms of the series (2.2) can be
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expressed in matrix notation simply as

Xq X, 1
il _s|™| win si=| ! 0 (2.5)
X, I 1 11

N

We see from (2.1) and (2.5) that this series-to-sequence-transformation is in-
duced by the infinite lower triangular matrix Q, where

1
Q::PS::l Jo.0 0 . (2.6)

L 70 V11

T~

Note that the elements of the first column of Q are unity because of (1.6). Note
further that, for this series-to-sequence matrix 0, the notation of the elements is
different from the usual one. From the coefficients {7,,_ 1. }o<k<m-1 of the m-th
row of 0, one can define polynomials S

m—1
G 1(2)i= 2 V1,2 (2.7)
i=0

Using (1.3') and (2.3), together with the definition of Q, a short calculation

shows that
ym:XO+qm—1(T)rO' (2.8)

Hence from (2.4), we conclude that vy, defined in (2.8) would be a good
approximation for the solution X if g, ,(T) approximates well g(T):=(I-T)".
A hint as to how to choose these polynomials q,_1(2), can be seen from the
next theorem which gives an interesting relation between the polynomial p,(z)
of (1.7) and g,, ,(z) of (2.7).

Theorem 1 ([EN]). a) Let P:=(m, Jnzo0.05izm be an infinite lower triangular
matrix satisfying Y, m, ;=1 (m=0). Then, for Q=PS defined by (2.6), and for

i=0
the corresponding sequences of polynomials {p,(2)},,=0 of (1.7) and {qp_1(2)}mz1
of (2.7), there holds
1 —p,(2)

(mz1;q_,(z):=0), (2.9)
1—z

qm* I(Z) =

and
pa(2)=1—(1=2)q, (2 (Mmz0). (2.10)

b) If & (i=1,...,1) is any zero of p,(z) with exact multiplicity k;, then for the
“geometric function” g(z)=1/(1 —z), there holds

gy (&M= gEm),  (i=1,...,1;j=0,... .k — 1), (2.11)

ie, q,_,(z) is the unique Hermite interpolation polynomial which interpolates
g(z) at the zeros of p,(2).



A Study of Semiiterative Methods for Nonsymmetric Systems 511

Proof. The infinite triangular matrix § introduced in (2.5) is invertible, its
inverse being given explicitly by

S—1= -1 1 . (2.12)

Thus from (2.6), we obtain P=05*. This implies that the elements of the m-th
row of P, using (1.5), (2.6) and (2.12), satisfy

0= “Vm-1,0t 1L

Tk =Tmet k1 Pm—1x  (k=L..,m=1)

e

m,mzym—l,m—l‘

Using the definitions of p,(z) in (1.7) and of ¢,,_,(z) in (2.7), the above relations

Jimply p,(z)=zq,,_,(2)—q,,_,(z2)+1=1—(1—-2)q,_,(z), ie, (2.10) holds and
(2.9) follows from (2.10). The interpolating property in part b) follows by
inserting the zeros of p,(z), according to their multiplicities, in the differen-
tiated identity of (2.10). [J

For our purpose of comparing different semiiterative methods existing in
the literature, it is useful to introduce a third possibility of representing such
matrix transformations from summability theory. The sequence {y,,}, -, can be

€0

interpreted as the sequence of partial sums of the series ) z; with
j=0

z;i=y,—y;,_; (j=0, y_,:=0). In a notation similar to that of (2.5), we obtain

Zg Yo
fl g (2.13)

Z, Y2

where S™* is the inverse introduced in (2.12). Thus, we can consider the series-
to-series transformation which transforms the series with terms {x,,1,,r;,...} to
the series with terms {z,,Z,,Z,,...}. As can be seen from (2.6) and (2.13), this
transformation is induced by

V:=S~"'PS=5"10Q, (2.14)

where, from the form of Q in (2.6) and S~ in (2.12), it follows that the infinite
lower triangular matrix V can be represented as

1
p— |0 P U 2.15)
0 P21 P22

T~
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It should be noted that a matrix transformation, ie., a semiiterative meth-
od, can be given by any one of the three matrices P, Q, and V; the remaining
two can always be computed from (2.6) or (2.14) (see also Zeller and Beekmann
[ZB, p. 5]). By Theorem 1 then, a fourth infinite lower triangular matrix is
given, namely the nodal matrix Kp=(&),5 1 <i<m of (1.10), consisting of the
nodes &™ of the interpolating polynomials g, ,(z) in (2.11), or equivalently,
the zeros of p,(z) (m=1). On the other hand, we can start with a nodal matrix
K, introduce the polynomials p,(z) by

(=&
(1=&m)

or construct the polynomials g,,_,(z) interpolating g(z)=1/(1 —z) at the nodes
&m (i=1,...,m). The coefficients of p,(z) and q,,_,(z) (m=1) respectively define
the matrices P and Q. Thus, we have different possibilities for defining a SIM.

Euler methods, extensively treated in [NV], are usually introduced as
series-to-series transformations, according to (2.14) and (2.15). The correspond-
ing matrix V is generated by an Euler function h(¢) defined as following ([NV,
§31): Let D,:={¢eC: l¢p|<n}, and let Ijn denote its closure. Then, h(¢) is
called an Euler function if there exists an open neighborhood ID of D; such
that

(i) h(¢) is meromorphic and univalent in ID, and
(i) h(0)=0, h(1)=1.

Thus, if h(¢) is an Euler function, there exists a v>0 such that h(¢) is
holomorphic in D,. Further, there exist power series for all powers of h(¢), i.e.,

if h(¢): = f p; 1 ¢ ¢ <v, then

po=1 pae=11 mz1) 2.16)

[h(d))]”‘::i pjqubj, (m=0,1,...), || <v. (2.17)

Now, the coefficients {0} ,};z0.0<m<; define an infinite lower triangular matrix
V =:V,, which induces a general Euler method. As one of our new results, we
now give

Theorem 2. To each Euler method induced by an infinite lower triangular matrix
V., there corresponds a SIM induced by

Pi=SV,S™1, (2.18)
where S and S~ are given by (2.5) and (2.12).

Proof. Let the Euler method be generated by the Euler function h(¢). From
[h($)]°:=1, it follows that the first column of the associated infinite lower
triangular matrix Vy is (cf. (2.15)) (1,0,0, ...)T. Then, as (cf. (2.14)) Qp: =SV, the
first column of Qp is (1,1,1,...)" so that in the notation of 2.6), y; ;=1 (=
—1,0,1,...). Thus, it follows (cf. (2.6) and (2.12)) that the elements 7, ; of the
infinite lower triangular matrix B:=0Q,S™ ', satisly 7, =V 1io1 Vw1,
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(i=0,1,...,m), so that
m m
Z ”m,i:'z Ometi-1 = Vm-1.0=1 =V m=1,

ie., (1.6) holds for B,. [

One can ask what the result is of applying an Euler method to the series
(2.2) with the terms (x,, ¥y, r;...)". Formally, this vector is multiplied from the
left by V, which yields the vector (z,,%,,2,...)" which represents the terms of
the transformed series. Now, things become a bit simpler if we assume, as in
[NV], in (1.2) that x,=e¢, which yields r,=Tc and r;=T'* ' ¢ (j>0). Thus, V;, is
applied to (¢, Te, T?¢,...)", and we get, with the notation of (2.15), that the
terms z; of the transformed series are given by

J
o=¢  z;= y p;(Te)=:0(T)e, (2.19)
k=1
so that
J
v(T):= 3 p; TF (j>0). (2.20)
k=1
The partial sums of the transformed series ). z; are then the iterates y,,, i.c.
J=0
Y= vi(T)e, where vo(T):=1. (2.21)

0

J

3. Different Ways of Computing the Iterates of a SIM

If the iterates y, of a SIM, as defined in (1.4), were directly computed from
(1.4), this would require the storage of all the vectors x,,, as well as the explicit
knowledge of the entries of the infinite matrix P of (1.5). The storage of all
vectors x,, alone would naturally lead one to consider alternate ways of
computing the vectors y,. In the symmetric positive definite case treated by
Varga (cf. [V2, p. 132]), the well-known recurrence relation for the Chebyshev
polynomials yields a corresponding three-term recursive formula for the y,, .

For a given Euler method, we similarly do not use (2.19) which would
require the evaluation of the matrix polynomial v,(T).

Lemma 3 ([NV, Lemma 4]). If p;  (j=1,2,...) are the coefficients of the power
series of an Euler function h(¢), then the iterates y,, of (2.21) can be recursively
computed by y,=12,=¢, ¥,,=VY,,_1 +2, With

_7 (VE pm,j,lz]). 3.1)

Thus, we don’t have to explicitly compute the Euler matrix P, i but it is
necessary to store the vectors zg, z,, ..., %, _;.

For our later use (cf. §7), we shall deduce another recurrence relation for
the vectors y,, of (2.21). For any Euler function h(¢), we consider the function
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h(¢):=1/h(¢) which is obviously meromorphic in a neighborhood of the origin,
and has a simple pole at ¢=0. Therefore, we can develop h(¢) in a Laurent
series, of the form

111 .
h(¢)=m:u’0{¢“m“‘#z¢‘us¢ *--}, (3.2)

whose coefficients p; can be computed from the Taylor coefficients p; of h{¢)
(cf. (2.17)), by a simple recursion.
The following result, while new, is similar to Theorem 5 of [NV].

Theorem 4. Let the Euler function h(¢) be given. Then, the iterates 'y, of (2.21)
of the corresponding Euler method obey the following recurrence relation: y,=¢,

yi=c¢+ o 1Yo,
m—1 m—1
ym:(l—- z ﬂj>c+U0Tym—1+ Y WYy (m22) (3.3)
J

j=1 =1
where the u;'s are the Laurent coefficients of h (cf. (3.2)).
Proof. The identity [h($)]™~ ' =h(¢) [h(¢)]™ implies (cf. (2.17) and (3.2)) that

3 o st)= (1= Z ) (S 0#)

Comparing the coefficients of like powers of ¢, we obtain

Ho® (

J 1

j—m

Pj,m"—'#opj~1,m—1+ Z WPjtm (1=m<)).
=1

Further, we have p, (=1, Pom=0 (mz=1) (cf. (2.17)). Using this, we conclude
from (2.20) for j=1 that
j j j=k
Uj(T): Z Pj,ka': Z (.Uopjfl,k—ﬁ“ Z szj—z,k) T*
k=1 k=1 =1
j—1 ji—1 j—1
=u, T Z Pj~1,ka+ Z H Z Pj—z,ka
k=1 =1 k=1
j—1

=Ho ij~ (1) + Z :u”lvjfl(T)'
=1

Now, from (2.21) and vo(T)e=c, there follows

m

Y= 2, vi(Te=c+ i v/(T)e
j=1

j=0 J

m ji—1
=c+ ), [HOTU,'—1(T)+ Z :ulvj—l(T)]C
j=1 =1

m-—1 m—l

21 Hy Z vi(T)e

= j=1

m—1
=c+u,T Y v(T)e+
j=0

m—1

m—1
:(1_ Z M1>C+H0Tym—1+ Z Wm0
=1 =1

An easy consequence of this theorem is the following



A Study of Semiiterative Methods for Nonsymmetric Systems 515

Corollary 5 ([NV, Theorem 5]). Let the Euler function h(¢p) be given by

Ko ¢
h(¢)= . (3.4
L—pyp—. = ¢
Then, the iterates y,, of (2.21) of the corresponding Euler method can be resur-
sively computed by y,=c¢, y, =c+ 1y T¥,,

V== == ) U TY g 1 Y+ ooy (¥ (3:5)
2Em<k), and
Vo= lo(TY O+ Y o F iy Yo (m>k). (3.6)

In deriving (3.6), use has been made of the fact that h(¢) is an Euler
function, so that h(1)=1. Thus, from (3.4), it follows that (I —pu,... — ) = .

Equation (3.6) corresponds to a k-step stationary iterative method. For k
=1, (3.6) yields to so-called stationary first-order Richardson method. Usually,
the parameters p,=:o and p, =1—o are commonly found in the literature. The
nonstationary first-order Richardson method is defined by

ymzamTym——1+(1_Ocm)ymfl_‘_amc (mzl) (37)

with variable coefficients «,€C, «,+0. If & :=x—y,_ is the error vector, then
from (3.7) it follows that

m

€u=pn(T)eo, with p,(T)=T] ;T +(1—a)I). (3.8)

For the zeros &™ of p,(z), we have
Em o =1 o, a=1/1—¢&) (i=1,...,m). (3.9)

Since p,(1)=1 (m=1), we see by comparing (3.8) with (1.8) that this first-order
Richardson method is a special SIM, induced by the nodal matrix

¢y
51 52

\ (3.10)
g, 52

We call a nodal matrix K of the form (3.10) column-constant if the terms of the
i-th column beneath the diagonal entry are a fixed number ¢, (i=1,2,...).

Now, if there is a SIM induced by a column-constant nodal matrix K, then
by defining parameters o, according to (3.9), we see from (3.8) that the corre-
sponding iterates y,, can be calculated by (3.7). This yields

Theorem 6 ([EN, Theorem 57). 4 SIM induced by a column-constant nodal
matrix corresponds to a first-order Richardson method (3.7), where the parame-
ters are given by (3.9).
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Remark. First-order Richardson methods have been recently considered by
Opfer and Schober [OS]. Starting with a system Ax=bh, their iteration is
defined by

Vo =Ym 1 +0u(b—Ay, ), (3.11)
with the associated error vectors

e, =Pn(A)e,, where p,(A):=[] (I —x;A), (3.12)
j=1

and p, (0)=1. If A=1I-T, then the polynomials p(z) of (3.12) and p,,(2) of (3.8)
are related via p,(z)=p,,(1 —z).

If the polynomials p,(z) of (1.7) satisfy a (k+ I)-term recurrence relation of
the type

k
pm(z):ll'm,ozpmﬁl(z)+ Z uum,jpm—j(z)7 (mgkﬂum,jg(tﬂoéjgk)? (313)
j=1

Jj=

then the iterates y, of (1.4) also can be computed recursively. We shall
demonstrate this for the case k=2:

Theorem 7. Assume that the polynomials p,(z) of (1.7) obey the following three-
term recurrence relation

pm(z):(um,oz+ﬂm,1)pm~ 1(Z)+4um,2pm72(z) (314)

2
(mg2;,um’j€(lj,0§j§2; Z ,um)j:1>, with po(z)=1, pi(z)=mn, o+my ;2 (cf (1.7))
j=o0
Then, for the corresponding iterates y,,, there holds: y,=a, y, =y, +mn, (¥, and
ym:ymflnl_tu“m,oi:m—l_/‘Lm,Z(ym—l-—ym—Z) (ng), (315)
where ¥, =c—(I —T)y,, is the associated residual vector.

Proof. From (2.8) and (2.10), we easily conclude that the iterates y, can be
represented in the form

where the polynomials g,(z) are given by (2.7) and (2.9) (where g_,(z):=0). The
recurrence (3.14) then yields

Qe 1(2) =t o (L4202 (2) F b, 1 G2 (D) F ly 24 5(2) - (MZ2). (3.17)
Inserting (3.14) and (3.17) in (3.16), we obtain the desired recursion (3.15). [

As an example, we consider the SIM which is generated by the translated
and scaled Chebyshev polynomials

(55" 5

(cf. [V2, Chapter 5] in the real case) where here we assume o and f are
complex numbers such that z=1 is not contained in the line segment joining o

Pu(2)=T,

m

) mzo,
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and f, and where 7,(z) denotes the “ordinary” Chebyshev polynomial of
degree m, of the first kind, ie,

To)=1; T(o)=z; T (2)=2zT, (z2)-T,_ ,(z) (m=2).

With the abbreviations y:=%(f—a) and 6:=1—1(a+p), we obtain for the
polynomials p, (z):

po(2)=1;  pi(2)=(z—1+6)/0
2T, (5/V) T, 2(0/y) (3.18)
—1+49 mogr 1 ) =2).
PO S T,y -2t =2

Thus, the polynomials p, (z) satisfy a recursion of the form (3.14) with the coef-

ficients
27T, 4(5/)
m :7L~'; m :(_1—{-6 m 5 lum :1_5tm .
Oy T(6/) Hm 1 im0 2 Hm.0

With z,,: =y, —Vv,_,, we see that (3.15) now can be written in the form

12 =

yO:a; ymzym*l_‘_zm;

I N 3.19
11:51‘0; Zm:amrm~1+ﬁmlm—1? ( )
where the coefficients «,,, §, (m=2) are given by

20
%=u2,o=m; By=—uy =00, —1;

] 1 (3.20)
OCmZ‘LLm,OZI:(S—(g> (xm—l] > ﬁm:—:um,zzéocm-—l (m;})

The formulas (3.19) and (3.20) are known as the “Chebyshev iteration” which,
for example, is treated by Manteuffel [M]. Since Manteuffel starts with the
system Ax=b and considers the iteration

m—1

X=X, 1+ ) a5 With r:=b—Ax, (3.21)
i=1

his notation slightly differs from the one used here. But using the transfor-

mation z—1—z (cf. the Remark following Theorem 6), it is obvious that (3.21)
can be considered as a SIM (in series-to-series form).

To summarize this section, there are three practical ways of computing the
iterates y,, of a SIM:

1. Recurrence formulas for the polynomials p,(z) in (1.7) yield recurrence
formulas for the'y,,

2. If the SIM is an Euler method induced by an Euler function of the form
(3.4), then the y,, can be computed by (3.5) and (3.6).

3. If the nodal matrix of the SIM is column-constant, then the computation
can be done via (3.7).
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4. The Asymptotic Convergence Factor of a SIM

We have seen that a SIM can be induced by any one of the four infinite lower
triangular matrices P, Q, V, and K. The m-th rows of P, Q and V define
polynomials p,.(z), 4,,_(z), and v,(z). How should these polynomials be chosen
in our problem? There is a trivial solution, namely, if all eigenvalues of T are
chosen as nodes, ie, as zeros of p,(z), then p,(T)=0 by the Theorem of
Cayley-Hamilton (cf. [V2, p. 1357). But usually, o(7) is not known. Thus, it is
more realistic to assume that a compact set Q< C is known such that o(T)<c Q.
In this section, we give criteria for the convergence of the {V}mso and for a
certain asymptotic decrease of the error which involve the eigenvalues of T,
whereas in the next section, criteria are given which only use the knowledge of
a set Q such that o(T)c= Q.

From (1.8), we see that for arbitrary y,. the sequence {Y,tmso of (1.4)
converges to the solution of (1.1) iff the sequence {(p,(T)},>o of matrix poly-
nomials converges to the zero matrix. Comparing (2.4) and (2.8) shows that the
sequence {q,_ (T)}nx1 should converge to (I—T)~'. The following lemma
gives a well-known criterion for this convergence.

k
Lemma 8 (Gantmacher [G, p. 102]). Let m(z):= [ (z—=2)", (where li=EA; for i
i=1
+j) be the minimal polynomial for T. Then, for arbitrary y,, the sequence
(Yodmso 0f (1.4) converges to the solution of (1.1) iff one of the following two
conditions holds:

lim p@(4)=0 for 1<i<k, 05j<n,—1, (4.1)
lim q(j)(i.)=[£( ! )] for 1Zigk, 0<j<n—1. (4.2)
m— oo m dx! \1 —x x:liﬁ == or=s= ’

If T is diagonalizable and ¢(T) denotes the spectrum of T, then both criteria
reduce to

lim p,(4)=0, for all leo(T), (4.1)
and
1
lim qm(ﬂv):I_—), for all Aea(T). 4.29

If G is an open set in € such that 1¢G and such that o(T)<=G, then the
following conditions are sufficient:

{P(2)} s o converges to 0, uniformly 43)
on every compact subset of G; ’

{q,,_1(2)}n= converges to 1/(1 — z), uniformly
m mz (4.4)
on every compact subset of G.

Now, let P induce a SIM such that {Ym)mzo converges to the solution x of
(1.1). The error (cf. (1.8)),
¢, =pu(T)eo, (4.5)
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depends on P, T and e,. Thus, an appropriate measure for the asymptotic
decrease of the crror €, is the asymptotic convergence factor

(T, P):= lim {sup [Hé”“ ]Um} (4.6)

m—coo (eg* 0 HeoH

13

We remark that for iterative methods, (T, P) is sometimes denoted as “root-
convergence factor” (cf. Ortega and Reinboldt [OR, p. 288]) and is indepen-
dent of the norm chosen. The following lemma is easily derived, using the
Jordan normal form of T.

k

Lemma 9. Let m(z)= ] (z—A)" (where +4; for i%j) be the minimal poly-
i=1
nomial of a given matrix T. For any P, there holds

. 1 1/m
(T, P)=lim < max = max |- p,(4) . 4.7
m—oo (15isk 0=51sSnm—1 di
If T is diagonalizable, then (4.7) has the simpler form
(T, P)= lim {max Ip, (A (4.7)

m—=o Aco(T

The next lemma shows how (7, P) is determined by the matrices Q and V
through their corresponding sequences of polynomials {g,_,(z)},>; and
(v, (2)}, 50 -

W\l Sm=0

Lemma 10. a) For given diagonalizable matrices T and Q= PS (cf. (2.6)), there
holds
k(T P)=Tim {max |g,,_,(1)=1/(1— 2"V}, (48)

m— o Aea(T)

b) If 0<x(T,P)<1, then for V=S"1PS, as defined in (2.14), there holds

(T, P)= lim {max [0, (D). 4.9)

m—oc Aec(T

Proof. From (2.9), q,,_(z)—1/(1 —2z)= —p,(2)/(1 —z), so that part a) follows
from (4.7'). For part b), since k(T, P)<1 by hypothesis, the series (cf. (2.21))

Y vi(T)e converges to the solution x. Thus, for the error vector, there then
j=0
holds o
e, =x—y,=p,(Te= 3 v(Te
j=m+1

oo

By Lemma 8, we have p,(})= ) v,(4) for all ieo(T). From Theorem 1 in

j=m+1 —
Wimp [Wi, p. 6], it follows that lim |p, (A)|'"™ = lim |v,(3)|'™. Thus, (4.9) is a

consequence of (4.7). [
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5. Construction of SIM’s

One of our basic aims is to show the connection between the results on SIM’s
in [EN] and the results on Euler methods in [NV]. For this, we have to recall
the main theorems in [EN].

Let us assume that we know a compact set Q with o(T)= Q. Since the
matrix 4 of the given system is nonsingular iff 1 is not an eigenvalue of T, we
may assume 1¢0Q. We want to find SIM’s induced by P such that k(T P) is as
small as possible, ie., we seek a SIM with a maximal asymptotic rate of
convergence. An even better aim would be to maximize the average rate of
convergence ([V2, p. 134]) which leads to the minimization problem

min{mz;)xlpm(z)\: p.ET, and p,(1)=1}, (5.1)
where 7, is the set of all polynomials of degree m. A classical result (see, e.g.,
Smirnov-Lebedev [SL, p. 367]) states that (5.1) has a solution p¥(z) for each m.
These polynomials pk(z) yield an infinite lower triangular matrix P*, but only
for very special sets Q is P* explicitly known. For example, if Q is an interval
on the real line, appropriately normalized Chebyshev polynomials yield the
solution of (5.1) ([V2, p.135]). For more general domains Q, we confine
oursolves to the minimization of the asymptotic rate of convergence.
Given a SIM induced by P, let us introduce, in analogy to (4.7'), the
quantity o
k(Q, P):= lim {max|p,,(z)|""™}. (5.2)
m—ow zeQ
Thus, if o(T)cQ and if T is diagonalizable, we have from (4.7) that
k(T, P)<w(Q, P). Further, let us define the class of infinite lower triangular
matrices '
P::{P:(ni,j)igmoéjéi: m €C, 2 m=1 (ié())} (5.3)
j=0

j=

Then, each PelP induces a SIM. This leads to the asymptotic convergence
factor of Q defined by

k(Q): = inf x(Q, P). (5.4

PelP
A SIM induced by P such that ®(Q, P)=x(Q) is called an asymptotically
optimal SIM with respect to (AOSIM). The matrix P*, mentioned in con-
nection with problem (5.1), clearly induces an AOSIM with respect to Q. Thus,
we wish to construct AOSIM’s which are different from that induced by P*,
but which can be described more explicitly.
For this, on setting C:=Cu {0}, we introduce the class

M:={QcC: Q is compact, 1e@\Q, €\ Q is simply connected
and Q contains more than one point}. (5.5)

Some comments on the case where €\ Q is connected (but not simply connect-
ed) will be given at the end of this section.
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By the Riemann Mapping Theorem, there exists, for each QeM, a confor-
mal mapping 3 3
v C\{w: w21} - C\Q, (5.6)
with
Y(o)=00,  Y(c0)=:7(2)>0. (5.7)

The constant () is known as the capacity of Q (cf. Walsh [W, p. 74]). There
exists a unique complex number w with

Y(#)=1 and f:=|w|>1. (5.8)

Now, we know from Theorem 1 that, to each PelP, there corresponds an
infinite matrix Q= PS defining a sequence of polynomlals {9m_1(2)} 5, Thus,
k(€2) can be introduced either by (5.4), or by

k(@)= inf [lim {max]l/(l—z) G, (2)Mm=] (5.9)
Q=PS m—w ze
PelP

Now, we can apply the following result of Walsh.

Theorem 11 ([W, Chap. 4, Theorem 7]). For QeM and for i defined by (5.8),

there holds
K(Q)=1/7. (5.10)

Corollary 12 ([EN, Theorem 4]). Given QeM, then any SIM generated by P (or
Q or V) is an AOSIM with respect to Q iff x(Q, Py=1/q.

Any sequence of polynomials {g,_(z)},,~, which yields the infimum in
(5.9) is said to converge maximally to g(z):=1/(1 —z) in Q (cf. [W, p. 80]), i.e.,
any sequence {q,, ,(z)},»; which converges maximally to (1 -2 on Q,
induces an AOSIM with respect to Q.

Since maximal convergence persists after differentiation (cf. [W, Chap. 4,
Theorem 97]), we obtain from Lemma 9 the

Corollary 13 ([EN, Corollary 5]). For QeM, let P generate an AOSIM with
respect to Q. Then, there holds

T:a(T)=Q T:a(TYS 2 (m—ow en+0 He()”

i:K(Q,P): sup wk(T,P)= sup {H sup (“N 1)1/m}.
n

In particular, for any operator T whose spectrum is contained in &, even if T is
not diagonalizable, there holds
1

i (L)
im .
m-o \[|€]] n
But maximal convergence can also be described by the behavior of the

nodes of the nodal matrix K, introduced in Sect.2. The nodes &
(m=1;1<i<m) of K, are called uniformly distributed on QeM if

(i) no accumulation point of {&™} lies in €\, and if

(i) lim {max ﬁ ;z—ggmn“'"}:y(g),

m—o { zeR =1

IIA

where y(Q) is the capacity of Q (cf. (5.7)). Then, there holds
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Corollary 14 ([EN, Theorem 6]). Let Kp=(&"}, 51 1<i<m be a given nodal
matrix such that the nodes ™ are uniformly distributed on QeM. Then, the
corresponding P induces an AOSIM with respect to £2.

There are many different node sets which are known to be uniformly
distributed on @, e.g., the Fejér nodes, the Fekete nodes and the Leja nodes
(see Gaier [Ga] or [W]). Usually, the corresponding nodal matrix is not
column constant. Thus, there is no simple method for computing the iterates as
indicated in Theorem 6. But, it is possible to choose a special subsequence of
these nodes which is also uniformly distributed, but which yields a column
constant nodal matrix. We will show this with the Fejér nodes, but this
principle works with any set of uniformly distributed nodes.

Let QeM, and let us assume that the conformal mapping y defined in (5.6)
has a continuous extension to the boundary of the unit disk. This holds, for
example, if the boundary of € is a Jordan curve. Then, the Fejér nodes are
defined by

i—1
gy o[22 (5)]) mzt1sizm) (5.11)
m
Now, if j>1, there are uniquely determined integers k and [ with 2*<j<2**!
and j=2F+] (1£1<2%. We now define {,=1, and {;:=exp(2ni(2]— )24+
(j>1). This means that {; is a 2% '-th root of unity, and we define

Er=w(ly Gz (5.12)

Then, {¢;};5, is a set of uniformly distributed nodes which yields an associated
column constant nodal matrix.

What can be said about the subclass
IB,:={P,;:=SV,S ': Vy is generated by an Euler function} (5.13)

of IP, where each element of IP, induced an Euler method? If we introduce the
quantity
Kp(£):= inf x(Q,F) (5.14)
Prely
for QeM, then an Euler method induced by P is called optimal with respect to
Q if ®(Q, B)=1r(Q) (cf. [NV]). Since IF; cIP it is clear from (5.4) and (5.14)
that KE(Q)gK(Q). But, we have the following new result.

Theorem 15. For each QeM, there holds ky(Q)=r(Q), ie., an Euler method
optimal with respect to Q is an AOSIM with respect to Q.

Proof. From Theorem 8 in [NV], we know that there exists an optimal Euler
method with respect to Q. Let this method be generated by the Euler function
h(z). Then, from the proof of Theorem 8 in [NV], it follows that there exists a
#7>1 such that 1/h(z) conformally maps the disk D, with radius # onto C\Q
and

Kp(Q)=1/i). (5.15)
Then,

Ple):=1/h(i/w) (5.16)
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maps €\ {w: |w] <1} onto €\Q with ¥(i))=1. But, ¥ coincides with the map-
ping ¥ claimed in (5.6) and (5.7), up to a rotation w—e'w, ie, Y(e =1,
From (5.8), Theorem 11 and (5.15), the assertion follows. [J

Remark. 1t should be noted that the class IP, is much smaller than the class IP.
This is clear from the fact that each element F, from IP, is determined by the
single column [p; 1,0, 1,031 .7 (see (2.17)), i.e, there is only one parameter
free in each row of B, whereas for a PelP, besides the condition (1.5), all
elements of the m-th row can be arbitrarily chosen.

An important consequence of Theorem 15 is that all results proven in
[NV] for x,(Q) hold for x(€Q2) as well. One example is the following “Compari-
son Theorem”.

Theorem 16 ([NV]). Let the sets Q, and £, in M satisfy @, £ Q,. Then,
K(Q,)<K(2,) (5.17)

Further, for each QeM, we have introduced two characteristic numbers,
namely the asymptotic convergence factor () and the capacity y(€). The next
lemma gives a relation between these two numbers.

Lemma 17. For each QeM, let the optimal Euler method, optimal with respect to
Q, be generated by the Euler function

h(¢)zp1,1¢+ﬂz,1¢2+m- (5.18)
o111 7(2)=r(Q). (5.19)

Proof. The mapping ¥ in (5.6) has the form (cf. [Ga, p. 64])

Then, there holds

YW =y(@)w+cy+c /w+.... (5.20)

From (5.16) and (5.18), we see that
Y(w)=1/hGi/w)=1/(p 1 1 (/W) + po, (/W) +..)

w 1
= — [ — :‘, (5.21)
pr,1c i L+ p5 4 (@/w)+ ..

where 1/fj=x(Q) from Theorem 11. Since Y(w)=v(e!’w) for some 0 with
0<0<2m, as we have seen in the proof of Theorem 15, we see, by comparing
(5.20) and (5.21), that 0<p(Q)=x(Q)- 1/lp, 4|. O

Given QelM, we have two possibilities for constructing an AOSIM with
respect to Q. The first uses a set of uniformly distributed nodes. A special
subsequence of these nodes, as shown for the Fejér nodes in (5.11) and (5.12),
vields a column constant nodal matrix. By Theorem 6, the corresponding
iterative procedure reduces to a first-order Richardson method. The second
possibility is to construct an Euler method optimal with respect to Q. The
corresponding iterates {y,},-o of (2.21) can then be calculated either by
Lemma 3 or by Corollary 5.
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One main difference between SIM’s induced by PelP, and the subclass of
Euler methods induced by B,elP,<IP, appears when compact sets € are con-
sidered such that €\ is connected, but not simply connected. Then, Q¢M
and an Euler method optimal with respect to @ does not exist. But, the
concept of uniformly distributed modes holds even in this case. For example, it
can be shown that if €\ is connected and possesses a Green’s function G(¢)

with a pole at infinity, then the convergence factor k() is equal to exp(—G(1))
(cf. [W, Chap. 4]).

6. Regions of Convergence

In certain cases, it may be difficult to find an AOSIM with respect to some
given set Q in €. In such cases, it is useful to be able to find a SIM, induced
by an infinite triangular matrix P, which leads to a relatively simple iteration
and for which K(Q, P) is only slightly larger than K(£). This requires knowing
examples of SIM’s, induced by P, and particular regions €' for which (&)
=x(Q, P). From this point of view, Euler methods are especially well-suited, as
we shall see.
Given a SIM, induced by an infinite triangular matrix P, it is convenient to
set, in analogy with (5.2),
Kk(z, P):=lim |p,(z)]*"™. (6.1)
Then, we introduce the region of convergence S(P) of the SIM induced by P,

defined b
chmed By S(P):={zeC: x(z P) <1}, 62)

and a subset S,(P) of S(P), defined by
S, (P):={zeC: k(z, P)<t/my (n>1). (6.3)

Without further assumptions on P, the region S, (P) may be empty for, say
n>#. Further, it may be difficult to determine these regions. But from the
corresponding definitions, it follows that K(Q)<1/n if Q<=S,(P). Thus, let us
consider the following examples.

1. Cyclic first-order Richardson method. Here, the parameters «; of (3.7) are
used in a cyclic manner:

Gy =0, (=12 kil=1,2,.0). (6.4)

J

Thus, for the corresponding polynomials p,(z) of (3.8), there holds

P T)=(p(T), (6.5)

If P induces the corresponding SIM, we obtain from (6.1) that x(z, P)= Ip(2)M,
and that L )

5,(P)i={zeC: |p (2 =1/n"} (6.6)

ie, S,(P) is the closed interior of a lemniscate of the polynomial p,(z). For k
=1, we get disks, which are considered by Opfer and Schober [OS], and which
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appear again in connection with Euler methods. For k>1, there may be
difficulties which result from the fact that determining a lemniscate means
determining the pre-image of a disk with radius 1/4* for a nonlinear mapping
p(2) (k>1). Examples for k=2 are treated in [E] and [EN].

2. Euler methods. With D, denoting an open disk with center zero and
radius #, let us introduce for an Euler function h(z) (defined in Sect. 2) its
maximal extension

fj(h):=sup{y: h(z) is meromorphic and univalent in D,}. (6.7)

Theorem 18 ([NV, Theorem 1 and Corollary 2]). Let h(z) be an Euler function,
and let Vy and By:=SV,S™ ' induce the corresponding Euler method according to
Theorem 2. Then, with h(z):=1/h(z),

S(B)=C\A(D,), (6.8)
and
S,(B)=C\K(D,).  for 1<n<i(h). (69)

A direct consequence of Theorem 18 is that the boundaries of S(B,) and
S,(B) for 1<n=1#(h) are respectively the images of the unit circle, and the circle
with radius # under the mapping /(z)= 1/h(z). From Corollary 10 in [NV], we
have

Theorem 19. Each Euler method generated by the Euler function h(z) and in-
duced by B, is an AOSIM with respect to S,(F) for 1 <n<i(h). Furthermore,

K(S,(B)=1/n. (6.10)

Thus, if QeM with S, (B)EQs S,,(Fp), we obtain from Theorem 16 that
(

P,
1/n, <x(Q)<1/y,.

We now give two simple, but important, examples which result from Euler
functions of the form (3.4).

For k=1, we have h(¢)=(1 —(1 —a)/¢p)/(e¢) where o:=p,. From (3.4), we
see that the Euler method generated by this Euler function h(¢) corresponds to
the stationary first-order Richardson method. By Theorem 18, we see that S(B,)
is the open disk with center m:=1—1/a and radius 1/|«|. Similarly, S,(B) is the
closed concentric disk with radius 1/(y]a|), 1 <y <oo. Conversely, if QeM is a
disk with center m and radius p, then by Theorem 19, the stationary first-order
Richardson method with a:=1/(1—m) is an AOSIM with respect to Q. It can
be seen that «(Q) is then given as the quotient of the radius p and the distance
of m from 1, ie,

k()= p/[1 —m|=plal. (6.11)
For k=2, we use that
R 1 /1
)= (Ewl ~1:) (6.12)

is a mapping of Joukowski type. One finds (cf. [NV, (7.3) and (7.7)]) that h(¢)
is univalent in a neighborhood of the unit disk iff |u,|<1. Further, we have
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f(h)=1/|u,|. From Sect. 7 of [NV], we further have that S(h) is the interior of
an ellipse E with 1€E, and with foci «, § given by

o B=(—uy 227 —py) 1. (6.13)

For 1<n<i, the region S,(h) is the closed interior of a confocal ellipse E,
within E and §,(h) is the interval between the foci o and B. If, for a given E,,
the value of 7 has to be determined, then if z is an arbitrary point on E,, one
then solves the quadratic equation z=h(¢) for ¢. There is then a solution with
1 <|¢p| <4, and this yields n=|¢|.

Conversely, let us assume that € is the closed interior of an ellipse. Suppose
we wish to find parameters u,, iy, p, such that for the corresponding h(z),
there holds =S, (h) for some 7 with 1 <n<7j(h). Let o and § be the foci of £,

and let
Qi::(]/l—oci]/l—ﬁ 2
p—o '

It follows from (6.14) that 6% =1/0". Let 0 be that value with |0|>1. Then,
with y:=(a— B)/2, 6:=(a+ f)/2, we obtain (cf. [NV, formula (7.3)])

(6.14)

2 =20 -1 (615
Mo—yga ,Ll,l— ’ye > Hy= 02 . M. )
The value of 7 can be determined as mentioned above. It should be noted that,
for all confocal ellipses E' such that 1¢E', we obtain from (6.15) the same
iteration parameters gy, iy, f,. Only the value of # will be different in this
case.

7. Faber Polynomials and Asymptotically Optimal SIM’s

As we have already mentioned in Sect. 5, each polynomial sequence
{q_1(2)} = 1» converging maximally to g(z):=1/(1 —z) on a compact set QeM
(cf. (5.5)), gives raise to an AOSIM with respect to Q. In this section, we shall
consider another class of polynomials, the so-called Faber polynomials which
play an important role in approximation theory (cf. Faber [F1, F2]). We shall
investigate how these polynomials can be used to solve linear systems iter-
atively.

First, we need additional terminology. For QeM, let () denote the
capacity of Q (cf. (5.7)), and let Y/(w) denote the conformal mapping of
T\ {w: [w| < 7(Q)} onto €\, with f(c0)=co and '(c0)=1. (We remark that W
is connected with the mapping V, introduced in (5.6), through

Pw)=y(w/y(Q)), for all |w|>y(Q)).
Now, /(w) has an expansion of the form

tﬁ(W)=W+k‘;O%W"‘ (wl>(Q)). (7.1
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Let ¢ be the inverse mapping of . Further, for t>7y(®), let the image of the
circle {w: |w|=1} under ¥ be denoted by I:={z: |{¥/(z)|=7}, and let the com-
pact set with boundary I’ by denoted by Q.. Moreover, let

A(w) = 2 7w " (7.2)

be any function regular in |w|>7y(£2) with x(c0)=7y,+0. We assume that y has
no zeros in the domain {w: {w|>y(Q)}.

Now, for any nonnegative integer n, we can expand %(¢(2))-[¢(z)]" into a
Laurent series of the form

n—1
19@) [ =voz"+ 3, B,2" (7.3)
k= — 0
Its principal (i.c., polynomial) part is defined as
n—1
Fn(st)z“/oZn‘*‘ X [jn,kzk (ng()) (74)
k=0

Clearly, E(z;y) is a polynomial of exact degree n, and it is called the n-th
generalized Faber polynomial for the set Q with respect to the weight function y.
(If y=1, then F, is known as the n-th “ordinary” Faber polynomial for £.)

One of the reasons for the importance of these polynomials in approxima-
tion theory is the following. For 1> y(Q), any function which is regular in the
interior domain of IT can be expanded into a series of generalized Faber
polynomials (cf. Smirnov and Lebedev [SL, §2.2.4]). For the special case
g(z)=1/(1 —z), we have

—

= i o, (0 E(z: 1), (7.5)

for all z from the interior domain of I, (where A= (1)/p(Q) (cf. (5.8)),
where the coefficients are explicitly given by

P 1
M=) Lﬁ(l)] (n20). (7.6)

The convergence in (7.5) is uniform on every compact subset of the interior
domain of I, (cf. [SL, §2.2.3]).

Now, we are in a position to introduce SIM’s that are generated by
generalized Faber polynomials. We approximate g(z)=1/(1—z) by its trun-
cated Faber series

m—1

Guo1(232):= Y, 0,(DE(z7)  (mz]), (1.7)
n=0
and, in view of (2.8), we consider the vector sequence

m—1
Vo=t Yumetgu (Tpn=ct| ¥ o ET A5, (7.8)

n=0
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which, of course, represents a SIM with respect to the basic iteration
Xo=¢ X,=Tx,_;+¢ (mzl)

In our first new theorem of this section, we shall show that the iterates y,
of (7.8) can be computed recursively. To avoid unnecessary complications, we
confine ourselves to the special weight function y(w)= 1/J'(w), which obviously
satisfies the conditions following (7.2).

Theorem 20. For the iterates

Y,=C+q,_1 (T; %—,) r0:c+[:§: g, (%) E, (T; %H T, (7.9)
(cf. (2.8), (7.8)), there holds

Yo=¢ Vi=c+u,Ty,,
and (7.10)

m—1 m—1
ym:(l— Z ﬂj)+/’L0Tym—l+ Z oujym——j (m§2),
j=1 Jj=1
where the coefficients w, are given by

:uO = 1/9{)(1)7
and ) (7.11)
we=—on_ LM (k1)

(The o,’s are the Laurent coefficients of ¥ (cf. (7.1)).

Proof. It is well-known (cf. [SL, §2.2.1(1)]) that a generating function of the
generalized Faber polynomials is given by

AR
2 (W) lﬁ(w)-z—ngoF"(Z’X)W‘

From this, one easily derives (cf. Suetin [S2, §17) the recurrence relations

Fo(zin)=v,  Fizyn)=(z—ag)Folz; 1)+ 773
Eo (== F(z:0)— Y e, b nzi0) ey (m21),
n=1

where the o,’s have the same meaning as above, and where the ys are the
Laurent coefficients of yz{(w)-J/'(w), 1.e.,

A= 3 5w " (>

For the special choice y(w)= 1/ (w), we obtain y§=1 and y¥=0 (n=1). On the
other hand, we conclude from (7.6) that

()= ] oo lml Ll
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1
Now, for the polynomials ¢, (z; T> of (7.7), there holds

l//I

1
do (Z;W):Hm and, for m=1,

. 1 . 1 - . 1
e (25 '7_57) =Moot HoZqpm 1 (Za ;/7> + ‘glﬂqufj (Z’W>'

J

(The coefficients p, are defined by (7.11)). With the above relations, (7.10)
follows by direct computation. [J

Comparing (3.3) and (7.10), we see that both formulas are identical. This
observation leads to our second (new) result in this section.

Theorem 21. The iterates y,, of (1.9)-(7.10) are just the vectors y,, of (2.21) result-
ing from an Euler method with the Euler function

- (d(1
h(w): =1/ (%l) (7.12)
Conversely, if an Euler-function h(z) is given, then
1 1
‘J;(W)‘:‘ﬁ (m) (7.13)

is a conformal mapping of the type (7.1) which maps the exterior of a disk onto
the exterior of a compact set QeM. Constructing the generalized Faber poly-

1
nomials F), (z; ;ﬁ—,) for Q and generating the vector sequence {y,},s, according
to (7.9) and (7.10), we obtain the iterates of the Euler method which is defined by
the given function h.

Proof.A The mapping h(z) of (7.12) is meromorphic and univalent for
lwl<[p()/y(Q)(>1), and satisfies the conditions h(0)=0, h(1)=1. Thus, h(z) is

- ~ (ol
an Euler-function (cf. Sect. 2). The function h(w):=1/h(w)=y (M> has the
w

expansion

. h(1 , 2
h(W):%‘f‘fXO*\"Oﬂl %—i—az [%] +...

(cf. (7.1)), or, with the definitions of (7.11),
- 1 /1
h(w)=— (~—u1—u2w—u3w2—---)-
Ho \W

Our first assertion now follows from Theorems 4 and 20, whereas the second
assertion can be derived in an analogous way. [

This one-to-one correspondence between Euler methods and SIM’s generat-

1 .
ed by the Faber polynomials F, (Z;W) allows us to obtain results on Euler
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methods by using well-known properties of Faber polynomials. For instance, it
is known that Faber expansions converge maximally (see Sect. 5). A con-
sequence of this fact is that the corresponding SIM is asymptotically optimal
with respect to the set Q.

But, new results for Euler methods can also be derived by this cor-
respondence. We demonstrate this for the special case Q=[o f]eM (ie,
o, feC, 1¢[o, f]) which has practical importance. With 6:=3(«+f) and
y:=1(B—a), the conformal mapping ¥ (cf. (7.1)) of {w: |w|>3|y|} onto €\[o, §]
is given by 5

X i
vy =w+6+1-
4 w

. 1 .
and the associated Faber polynomials F,, (z; W> can be computed recursively

(cf. the proof of Theorem 20) from

i,) —(z-0),

E, 1 (z; %) =(z—0)F, (z; %) —?Fm_l (z;%) (m=1).

1
First, we show that the above Faber polynomial F, (ZW) can be ex-
pressed in terms of the Chebyshev polynomial U, (z), of the second kind. As is
well-known (cf. Todd [T, Chap. 27),

et
m———
S
%\x‘ J—
S
Il
—_
o
—
N
-

U (2)i= sin[(m+ l)arccos z] (m=0)

sinfarccos z]

and these polynomials satisfy
Ugz)=1, Uy(z)=2z
U,,(2)=2zU,2)-U, ,(z) (mz1).

1 9

The translated polynomials U, (f z——) obviously have the leading coefficient

m ’y N m 1 5
(E) (m=0), and, for the scaled polynomials U, (z):= (%) U, (;z—;), we ob-
’}) )
tain R R

Up(z)=1;  Uy(z)=(z2—0);
2

Ops()==0) G =" Ui (1)

It is evident that
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1
The Faber coefficients ¢, ( W) (cf. (7.6)) are then given by

2 (i) =k
m lp/

2
where x is the zero of x? 4+ (5 —1)x +VZ:0 whose absolute value is greater than

Lyl

Setting 0:=x"!

of (7.7) satisfy

! so that |f| < 1), we see that the polynomials q,,_,(z; 1/J/")
2 m—1

and thus
1 1 @ ' 1
max — Z;—~ max o, = Z—=
zela, f1 1 —Z qm_ ! ( l,b )] zefa, f] nzm (w ) ( l//)
© 16\l
L Z |6" max ( )l
‘ zela, B y
. 1 o 1 0
Since max |U, (~ z ——) =U, (4 b ——) =U,(1)=n+1 (cf. [T, Chap. 2]), we have
zela, ] Y Y Y Y
1 , 100 2 1+m(1-10)) 1
max |- —q,_ ( f)\ 0 (1) == — = g,
zelop1 |1 —2 AN 17l Z Iyl (1—6)?

Now, let T be any matrix whose eigenvalues are contained in €, and assume
that the vectors y,, are generated by the Euler method which is optimal for Q
(cf. §5). If the spectral norm of T is just its spectral radius (as is the case when
T is a normal matrix), then there holds (cf. (1.8) and (2.10))

{
1—(1=2)g,_, (Z’w*')
<max{|l -6+ 7|} max

1 1
ze[aﬁ]l qm l(jl&/>
2 1+m( -8
Smax{|l -0ty \}ﬂ—————-——( 12107

From the above inequality, we remark that it follows from (4.6) that

I€,ll,=1lx—y,l,< max
sl ]

lleols

leoll>

(s L PY

K(T,P)=0].

In other words, from the geometry of the interval [o, 8], it is possible to derive
upper bounds for the norms of the iteration vectors €, for each m=0, which
depend only on the constants o and f.



532 M. Eiermann et al.

Sharper results can be derived if one requires the boundary dQ of @ to be
smooth in the following sense. Let 8(s), 0<s=1, be a parametric representation
of 8Q with respect to the arc length s. We say 0Qe C(p,a) (cf. [S1, §11]) if 0 is p-
times continuously differentiable, and 0% satisfies the Lipschitz condition
[0@)(s) —0P(F)| £ Als —3]% 0s, <1, with some constant A Our final new result
in this section is

Theorem 22. Given the set QeM, let Ji(w) be the associated conformal mapping
(cf. (7.1)), and let y(w) be a given weight function (cf. (7.2)). Then, the SIM
induced by the corresponding generalized Faber polynomials F,(z;y) is asymptoti-
cally optimal with respect to Q (and also with respect to Q. for any
Q) <t <|p))). In addition, assume that 0Qe C(1,¢) for some ¢>0, and that the
weight function 7y satisfies a Lipschitz condition |y(w)— y(W)| < Alw—w]*
w,we €\ Q, with «>%. Suppose that the matrix T is diagonalizable and has all its
eigenvalues in Q. Then, the following estimation of the error &, of the m-th
iterate is valid:

el =L-In(m—=1E, (g el (m=3) (7.14)

Here, ||| is any vector norm, L is a constant independent of m, and E, (g, )
denotes the error of the best uniform approximation by polynomials of degree m
to g(z)=1/(1—z) on Q.

Proof. Let P be the transformation matrix (in sequence-to-sequence form, cf.
Sect. 2) which induces our SIM. We have to show that

K(Q, P)=7(Q)/|(1)| (= 1/ from (5.8)),

K(Q,, P)=7/I$(1)],  for all Q) <w<[$(1)!.

and that

Since (£, P) can be written as

K(Q, P)=lim (sup|[1/(1 —2) =q,,_, ()"~ "),
m—w zef
where the polynomials g,,_,(z) are given by (7.7), our assertion follows directly

from the following result on Faber expansions. It is known (cf [SL, §2.2.3,
§2.2.47) that

fim (sup| 1/(1 —2) =g, (2)["~ ) =p(2)/|$(1)| holds.
m—oo zef2
(The analogous statement is valid for Q..)
The upper bound (7.14) is also a direct consequence of a theorem (cf. [S1,
Theorem 5]) on the deviation of the Faber expansion of an analytic function
from its polynomial best-approximation. []

Remark. On choosing the special weight function y(w)=1/)'(w), the upper
bound (7.14) is also valid for Euler methods (cf. Theorem 21). Thus, for any
QeM fulfilling the conditions of Theorem 21, we can find an Euler method
which is not only an AOSIM with respect to Q but also differs from the best
possible SIM for Q only by a multiplicative factor which grows only like In(m)!
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