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On the Miniinum Moduli of Normalized Polynomials
with Two Prescribed Values

Stephan Ruscheweyh and Richard S. Varga

Abstract. With P, denoting the set of complex polynomials of degree at most
n (n=1), define, for any complex number u, the subset

P.(u)={p,(z)eP,: p,(0)=1and p,(1) = u}.

In this paper, we determine exactly the nonnegative quantity

S,(u)=sup {min|p,(2)|},

PrePu(n) lzi=1

as a function of n and u. For fixed n =2, the three-dimensional surface, generated
by the points (Re u, Im g, S, (1)) for all complex numbers u, has the interesting
shape of a volcano. :

1. Introduction

Consider the set of all complex polynomials p,(z) of degree at most n (n=1),
taking on two prescribed values (not both zero) in two distinct points in the
complex plane:

(1'1) pn(zl)za, pn(ZZ)::ﬂ (Zl;éZZ; a#O).
Then, what can be said about the supremum of
(1.2) min{| p,(2)|: |z - z)| = |z = z[},

over all polynomials p,(z) satisfying (1.1)? This problem can be normalized as
follows. With P, denoting the set of all complex polynomials of degree at most’
n (n=1), then for each complex number u, consider the subset of P, defined by

(1.3) P,(u)={p.(z)€P,: p,(0)=1and p,(1) = p}.
Our objective in this paper is to determine precisely the nonnegative quantity
(1.4) S.(u)= sup {min|p,(z)}},

PuePL() |z|=1

as a function of n and u.
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Our interest in this question arose from the following related problem which
is crucial in the study of certain global descent methods for finding a zero of a
given complex polynomial (cf. Henrici [1], [2], Ruscheweyh [8], and references
contained therein): For each n=1, set

(1.5) r,= max{min}pn(z)l: pa(z) =1+ Y a3z’ with
j=1

|zl=1

é} la;| = 1}.

J

From the results of Ruscheweyh [8], and Ruscheweyh and Varga [9], itis known
that I',, satisfies the inequalities

1
(1.6) 1~lsrns\/1—<~)<1——l—,
n n 2n

for every n=1. Moreover, with

17 I,= max{min|p,(z)|: p,(z) € P,(2) with pP0)=0forj=1,2,...,n},

|zl=1

it is further known from [9] that
1 . 3 1

(1.8) 1-—5Fn5\/1—(3/(2n+1))=1—-———+0<——> (n~0),
n 4n n

for every n=1. In [9], we first conjectured that

~

(1.9) r,=1, (n=1,2,...).

Now, the bounds (1.6)‘ and (1.8) suggested that there exists a positive constant
v, independent of n, such that

(1.10) r,

~ 1
Fn=l-1+o<—> (n - 00).
n n

Indeed, extended precision calculations described in [9] led us to further conjec-
ture that y in (1.10) is approximately given by

(1.11) v=0.867 189 051.

By definition, we note that I, =S,(2) for all n=1. Interestingly enough, one
consequence of this present paper (cf. (2.12) of Corollary 1) is that

~ 1 1
(1.12) S, (2)=T, =1—%{arccosh(2)}2+o(;) (n— ),
so that the quantity y of (1.10) is given exactly by

{arccosh(2)}
y = WAICCOSE)T

> =0.867 189051136 3181....

(1.13)

Thus, our conjecture of (1.11) (to the number of digits given in (1.11)) is correct!
The conjecture (1.9), however, remains open.
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The outline of our paper is as follows. In Section 2, we state our main results
concerning the determination of S,(u) of (1.4). As we shall see, for fixed n=2,
the three-dimensional surface, generated by the points (Re u, Im u, S,(u)) for
all complex numbers u, has the interesting shape of a wvolcano. A computer-
generated picture of this for the case n =35 is given in Fig. 1 of Section 2. Finally,
the proof of Theorem 1 of Section 2 is given in Section 3, while the proofs of
Corollaries 1 and 2 of Section 2 are given in Section 4.

2. Statement of Results

For any u € C, the minimum principle, applied to any p,(z) in P, (u) (cf. (1.3)),
directly gives us that miny, || p,(z)|=min{1; |u|} = ||, whence (cf. (1.4))

(2.1) 0=58,(w)=min{l; [u[}=|u| (n=1,2,...;allpeC).

Furthermore, standard arguments show that the supremum in (1.4) is, in fact, a
maximum. Moreover, by an elementary variation in the elements of P,(u), it
can be seen that S,(u) is continuous in C.

For our subsequent analysis, it is necessary to distinguish between the following
pairwise disjoint sets of C:

(2.2) A, ={ueC:S,(n)=|ul}
(2.3) Q. ={peC:0<8,(n)<|ul},
(2.4) 2, ={neC:0=5,(u)<|ul},

where we note that A, U Q, U X, =C. With D:={ze C: |z| <1} and with D denot-
ing the closure of D, it is evident from (2.1) that A, < D. Moreover, from (1.4)
and (2.2), it can be verified that A, has another interesting interpretation: u € A,
iff there is a p,(z) € P, with p,(0) =1 such that

(2:5) pep,(D) and |u|= rrlnnlpn(Z)!
From this observation, it is somewhat surprising, as we shall see, that substant1a1
parts of D do not belong to A,.

For additional needed notation, for each p with 0 <p <1 and for each positive
integer n, set

P 2n+3_d_ —(n+1) [ 1/(n+1)<1+22>:]}
(2'6) an(z ) (n+l)z dZ {Z Tn+1 14 22 1)

where T,,.,(z) denotes the Chebyshev polynomial of degree n + 1 of the first kind.
As can be seen (cf. (4.6)), Q,,(w)eP,.
With the above notation, our main result is

Theorem 1. The following are valid:
(a) The set 2, satisfies

2.7 2,=C\{zeC:z=(1+w)" whereweDu {-1}};
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(b) A, =[0,1]. For n=2, A, consists of the Jordan curve

[ (eosle/(nE DN o
(2.8) C,,.—{z— (Mcos(vr/(n+1))) e’ ~[§D‘_27T},

and the bounded Jordan domain having C, as its boundary;,
(c) Q,=C\(Z,UA,). Moreover, for any u €(},, there holds

(2.9) S,(u) =max{0<p<1: ueQ,,(D)}

When w >0, the quantity S,(u) can be given in the following more explicit
fashion, which directly connects with the problem arising from global descent
methods mentioned in Section 1.

Corollary 1. Let u>0. Then, there holds:
poif 0<p=1

(2.10) S(w)=40 if 1<pu<27

0 if 2"=p.
Here, o is the uniquely determined solution in (0, 1) of the equation
(2.11) p=0Tu{o” "L
For n tending to infinity, the solution o of (2.11) can be expressed as
(2.12) o=1 —3’5‘3"—02%(—‘i}2-+ o(-:;) " (n->).

Finally, for u € (1,2") and for o defined by (2.11), Qn,(z) is the unique extremal
polynomial in P, (u) for the problem (1.4), and Qn,(z), when expanded in powers
of z, has positive coefficients.

Another consequence of Theorem 1, of a more general nature, is the following:

Corollary 2. For any p,(z) € P, with p,(z) #0 in D, there holds

0 1/(n+1)
ar e (22) )
m
where
(2.14) M==Iln‘a>flpn(2)|, mi=ﬂir}|pn(2)|-

The upper bound (2.13) is sharp for each m € (0, |p,(0)]).

To conclude this section, we illustrate the result of Theorem 1, in the
case n=5, with the computer-generated three-dimensional surface
(Re w, Im w, Ss(u)), given in Fig. 1. It is evident that this surface has the shape
of a volcano. Specifically, the set As, defined in (2.2), corresponds geologically
to the caldera (i.e., the deep caldronlike cavity found at the summit of a volcano),
while the sides of the volcano correspond to the set (s, defined in (2.3).
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Fig. 1

3. Proof of Theorem 1

As the proof of Theorem 1 is somewhat involved, we give for convenience some
intermediate results in the form of propositions. Some parts of our proof are
reminiscent of the general theory of extremal problems for complex polynomials
as derived, for example, in Rivlin and Shapiro [6]. However, that theory as a
whole does not apply to our problem of maximizing the minimum modulus, and
even similar tools need new justifications in our case. For the sake of completeness
and readability, we also indicate proofs for those (small) portions which could
have been transferred from the above-mentioned theory.

We start with the determination of the set 2, of (2.4). Clearly, u €2, if and
only if u # 0 and every polynomial in P,(w) has a zero in D.

Proposition 1. Let p,(z) € P, satisfy p,(0) =1 with p,(z) # 0 for any zeD. Then,
pn(D) = w, (D), where w,(z)=(1+z)".

Proof. Simply apply Szegd’s corollary (16, 1¢) of Marden [3, p. 67] with f(z) =
(1+z)" and with g(z) = p,(z). Another proof of this also follows from Theorems
1.1 and 1.5 of [7]. |

Now, consider any ueC\X,, with u #0. Then, there exists a polynomial

pa(z)eP,(u) with p,(z)#0 in D, and for small £>0, we have p,(z):=
P.((1+€)z)#0 in D. Since p,(0) =1, we see from Proposition 1 that

1+¢

3.1) u =15,,(*L> & (D).

Conversely, if u € w,(D), then u = (1+2,)" for a certain z,€ D, and (14z02)" is
an element of P,(u) with nonvanishing minimum modulus in D. This implies
S,.(1)>0, and thus w £ =, This completes the proof of part (a) of Theorem 1.
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We turn to the proof of part (c) of Theorem 1, and assume pe(),. As we
mentioned at the beginning of Section 2, there exists an extremal polynomial
E,(z) e P,(u) with S,(w) = min, | E.(z)|. Since u and n are fixed for this proof,
we write S,(u) = s. Let F denote the set of all numbers 6 € [0, 27) with |E.(e")]=
s. Let e(6):=|E,(e”), # e R. Then, e(8) is a trigonometric polynomial of degree
at most n with s> as its absolute minimum. It is therefore clear that F has at
most n elements. Note that 0¢ F since e(0) =|E,(1)]* =|u[*> s* by assumption
(cf. (2.3)).

The next proposition is similar to the well-known Kolmogorov theorem from
approximation theory (cf. Meinardus [4, p. 13]).

Proposition 2. There is no polynomial U,(z)€P, with U,(0) =0 and U,(1)=0,
such that
(3.2) Re[E,(e*)U,(e?)]>0 (6 F).
Proof. Assume that there is such a polynomial U,(z). Then, there exists a y>0
such that
2Re[E, (") U (eM)]>y  (6eD),

where

I:={6¢(0,27): there exists a 6,€ F with |6 —6;| <o},
for a certain o > 0. Hence, for £>0, we find
(3.3) |E.(e®)+eU, () =s"+ey> 52 (6eI).
For the compact set I':=[0, 27 ]\ ], there exists a >0 such that

|E.(e")=s>+8  (6el').

Now, choose & so small that

e[2 Re[E,(¢”) U (e)]|+ | Up(e”)P <8 (0T
Then on I', we have
(3.4) |E (e®)+eU,(e®)f>s>+8-6=s> (6eI).

For small & > 0, the polynomial E,(z)+ eU,(z) is nonvanishing in D, and hence,

(3.3), (3.4), and the minimum principle imply miny, =, E,(z) + eU,(z)| > 5. But

since (E,(z)+¢&U,(z)) e P,(u), we have a contradiction to the definition of s.
|

Assume next that F has less than n elements. Then by interpolation, we can
construct a polynomial U,(z)eP, with

U,(0)=0, U,(1)=0, U,(e"®)=E,(e") for @€F.

(Note that 0¢ F.) But then, U, (z) contradicts Proposition 2, and we thus conclude
that F has precisely n elements in (0, 27), say

0<f,<++<0,<2m
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Proposition 3. There exists an « € C with |a| =1, such that

3 )Oj}En(ewi)::(_l)js (j=1,...,n).

(3.5) aexp[—i(n+1

Proof. As the assertion (3.5) is obvious for n=1, assume n> 1; Let p be an
integer with 1=p=n-—1, and let g:==p+1. Let £ >0 and o =" with |o|<7/2.
By interpolation, we can find a polynomial U, ,(z) in P, with

U,o(0)=0, U, (1)=(0),

(3.6) U, (") =eE,(e" for j=1,...,n; j#pq,
U, (") =aE,(e").

Using U, ,(z) in Proposition 2, we necessarily find that

3.7) Re[E,(e“) U, (e )]=0.

Now, let € > 0. Then, U, ,(z) > Uy ,(z), uniformly in D, and the zeros of U (2)
occur precisely in the points 0,1, " for j=1,..., n;j# p, q. This implies that
the polynomials U, ,(z) differ only by a factor, namely U, ,(z)=0oU,(z). Of
course, (3.7) holds also for £ =0, and we have

Re[E,(e")oU,(e"7)]=0

for every admissable o. Also, note that both of the numbers E, (e'%) and Uy1(e)
are different from zero. Taking this into account, we obtain

(3.8) E,(e") U, (") <0.

Now, U, (z) has the representation

Una(z) = c2(z=1) [T (z— &),

Jj=1

where ¢ is some nonzero constant, and where the prime indicates that j = p and
Jj=q are to be omiitted in the above product. Writing

1 n
p— '0.
Y 2,~§1 i

we obtain for ke{p; q} that

) +1 . 6\ 0,—6;
(3.8) UOJ(e"’k)=cexp[i(nT)Gk](%)"‘l e” sin(zk) H’sin( k2 ’).
7/ j=1

Setting k= p and k = g, note that the corresponding factors from the last term
in (3.8'), namely sin[ (6, — 6;)/2] and sin[(6, — 6;)/2], are always of the same sign
since 6, and 6, are adjacent. To identify U, (e"), we use (3.8") and the last
relation of (3.6) to deduce that

Uo,l(eio”)_ Uo,l(eie”)_ [,(n+1) ]
E,(e®) "Uo’l(eioq)“aexP l 5 (Bp Bq) s
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for a certain 6>0. Now, E,(e") exp[—i({(n+1)/2)6] has modulus s for ke
{p; q}, but using (3.8) and the above expression, we obtain

E,(e") exp[—-i(n ; 1)0,1]
E,(e") expli-i(n-;-l)ep]

An inductive argument with respect to p then completes the proof of Proposition
3. |

=-1

Proposition 4. Let ¢ be such that | E,(e')| attains its global maximum (minimum)
at ¢. Then,

e¥E'(e*) >
E,(e®) (<)
In particular, E'(e*)# 0.

Proof. This is a consequence of the Julia-Wolff theorem in Pommerenke
[S, p.306]. |

Proposition 5. E.(z) has all its zeros on |z|=1. If these zeros are e"i with
W €[0, 27r) in increasing order, then

(3.9) 0<8, < <h<ih<: - <y, ;<6,<2m.
Furthermore, ;
(3.10) aE!(z)=az"'E'(1/%) (ze (),

where a is as in Proposition 3.

Proof. Since |E,(e)| attains its global minimum in each of the points 6;,
Proposition 4 can be applied to each of these points. Using Proposition 3, this

implies that
[n—1 0
g(8)=1Im| @ exp| —i 2 0 E. (")

vanishes in the n points {6;};, in (0, 27r). Now, G(6) = g(26) is a trigonometric
polynomial of degree n—1, which vanishes in the n points {6;/2};_, in (0, ).
But, as G(8+m)=(—1)""G(6), then G(8) has 2n zeros in (0, 27). Hence,
G(8)=0= g(0). This shows that

(3.11) a exp[—i(fg—l)a}jj;(ye)

is real-valued. Another application of Propositions 3 and 4 proves that the function
of (3.11) has alternating signs in the points 6;, and thus, it must have a zero ¢;
in each of the intervals (6;, 6;.,), j=1,...,n—1. The points e/ are therefore
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the n—1 zeros of the polynomial E’(z)eP,_,. Furthermore, since (3.11) is
real-valued, we have
o e—i(n—l)BE:'(eﬁe) =& er'(n—l)B.E.T;_(e2—i0)’
or, for |z] =1,
aE (%) = &zz("“l)m.

This clearly extends to all ze C, and replacing z° by z, we obtain (3.10). B

()= Re[a exp[—i(nzl)e}En(eie)].

Differentiating the relation

[(n+1
2exp| i

5 >0:|f(9) =aE,(e®)+ae " VE ()

Now, let

with respect to 6 and using (3.10), we find that

(3.12) E,(e") =@ exp[i<";1)0][f(0)+<—n—%)f'(e)],

and, in particular, since |a|=1,

4

(3.13) ()= (") = £(0) + s

(f'(6))".

From Proposition 3, we have f*(6;) = 5%, and since e(;) =s* by definition, we
see from (3.13) that

(3.14) f(6;)=0, (j=1,...,n).
Differentiating (3.13) and (3.12) with respect to 6, we obtain
(3.15) e'(6)=21(0) - h(8),
and

) - h
(3.16) EL(e®)=(n+1)a exp[i<32—1)o] —(20—1

where h(6):=f(6)+[4/(n+1)’1f"(8). Now, €'(9) is a trigonometric polynomial
of degree n. It has n zeros in the points §;, which correspond to the global minima
of e(6), and it has the n—1 zeros ; from Proposition 5 and from (3.15) and
(3.16). But, none of these points can be the global maximum of e(8) since E/(z)
vanishes in these points (cf. Proposition 4). Hence, ¢'(8) must have one further
zero 0y€[0,27) which corresponds to the global maximum of e(6). But, this
implies that (@) has the maximal number of zeros in [0, 27), and each zero of
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e'(8) must be simple and correspond to an extremum of e(6). Furthermore, we
observe from (3.15) that

(3.17) f(60)=0

since h(8,) # 0 from (3.16) and Proposition 4, and that all zeros of f'(9) are simple.

Regarding 6,, we note that it must be located in [0, 6,) or in (8,,2), since
the relative extrema of e(6) in [6,, 6,] can occur only in the points {6;}]_, or
{y}=1 '

We now turn to the discussion of f(8). Our knowledge about the zeros of f'(8)
tells us that f(8) is monotonic in each of the intervals (6;, 6,41), j=1,...,n—1,
and since f(6;) = —f(6,+,) = +s by Proposition 3, we conclude that f oscillates
between the values +s in [6,, 6,]. The nonnegative trigonometric polynomial
2(0) of degree n+1 has a relative maximum at 6, with f*(8o) =|E,(e")]’>
|E,,(0* =1 by the maximum principle (cf. (3.13), (3.17), and the definition of 6,),
and relative maxima at 6, with f°(6;)=s% j=1,..., n. The only minima of )
are its zeros since f'(8) has no other zeros than 6, ..., 6, Now, 6, is exterior
to [8,, 6,]. This shows (because s*< 1) that there are precisely two more points
©,<0,, ©,> 6, with 0< ¢, — @, <2 such that f*(¢,) = f*(¢,) = 5%, and there are
zeros of f2(6) in (¢;, 6;) and (6,, ¢,). In the interval I:=[¢,, ¢,] (which is not
necessarily in [0, 27) but of length <2m), the trigonometric polynomial

£40)

N

g:(0)=2 1

has the following properties:

() lg(0) =1, bel,
(i) g:1(8) takes on the value 1 in n+2 distinct points of I, including the
endpoints of I;
(iii) g,(#) takes on the value —1 in n+1 distinct points of L

Clearly, g:(0) is a trigonometric polynomial of degree n+1. Now, let @o:=
(@1+¢,)/2—, and set
cos( o- %)
2

2:(0) = Thppo| —F—<|.
COS(%“PO)
2

(We remark that cos[ (¢, — ¢o)/2] = sin[ (@2~ ¢,)/4]. Thus, since 0< @, — ¢, <2,
this term in the denominator above is positive.)

Now, g,(6) is also a trigonometric polynomial of degree n+ 1, and also satisfies
the above properties (i), (ii), (iii). A simple counting argument shows that
g:(68) — g,(8) must have at least 2n+3 zeros in some interval of length <27r.
Thus, g,(0)= g(0) and the relation T, »(x)= 272.,(x)—1 gives finally that

(3.18) f(0)=ssT,,+,(U 005(0;%)),
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with o= 1/cos[ (¢, — ¢0)/2] and & € {—1; 1}. Inserting this into (3.12), we obtain

o e () el)
n(-Ti—il sin (0 —2%) Ti,+1<(r cos(a _2%))]

Using z = exp[i((6 — ¢o)/2)] and cos((6 — ¢,)/2) =3(z+1/z) on|z| =1, the above
can be written as

iR, 2\ - _ eas [nt1 ] 2n+3£{ —(n+1) [_‘Z( +_1_)]}
(3.20) E,(e'%0z?%) (n+1)exp[t(—2 o |z P Thir 2 2+ ,

which extends to all ze C. In particular, a short calculation with (3.20) gives,
with (1.3), that

+1
E,(0) = eac" s exp[i(ﬁ—z——-) (po] =1,

which implies

. +1
o=s"V0* " and ea=exp[i(n2 )goo].

Recalling the definition of Q, ,(z%) of (2.6), our result of (3.20) can be written as
(3.21) E,(2)= Q. (e7%z);  p=Q,(e ).

Now, let 0<p =1, and assume that u = Q, ,(z,), where z, eD. Then, we have
Q.,(z,2)€P,(n) and, by the minimum principle, we see that

Su(p)= ﬁiI}iQn,p(sz)l =min|Q,,(z)|.

|z|=1

Hence,

(3.22) (1) = max{min] @y, (2)]: 4 € Qu, (D)}

On the other hand, (3.21) yields
(3.23) s = 8,(n) =min|E,(z)| = min|Q,,(z)],
lzj=1

lzl=1
and u € Q, (D). Hence, we have equality in (3.22). To complete our proof of
part (c¢) of Theorem 1, it remains to show that

(324) p=minlQy,()|  (0<p<1).

In view of (3.23), this is true for évery p which equals S,(u) for a certain u €,
The interval (1,2") belongs to (,, because of part (a) of Theorem 1 and the fact
that A, = D. But, S,(u) is continuous on [1, 2"] with S,(1) =1, §,(2") =0. Thus,
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S.(w) takes every number in (0, 1) as a value in £,, and the proof of part (¢)
of Theorem 1 is complete. |

For further considerations, we wish to pinpoint two important facts about
Q.,(e") which follow from our previous deductions. We again use the notations
of the last proof. We know that |E,(e)| attains its global extrema (1 maximum,
n minima) precisely where f” vanishes, and from (3.18), we see that these are
the points = ¢, and the solutions of

(3.25) T’,,H(a cos<0 ;“"’)) =0.

Since o> 1, we see that ¢, must be the global maximum and the remaining n
zeros (where T,,,(x)=+1 and where x is in (-1, +1)) are the minima. From
(3.21), we now see that |Q, ,(e)| takes its only global maximum at 6 =0. Also,
replacing 6 — ¢, by 6, we see from (3.21), (3.25) and the determination of o, that
|Q,.,(e™)| takes its global minima in the points 6 satisfying

; ) _
(3.26) p -/t cos(-?:) =cos( J7 ) (j=1,...,n).

n+1

Here, we have made use of the explicit representation of the zeros of T/, (x).

We now turn to the remaining proof of part (b) of Theorem 1. It rests mainly
on two simple ideas: to determine a simply connected closed set whose boundary
consists of boundary points of A, and to show that A, is itself simply connected.
Although the second part seems to be very natural, it creates the main difficulty
in our proof. For the case n =1, of course, the assertion that A, =[0, 1] is easily
verified.

Proposition 6. Let 0# p €9A,. Then, there exists a 6 € [0, 27r) such that
(3.27) = Quu(e”).
Proof. Since S,(u)=|u|#0, we have p£9=,, and thus we€d,. Choose a

sequence of points u € Q, with u, > u. From part (c) of Theorem 1, we know
that there exist 8, €[0, 27) such that

,u'kzon,pk(eiak)y pk=Sn(#’k).>Sn(M):|#’|
We may assume that ,>0€R _(otherwise, choose a subsequence), and since
Qnp (2) > Q) (2) uniformly in D, we get (3.27). B
It follows from (3.26) that between |u| and 6 in (3.27), we have the relation

ul = (DN Gy,

0s
n+1/,/"

On the other hand, a direct calculation of Q, ), (¢”) in these points gives

= Quu(e?)=(=1)|u| eXP[l’(%‘l)@] (j=1,...,n).
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These points u constitute the following n curves in D, connecting 1 and 0:

n+1 .
C .= (_1)j _____CB_S_Leiw ]_77
n, j

ja ‘n+1
(3.28) oS\ L1
Coniri—j=1{f: pe C.l}
for j=1,...,[n/2], while for n odd,

(3.29) Conipne={p: 0=p =1}

From (3.29), we note that C, ; = [0, 1]. The graphs of C,, ;,forn=2,3and 1 =j=n,
are shown in Figure 2(a) and (b) ,

The case n=1 of part (b) of Theorem 1 is trivial; hence, we assume n =2. By
Proposition 6, we have

>

<¢<—7—T
T2

(3.30) aAn < U Cn,j < Ana
j=1

and it is obvious from (2.2) and (2.1) that
(3.31) A, <A,
The set U}, C,; defines a number of pairwise disjoint domains, say ,(k),
k=1,..., K(n), such that
LkJ Blﬂn(k) < LJI Cn,j,
iz

(3.32) _—
U (k) =C.

Exactly one of them, say ¢,(1), is unbounded, and our assertion of part (b) of
Theorem 1 will be shown to be equivalent to

(3.33) A, =C\y,(1).
To this end, we have to prove that
(3.34) Ua(k)c A, (k=2,..., K(n)).

(a) (b)
Fig. 2
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Now, each point u of ¢, (k) must, from (2.1), satisfy either
Sa(w)=|u| (whencepmed,), or S,(u)<|ul

But since ¢, (k) can contain no boundary point of A, by definition and by (3.30),
then either

Sp(w)=|u| forall wey,(k), or S,(u)<|u| forallued,(k).
To eliminate this second possibility, it suffices by (3.31) to show that
(3.35) (k)AL %D (k=2,...,K(n)).

As A,=[0, 1], it is evident, on superimposing Figure 2(a) and (b), that (3.35) is
valid for n =2, 3. That (3.33) and (2.8) are also equivalent in these cases is clear
from Figure 2(a) and (b), and (3.28). This completes the proof for n=2,3, and
we now may assume that n=4. We note that C, ;, as defined in (3.28), has the
following properties (j=1,...,[n/2]):

(i) C,; is a curve in D connecting the points 1 and 0;

(ii) while passing from 1 to 0, the points of C, ; have strictly decreasing
moduli;

(3.36) (iii) similarly, their arguments are strictly increasing;

(iv) C,; crosses the negative real axis for the first time for ¢ =
(j+1)m/(n+1), provided j=1,...,[n/2]—1;

(v) Cyppnj21 is a curve from 1 to 0 which lies in the closed upper-half
plane.

We define the following subarcs of C, ;:

) . ) n+1 » '+1
D, ;=1{(-1) _'39_S_T'li__e.¢ s s(//s(J )m
¥ < jm ) n+1 n+1
cos| ——
n+1
for j=1,...,[n/2]—-1;
(337) J [n/2]
n+1 .
D, ;=1(-1Y —Cos¥ )Ty T for j=[n/2];
" ( jm ) n+1 2
cos
n+1
L Dn,n+l—j:= {lI “E Dn,j} for J: 1,' T [n/2],

and let @, ; be the bounded Jordan domains with
(3.38) \ 6®n,j=D,,’jan’,,+1~j (]=1, 2,...,["/2]).

We note that, in view of (3.36), each @, ; is starlike with respect to the origin.

Proposition 7. For m=n or m=n+1, 1<j=<[n/2], 1=k=[m/2], and either
m # n or j # k, we have

(3.39) {1}< 40, ;1 309, <{1; 0}.
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Proof. For reasons of symmetry, it is clear that (3.39) will follow from

(3.40) {1} D, ,~ Dpx<{1; 0}
With
_(te)w _(k+8)m
(3’41) - n+1 s - m-+1 (0— )851)’

assume that D, ; and D,,, have a common nonzero point:

n+1

e?)  =(-1)*

m+1

Cos ¢ cos oi® —

o{55) o 55)
n+1 \m+1

Then, arg z = arg w implies ¢ = 8. Hence, (3.42) holds if and only if
i+ n+1 k+ m+1
cos[—-——(J S)W:I cos[————( E)W]

(3.42) z=(-1y

+

(3.43) n. 1 _ m+1 ’

j kar

cos{ — cos

n+1 m+1

or
( -+£ T n+1 .77 n+1
cos —J———L— cos J

n n

(3.44) +1 +1

(= S) ™ ()™

We wish to show that the left-hand side of (3.44) is strictly monotonic in &,
0<e<1. If not, the derivative with respect to £ would vanish somewhere in
(0, 1), which gives

(o] U]} [0 fler 0]
n+1 n+1 m+1
3 ( I:(k+s)7r]>m , ((k—!—e)w)( ((j+e)7r>)"“
| = —1r{ cos e sin Tl cos Tl
or, equivalently,
tan(“—”)—”) man(ﬁﬁ"jﬁ),
n+1 m+1

Since both arguments are in [0, ] where tan(x) is injective, we get the equivalent
condition

jte_kte
(3.45) n+1 m+1

Now, if n=m, we deduce j = k, which violates the hypotheses of Proposition 7.
However, for m=n+1, we get from (3.45) that € = k(n+1) —j(n+2), which is
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an integer and hence is not in (0, 1). This contradiction shows that the left side
of (3.44) is strictly monotone in & for 0<e <1, so that equality holds in (3.44)
only for £ =0. Thus, the only nonzero point of D, ;u D, is {1}. On the other
hand, (3.36v) shows that 0 can be a point of D, ;" D,,,, which gives (3.39).

|

Starting from the point 1, the curves D, ; enter into the unit disk as follows:

n+1

o e () o))

n+1

From this fact, we can deduce that initially D,;=0,,.,u{l}, and in view of
Proposition 7,

(347) ®n,j < ®n,j—1 (] = 23 L) [n/z])s
and therefore
(2.48) ®n,jc®n,1 (j‘—‘2,...,[n/2]).
Similarly, the initial portion of D,, must be contained in ©,_,;, since (cf. (3.46))
2 1
1 > ;,‘ (n = 4)

Hence, again by Proposition 7 (with m=n—1),

(3.49) 0,,0,_1;
in fact,
(3.50) 0,,\{1;0lc0,_,,,

since the boundaries have at most the points 1 and 0 in common. As O, ; is
starlike with respect to the origin, we deduce that

(3.51) C.;c0,,c0,, (j=1,...,n),

and, we similarly deduce from (3.47) and (3.50) that -

(3.52) C,.;c0,,0,,0,,,u{1;0} (j=2,...,n-1).
From (3.38) and (3.51), it is clear that (3.33) is equivalent to

(3.53) A, =0,

as well as to our assertion (b) in Theorem 1. We now proceed by mathematical
induction. The assertion has already been established for n=1,2,3. Assume
(3.53) holds for n—1. Then, by (3.52), we see that

(3.54) C.\M1,0}cintA, ., (j=2,...,n-1),

and (3.35) is fulfilled for every i, (k) which has one of these curves in its boundary.
But, from (3.28), the curves C,,\D,,, C,,\D,, do not intersect in 0, ,\0,_,,
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9n,1\0n—1,1

Fig.3

(see Figure 3), so that each of the remaining domains ,(k), k # 1, also contains
points of A,_;. This proves (3.35), (3.33) and therefore (3.53). | ]

4. Proofs of the Corollaries

We begin this section with the following

Proposition 8. Write Q, ,(w):=Y,_, a.(p)w", where Q, ,(z%) is defined in (2.6).
Then,

(4.1) a(p)>0  (k=0,1,...,n;0<p<1).

Proof. For any o>1 and any n=1, let the coefficients b,(o; n) be defined by

-+ 2 2n
(4.2) z"T,,(o* 1tz >=1 S b(o; )z~
2z k=0

Using the known expansion of the Chebyshev polynomial T,(x) in powers of x,
we immediately see that the odd coefficients by, (o n) of (4.2) all vanish
(k=0,...,n—1), while for the even coefficients, we have

no.nmm{kn K (n— ]-—1)'(—0'2) =i
im0 jHk=jt(n—j—=k)!

We next claim that by, (o; n) >0forallk=0,1,..., n. As by (07; n) = by,_1y(0; 1)
from (4.3), it suffices to show that by (o; n)>0 for all k=0,1,...,[n/2].
Equivalently, it suffices to establish the positivity of

(4.3) byloyn)= (k=0,1,...,n).

ok (n—j—1)!x
@ al= 2 ) n—j— 0!

(-1<x=0;k=0,1,...,[n/2]).
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For k=0, this is obvious. For k > 0, expanding ¢, (x) about x = —1 and applying
standard combinatorial identities, we obtain

kS (k=1 (n=k=-D!1 (1 +x)"
a(x)= 2 ( )(n—j—k—l)!.(jﬂ)!

j=0

(k=1,2,...,[n/2]),

which is positive for all —1<x=0 and for all k=1,2,...,[n/2]. Thus,
by (o;n)>0forall k=0,1,...,n and all o> 1.
To complete the proof, from (2.6) we can write

2
(4 5) Qn p( 2) = —-—(—-;1————*-_—]3 22n+3;dz_{2-2;1—2(Zn+1Tn+1(p-1/(n+1)(1'2"'22 >)>}

Replacing n by n+1 in (4.2) and setting o :=p~"/"*_ we have from (4.2) and
(4.5) that
2 2" d [y 2k—n—1)
Qn,p(z )= _mdz z bzk(O' n+l) .

Thus, on differentiating in the above expression and then replacing z* by w, we
have

2
(4.6) Qn,p(w)”(—+—1)——m Z by(o;n+1){(n+1- k)w
so that the positivity of the coefficients b, (o; n+1) implies the sought positivity
of the a,(p) of (4.1). B
On setting z =1 in (2.6), it is easily verified that
(4'7) Qn,p(l)=an+l(p—l/(n+l))‘

Proposition 9. For each n=1, Q,,(1) is a strictly decreasing function of p for
0<p<l.

Proof. On differentiating the right side of (4.7) with respect to p, the strictly
decreasing nature of Q,,(1) for 0<p <1 is equivalent to the property that

(4.8) T, 41 (x) <( T 1) T} (%) (x>1).

Since both sides of (4.8) are positive for x > 1, then squaring yields

2

(4.9) Ti+1(x)< )2( (X ))2 (T w(x)—1),

(n+1 (21)

where we have used the identity that (1 —x?)(T%(x))*= n*(1— T3(x)). Thus, (4.9)
is equivalent to T?Z,,(x)> x?, which is obviously valid for all x>1and all n=1.
[ |
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Abstract. With P, denoting the set of complex polynomials of degree at most
n (n=1), define, for any complex number u, the subset

P,(u)={p.(2) €P,: p,(0)=12and p,(1) = u}.
In this paper, we determine exactly the nonnegative quantity

S,(u)= sup {min|p,(2)|},

pnePu(p) [zl=1

as a function of n and . For fixed n = 2, the three-dimensional surface, generated
by the points (Re x, Im u, S, (1)) for all complex numbers w, has the interesting
shape of a volcano. ‘

1. Introduction

Consider the set of all complex polynomials p,(z) of degree at most n (n=1),
taking on two prescribed values (not both zero) in two distinct points in the
complex plane:

(11) pn(zl)zaa pn(z2)=ﬁ (21#22; a:,é())
Then, what can be said about the supremum of
(1.2) min{| p.(z)]: |z = z1| = |z~ z)[},

over all polynomials p,(z) satisfying (1.1)? This problem can be normalized as
follows. With P, denoting the set of all complex polynomials of degree at most’
n (n=1), then for each complex number u, consider the subset of P, defined by

(1.3) P, ()= {ps(z) €P,: p,(0) =1and p,(1) = p}.
Our objective in this paper is to determine precisely the nonnegative quantity
(1.4) S.(w)=sup {min|p,(2)]},

PrePL(p) |z|=1

as a function of n and pu.
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Our interest in this question arose from the following related problem which
is crucial in the study of certain global descent methods for finding a zero of a
given complex polynomial (cf. Henrici [1], [2], Ruscheweyh [8], and references
contained therein): For each n=1, set

(1.5) I,= max{min|pn(z)|: pa(z)=1+ Y a7 with ¥ |a;|= 1}.
z}=1 j=1 j=1

From the results of Ruscheweyh [8], and Ruscheweyh and Varga [9], it is known
that I, satisfies the inequalities

1 / 1 1
(1.6) 1——=T,= 1——(—)<1-—,
n n 2n

for every n=1. Moreover, with

(1.7) T, =max{min|p,(2)|: p.(z) e P,(2) with p’(0)=0forj=1,2,...,n},

|z|=1

it is further known from [9] that

(1.8) 1-

S |

sfnsvl—(3/(2n+1)i=I—Z%’;JrO(%) (n—>00),

for every n=1. In [9], we first conjectured that
(1.9) r,=0, (n=1,2,...).

Now, the bounds (1.6) and (1.8) suggested that there exists a positive constant
v, independent of n, such that

~ 1
(1.10) l“,,=I‘,,=1—-Z+o<—) (n > c0).
n n
Indeed, extended precision calculations described in [9] led us to further conjec-
ture that vy in (1.10) is approximately given by
111 y=0.867 189 051.

By definition, we note that [,=S,(2) for all n=1. Interestingly enough, one
consequence of this present paper (cf. (2.12) of Corollary 1) is that

o 1 1
(1.12) S, (2)=T", =1——E{arccosh(2)}2+ 0(;) (n-> ),
so that the quantity y of (1.10) is given exactly by

{arccosh(2)}?
y = LBICCOSE))

(1.13) >

=0.867 189051 1363181....

Thus, our conjecture of (1.11) (to the number of digits given in (1.11)) is correct!
The conjecture (1.9), however, remains open.
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The outline of our paper is as follows. In Section 2, we state our main results
concerning the determination of S, () of (1.4). As we shall see, for fixed n=2,
the three-dimensional surface, generated by the points (Re u, Im u, S,(u)) for
all complex numbers u, has the interesting shape of a volcano. A computer-
generated picture of this for the case n =5 is given in Fig. 1 of Section 2. Finally,
the proof of Theorem 1 of Section 2 is given in Section 3, while the proofs of
Corollaries 1 and 2 of Section 2 are given in Section 4.

2. Statement of Results

For any u € C, the minimum principle, applied to any p,(z) in P,(u) (cf. (1.3)),
directly gives us that miny, <,/ p,(z)|=min{1; |u|} =|u|, whence (cf. (1.4))

(2.1) 0=S,(p)=min{l; |ul}=|u] (n=1,2,...;allueC).

Furthermore, standard arguments show that the supremum in (1.4) is, in fact, a
maximum. Moreover, by an elementary variation in the elements of P,(u), it
can be seen that S,(w) is continuous in C.

For our subsequent analysis, it is necessary to distinguish between the following
pairwise disjoint sets of C:

(2.2) A,={peC: S,(n)=|ul},
(2.3) Q,={ueC:0<S,(un)<|ul},
(2.4) 2,={peC:0=5,(un)<|ul},

where we note that A, U, U, = C. With D:={z € C: |z| <1} and with D denot-
ing the closure of D, it is evident from (2.1) that A, < D. Moreover, from (1.4)
and (2.2), it can be verified that A, has another interesting interpretation: u € A,
iff there is a p,(z) e P, with p,(0) =1 such that

(2.5) pE€p.(D) and |u|=min|p,(z)l.

|z]=1
From this observation, it is somewhat surprising, as we shall see, that substantial

parts of D do not belong to A,,.

For additional needed notation, for each p with 0 <p <1 and for each positive
integer n, set

2 .=.__:_p___ 2n+3_c_l_ —(n+1) ,1/(,,+1)(1+22)il}
(26) Qn,p(z ) (n+l) z dz {Z Tn+1[P 77 s

where T,,.,(z) denotes the Chebyshev polynomial of degree n -+ 1 of the first kind.
As can be seen (cf. (4.6)), Q,,(w)eP,.
With the above notation, our main result is

Theorem 1. The following are valid:
(a) The set X, satisfies

2.7 2, =C\{zeC:z=(1+w)" whereweDu{-1}};
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(b) A,=[0,1]. For n=2, A, consists of the Jordan curve

. [cos(e/(n+1)) "“‘ oo =
(2.8) C,,.~{z— (—Wcos(w/(n+l))) e .w_](plw27r},

and the bounded Jordan domain having C, as its boundary;
(c) Q,=C\(Z,UA,). Moreover, for any € Q,, there holds

(2.9) S,(w)=max{0<p<1:ueQ,,(D)}

When u >0, the quantity S,(u) can be given in the following more explicit
fashion, which directly connects with the problem arising from global descent
methods mentioned in Section 1.

Corollary 1. Let u>0. Then, there holds:
poif 0<p=1,

(2.10) Sp(w)={c if l<u<2"

0 if 2"=p.
Here, o is the uniquely determined solution in (0, 1) of the equation
(2.11) p=0Tfo /),
For n tending to infinity, the solution o of (2.11) can be expressed as
(2.12) o=1 —@%ﬂ}j+ o(%) (n - ).

Finally, for w e (1,2") and for o defined by (2.11), Q,,(2) is the unique extremal
polynomial in P,(p) for the problem (1.4), and Q,.-(z), when expanded in powers
of z, has positive coefficients.

Another consequence of Theorem 1, of a more general nature, is the following:

Corollary 2. For any p,(z) e P, with p,(z) #0 in D, there holds

O 1/(n+1)
o e (22) ),
m
where
(2.14) M:= r‘nlaXIpn(Z)l, m = ‘rr‘lir;lpn(Z)l'
z|=1 zl=

The upper bound (2.13) is sharp for each m € (0, |p,(0)]).

To conclude this section, we illustrate the result of Theorem 1, in the
case n=5, with the computer-generated three-dimensional surface
(Re w, Im u, Ss(u)), given in Fig. 1. It is evident that this surface has the shape
of a volcano. Specifically, the set As, defined in (2.2), corresponds geologically
to the caldera (i.e., the deep caldronlike cavity found at the summit of a volcano),
while the sides of the volcano correspond to the set (s, defined in (2.3).
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Fig. 1

3. Proof of Theorem 1

As the proof of Theorem 1 is somewhat involved, we give for convenience some
intermediate results in the form of propositions. Some parts of our proof are
reminiscent of the general theory of extremal problems for complex polynomials
as derived, for example, in Rivlin and Shapiro [6]. However, that theory as a
whole does not apply to our problem of maximizing the minimum modulus, and
even similar tools need new justifications in our case. For the sake of completeness
and readability, we also indicate proofs for those (small) portions which could
have been transferred from the above-mentioned theory.

We start with the determination of the set X, of (2.4). Clearly, u € X, if and
only if u # 0 and every polynomial in P,(u) has a zero in D.

Proposition 1. - Let p,(z) € P, satisfy p,(0) =1 with p,(z) #0 for any z< D. Then,
p.(D)< w,(D), where w,(z)=(1+2z)".

Proof. Simply apply Szegd’s corollary (16, 1c) of Marden [3, p. 67] with f(z) =
(1+2)" and with g(z) = p,(z). Another proof of this also follows from Theorems
1.1 and 1.5 of [7]. [ |

Now, consider any u € C\X,, with p #0. Then, there exists a polynomial
pa(2)€P, () with p,(z)#0 in D, and for small £>0, we have p,(z):=
Pn((1+¢€)z)#0 in D. Since j,(0) =1, we see from Proposition 1 that

. 1
(1) p=pa(11s) <o)
Conversely, if u e w,(D), then u = (1+z,)" for a certain z,e D, and (1+ zyz)" is
an element of P,(u) with nonvanishing minimum modulus in D. This implies
S.(u)>0, and thus u 2=, This completes the proof of part (a) of Theorem 1.
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We turn to the proof of part (¢) of Theorem 1, and assume p€,. As we
mentioned at the beginning of Section 2, there exists an extremal polynomial
E,(z)eP,(u) with S,(u) =min,-,|E,(z)|. Since u and n are fixed for this proof,
we write S,(w) = s. Let F denote the set of all numbers 6 € [0, 27) with |E,(e”)| =
s. Let e(8)=|E,(e")]*, 6 €R. Then, e(8) is a trigonometric polynomial of degree
at most n with s> as its absolute minimum. It is therefore clear that F has at
most n elements. Note that 0¢ F since e(0)=|E,(1)]’=|u>> s by assumption
(cf. (2.3)).

The next proposition is similar to the well-known Kolmogorov theorem from
approximation theory (cf. Meinardus [4, p. 13]).

Proposition 2. There is no polynomial U,(z)€ P, with U,(0) =0 and U,(1)=0,
such that ‘
(3.2) Re[E,(e”)U,(e?®)]>0  (feF).
Proof. Assume that there is such a polynomial U,(z). Then, there exists a y>0
such that
2Re[E,(e”)U,(e))]>y (0D,

where

I:={6<(0,27): there exists a 6, € F with |§ —6,| <o},
for a certain o> 0. Hence, for ¢ >0, we find
(3.3) |E,(e)+eU,(e)=s*+ey> $? (6el).
For the compact set I':=[0, 2]\, there exists a § >0 such that

|E,(e®)=s*+8 (8el').

Now, choose ¢ so small that

el2Re[E,(e) U, (e”)]|+ 7 Un(e”)F <8 (0T,
Then on I', we have
(3.4) |E,(e)+eU,(e®)>s*+6—-8=s> (0eI').

For small & >0, the polynomial E,(z)+ eU,(z) is nonvanishing in D, and hence,

(3.3), (3.4), and the minimum principle imply miny, | E.(z) + £U,(z)| > 5. But

since (E.(z)+eU,(z))eP,(u), we have a contradiction to the definition of s.
B

Assume next that F has less than n elements. Then by interpolation, we can
construct a polynomial U,(z)eP, with

U,(0)=0, U,(1)=0, U,(e”)=E,(e) for 6€cF

(Note that 0 F.) But then, U, (z) contradicts Proposition 2, and we thus conclude
that F has precisely n elements in (0, 27), say

0<8,<--<8,<2m




Minimum Moduli of Normalized Polynomials 355

Proposition 3. There exists an a € C with |a| =1, such that

(3.5) o exp[-i<%l)9j}E,,(e“’f)=(—l)js (j=1,...,n).

Proof. As the assertion (3.5) is obvious for n=1, assume n> 1; Let p be an
integer with 1=p=n-1, and let g:=p+1. Let £¢>0 and o= e with |¢|<7/2.
By interpolation, we can find a polynomial U, ,(z) in P, with

Uer(0)=0, U, .(1)=(0),
(3.6) U..(e)=eE,(e”) for j=1,...,n; j#pq,

U, (€)= gE,(e").
Using U, ,(z) in Proposition 2, we necessarily find that
3.7) Re[E,(e*) U, ,(e')]=0.
Now, let £ > 0. Then, U, ,(z)~> U, ,(z), uniformly in D, and the zeros of U (2)
occur precisely in the points 0,1, e’ for j=1,..., n;j# p, g. This implies that
the polynomials U, ,(z) differ only by a factor, namely U, ,(z)=oU,,(z). Of
course, (3.7) holds also for £ =0, and we have

Re[E, (e )aU,,(e?)]=0

for every admissable o. Also, note that both of the numbers E,(e™) and Uy, (e™)
are different from zero. Taking this into account, we obtain

(3.8) E, (") Up, (") <0.
Now, Uy ;(z) has the representation
Uga(2) = cz(z=1) [I' (z—€™),
j=1

where c is some nonzero constant, and where the prime indicates that j = p and
Jj=gq are to be omitted in the above product. Writing

9.

Jo

Y=

M=

!
1

1
2;
we obtain for ke {p; q} that

_ +1 v il O6Y Tr sinf 8= Y
(3.8,) Uo’l(elﬂk) =c exp[i(n : )akjl(zl-)n-l el Sln<'5k) H’ Sin( k2 —’).
/ j=1

Setting k=p and k= g, note that the corresponding factors from the last term
in (3.8'), namely sin[(6, — 6;)/2] and sin[(6, — 6;)/2], are always of the same sign
since 6, and 6, are adjacent. To identify U, (e”), we use (3.8') and the last
relation of (3.6) to deduce that

Ug,i(e™) B Us(e™) _ [.(’H’l) ]
E(e™)  Uote® P\ )0 )




356 S. Ruscheweyh and R. S. Varga

for a certain 6>0. Now, E,(e")exp[—i((n+1)/2)6,] has modulus s for ke
{p; q}, but using (3.8) and the above expression, we obtain

E,(e"%) exp[—i(zljz;l-) Bq]
e ]

An inductive argument with respect to p then completes the proof of Proposition
3. [ |

=1,

Proposition 4. Let ¢ be such that | E,(e")| attains its global maximum (minimum)
at ¢. Then,

e“E'(e*) > 0
E,(e*) (<)~
In particular, E/, (') # 0.

Proof. This is a consequence of the Julia-Wolff theorem in Pommerenke
[5, p. 306]. ]

Proposition 5. E'(z) has all its zeros on |z|=1. If these zeros are e"i with
;€ [0, 277) in increasing order, then

(3.9) 0<0, <y <0,<t, <+ <if_; <60, <2
Furthermore,
(3.10) aE'(z)=az""E(1/%) (ze (),

where « is as in Proposition 3.

Proof. Since |E,(e™)| attains its global minimum in each of the points 6},
Proposition 4 can be applied to each of these points. Using Proposition 3, this

implies that
fn—1 o
g(6)=1Im| o exp| —i > 0 |E.(e”)

vanishes in the n points {6;};_, in (0, 27r). Now, G(8) = g(26) is a trigonometric
polynomial of degree n—1, which vanishes in the »n points {6;/2}7_, in (0, ).
But, as G(8+7)=(-1)""'G(8), then G(6) has 2n zeros in (0,2). Hence,
G(0)=0=g(0). This shows that

(3.11) aexp[-—i(n;l>9:|5'n(ew)

is real-valued. Another application of Propositions 3 and 4 proves that the function
of (3.11) has alternating signs in the points 6;, and thus, it must have a zero ¢;
in each of the intervals (9;, 6;4,), j=1,...,n—1. The points e"’ are therefore
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the n—1 zeros of the polynomial E!(z)eP,_,. Furthermore, since (3.11) is
real-valued, we have

a e~i(n——1)0E:2(e2i6) =& ei(n—l)BE;(eZiO)’
or, for |z] =1,
aE' (%) =az?" VE'(1/2%).

This clearly extends to all z e C, and replacing z° by z, we obtain (3.10). [ |

Now, let

f(8)= Re[a exp[—i(n ;— 1) G}En(eie)}.

Differentiating the relation

+1
2exp[i<n

with respect to 6 and using (3.10), we find that

(3.12) En(e") =a eXp[i<nTH)6][f(0)+(%)f’(e)],

and, in particular, since [a| =1,

)0]]’(6) =aE,(e®)+ae"™VE, (")

4

(3.13) e(6) = |Ea(e") =fA0)+ 1

(f(6))".

From Proposition 3, we have f%(6,) =s’, and since e(6;)=s” by definition, we
see from (3.13) that

(3.14) f(6,)=0, (j=1,...,n).
Differentiating (3.13) and (3.12) with respect to 6, we obtain
(3.15) e'(6)=2f"(6) - h(#9),
and

. -1 6
(3.16) EL(e")=(n+1)a exp[i(n2 )0} !"1—%—)-,

where h(6):= f(6)+[4/(n+1)’1f"(6). Now, e'(8) is a trigonometric polynomial
of degree n. It has n zeros in the points 6;, which correspond to the global minima
of e(6), and it has the n—1 zeros ¢; from Proposition 5 and from (3.15) and
(3.16). But, none of these points can be the global maximum of e(8) since E',(z)
vanishes in these points (cf. Proposition 4). Hence, e'(8) must have one further
zero 0y€[0,27r) which corresponds to the global maximum of e(8). But, this
implies that e’(8) has the maximal number of zeros in [0, 2#), and each zero of




358 S. Ruscheweyh and R. S. Varga

e'(8) must be simple and correspond to an extremum of ¢(6). Furthermore, we
observe from (3.15) that

(3.17) J'(60)=0

since h(8,) # 0 from (3.16) and Proposition 4, and that all zeros of f'(6) are simple.

Regarding 6,, we note that it must be located in [0, 6,) or in (8,,27), since
the relative extrema of e(6) in [6,, 8,] can occur only in the points {6;}/-; or
(). '

We now turn to the discussion of f(8). Our knowledge about the zeros of f'(6)
tells us that f(8) is monotonic in each of the intervals (6;, 6,+1), j=1,...,n—1,
and since f(6;) = —f(6;+1) = +s by Proposition 3, we conclude that f oscillates
between the values £s in [6,, 6,]. The nonnegative trigonometric polynomial
7%(0) of degree n+1 has a relative maximum at 6, with 12(60) = |E,(e'®)]>>
|E,.(0]*= 1 by the maximum principle (cf. (3.13), (3.17), and the definition of 6,),
and relative maxima at 6; with f2(6,)=s% j=1,..., n. The only minima of f*(6)
are its zeros since f'(6) has no other zeros than 6, ..., 6,. Now, 6, is exterior
to [6,, 6,]. This shows (because s*< 1) that there are precisely two more points
@, < 6, o> 0, with 0< ¢, — ¢, <27 such that f*(¢;) = f*(¢,) = s?, and there are
zeros of f4(6) in (¢, 6,) and (6,, ¢,). In the interval I'=[¢,, ¢,] (which is not
necessarily in [0, 27) but of length <24), the trigonometric polynomial

2
ait0y=22

has the following properties:

() |g.(8)|=1, 0el;
(ii) g.1(8) takes on the value 1 in n+2 distinct points of I, including the
endpoints of I;
(iii) g,(#) takes on the value —1 in n+1 distinct points of L

Clearly, g,(0) is a trigonometric polynomial of degree n+1. Now, let ¢o:=
(¢1+¢,)/2—m, and set
cos(e—(pO)
2

2,(0) = T} - .
(@1"9"0)
Ccos —T—

(We remark that cos[(¢; — ¢o)/2]=sin[(¢,— ¢,)/4]. Thus, since 0 < ¢, — ¢, < 2m,
this term in the denominator above is positive.)

Now, g,(8) is also a trigonometric polynomial of degree n+ 1, and also satisfies
the above properties (i), (i), (iii). A simple counting argument shows that
g.(8) —g,(8) must have at least 2n+3 zeros in some interval of length <2m.
Thus, g,(0) = g,(9) and the relation T,,,(x) = 272%.,(x)—1 gives finally that

(3.18) £(6)= ssT,,H(a' cos(‘9 ;“’0)),
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with o= 1/cos[(¢; — ¢y)/2] and ¢ € {—1; 1}. Inserting this into (3.12), we obtain

619 men=easer] (o] 7o 52))
i H 6——‘00 ’ 6"900
n+1sm< 5 ) n+1<0’COS< 2 ))]

Using z = exp[i((8 — ¢o)/2)] and cos((0 — ¢,)/2) =3(z+1/z) on|z| =1, the above
can be written as

0y, 2y _ ___EAS . n+1) } 2n+3_£1_{ —~(n+1) [?_'( +l)j”
(3.20) E, (e"*0z?) (n_H)exp[z( > @0 |z e z T,q > z z )

which extends to all ze C. In particular, a short calculation with (3.20) gives,

with (1.3), that
+1
E,(0)=¢eac™'s exp[i(%—) (po] =1,

which implies

. n+1
o=sV"" " and sa=exp[i< 5 )goo].

Recalling the definition of Q,,(z%) of (2.6), our result of (3.20) can be written as
(3.21) E,(2)=Qu.(e7%z);  u=Q,(e ™).

Now, let 0<p =1, and assume that u = Q,,(z,), where z, € D. Then, we have
Q..,(z,2) eP,(n) and, by the minimum principle, we see that

S,(p) = min|Q, ,(z,z)| = min|Q, ,(z)|.

lz]=1 lzj=1

Hence,

(3.22) S,() = max{min] Qu, (2)|: 1 € Q, (D)}

On the other hand, (3.21) yields
(3.23) s = 8,(p) =min|E,(z)| = min| Q,:(2)|,

lzl=1 |z|=1

and p € Q,.(D). Hence, we have equality in (3.22). To complete our proof of
part (c) of Theorem 1, it remains to show that

(3.24) p=!nTinIQ,,,p(z)| 0<p<1).
z|=1
In view of (3.23), this is true for every p which equals S,(u) for a certain u e Q,,.

The interval (1, 2") belongs to (), because of part (a) of Theorem 1 and the fact
that A, = D. But, S,(u) is continuous on [1, 2"] with S,(1) =1, S,(2") =0. Thus,
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S,(w) takes every number in (0, 1) as a value in Q,, and the proof of part (c)
of Theorem 1 is complete. [ |

For further considerations, we wish to pinpoint two important facts about
Q..,(e) which follow from our previous deductions. We again use the notations
of the last proof. We know that |E,(e")|” attains its global extrema (1 maximum,
n minima) precisely where f’ vanishes, and from (3.18), we see that these are
the points 6 = ¢, and the solutions of

(3.25) ;H(a cos(e "2"’0)) =0.

Since o> 1, we see that ¢, must be the global maximum and the remaining n
zeros (where T,.,(x)==1 and where x is in (~1,+1)) are the minima. From
(3.21), we now see that |Q, ,(e")] takes its only global maximum at 6 =0. Also,
replacing 8 — ¢, by 6, we see from (3.21), (3.25) and the determination of o, that
|Q..,(e)| takes its global minima in the points 6 satisfying

_ 6 Jm '
3. VD) (—) = ( ) i=1,...,n).
(3.26) p cos| > cos\ ~ 7 (j=1,...,n)

Here, we have made use of the explicit representation of the zeros of T 1(x).

We now turn to the remaining proof of part (b) of Theorem 1. It rests mainly
on two simple ideas: to determine a simply connected closed set whose boundary
consists of boundary points of A,, and to show that A, is itself simply connected.
Although the second part seems to be very natural, it creates the main difficulty
in our proof. For the case n =1, of course, the assertion that A, = [0, 1] is easily
verified.

Proposition 6. Let 07 u €3A,. Then, there exists a 6 €[0,2) such that
(3.27) M= Qn,]y.[(eie)'
Proof. Since S,(w)=|u|#0, we have u£0%,, and thus weoQ,. Choose a

sequence of points uy € ), with w, - u. From part (c) of Theorem 1, we know
that there exist 6, €[0, 27) such that

= Qup(€%),  pre=S8.(pi) > Sp(p) =|pl-

We may assume that 6, > 0€R __(otherwise, choose a subsequence), and since
Qup.(2) > Quyui(z) uniformly in D, we get (3.27). B

It follows from (3.26) that between |u| and 6 in (3.27), we have the relation
cos(8/2) \"**

lul= COS<’£_1> |

On the other hand, a direct calculation of Q,,(e”) in these points gives

M= Qn,]ul(eio) = (_1)]“1" exp[l(%l>0] (] = 1’ LRI n)'

(=1,...,n).
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These points w constitute the following n curves in D, connecting 1 and 0:

Coym{ 1y [~ )™, T
n,J

jm ‘n+1
- )

Cn,n+1—j = {ﬁ: 15 € Cn,j}’
for j=1,...,[n/2], while for n odd,
(3.29) Coininp={n:0=p=1}

From (3.29), we note that C, ; =[0, 1]. The graphsof C, ;,forn=2,3and 1=j=n,
are shown in Figure 2(a) and (b) ,

The case n=1 of part (b) of Theorem 1 is trivial; hence, we assume n =2. By
Proposition 6, we have

(330) aAn < U Cn,j < An,
j=1

and it is obvious from (2.2) and (2.1) that

(3.31) An»ch‘n'

The set |UJ}_, C,; defines a number of pairwise disjoint domains, say ¢,(k),
k=1,..., K(n), such that

Ut (= u Cosr

(3.32) ~
J (k) =C.

Exactly one of them, say ¢,(1), is unbounded, and our assertion of part (b) of
Theorem 1 will be shown to be equivalent to

(3.33) A, =C\¢,(1).
To this end, we have to prove that
(3.34) Ya(k)c A, (k=2,...,K(n)).

(a) (b)
Fig.2
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Now, each point u of ¢,(k) must, from (2.1), satisfy either
S.(w)=|u| (whencepeAd,), or S,(u)<|ul

But since ¢, (k) can contain no boundary point of A, by definition and by (3.30),
then either

Sa(w)=|u| forall pey,(k), or S,(u)<l|u| forall uec (k).
To eliminate this second possibility, it suffices by (3.31) to show that
(3.35) U (k)ynA, #D (k=2,...,K(n)).

As A,=[0, 1], it is evident, on superimposing Figure 2(a) and (b), that (3.35) is
valid for n =2, 3. That (3.33) and (2.8) are also equivalent in these cases is clear
from Figure 2(a) and (b), and (3.28). This completes the proof for n=2, 3, and
we now may assume that n=4. We note that C, ;, as defined in (3.28), has the
following properties (j=1,...,[n/2]):

(i) C,;is a curve in D connecting the points 1 and 0;

(ii) while passing from 1 to 0, the points of C, ; have strictly decreasing
moduli;

(3.36)  (iii) similarly, their arguments are strictly increasing;

(iv) C,; crosses the negative real axis for the first time for =
(j+1)7m/(n+1), provided j=1,...,[n/2]-1;

(v) Cy,n/2 is a curve from 1 to 0 which lies in the closed upper-half
plane.

We define the following subarcs of C, ;:

) . ) n+1 . +1
Dnj::' (_1)) ﬂ'—e’d’ . Jm S(//S(J )77
" ( qu) n+1 n+1
cos{ ——
+1
337) 4 for j=1,...,[n/2]-1;
[ cosy N\ jm T .
D, =3 (-1Y[————¢" : s¢y<—p for j=[n/2];
=1(-1) (J.ﬂ)e V=3 j=[n/2]
cos
n+1
Dn,n+1—j:={ﬁ:lu‘€Dn,j} for j::la'“’[n/zl

.
and let ®, ; be the bounded Jordan domains with

(338)  80,,=D,;UD,.1;  (j=1,2,...,[n/2].

We note that, in view of (3.36), each ©,,; is starlike with respect to the origin.

Proposition 7. For m=n or m=n+1, 1=j=<[n/2], 1=k=[m/2], and either
m# n or j# k, we have

(3.39) {1}<40,,;n 30, <= {1; 0}.
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Proof. For reasons of symmetry, it is clear that (3.39) will follow from

(3.40) {1} D, ;A Dpx< {1; 0}
With |
(3.41) Ol A U )L ST

n+1 m+1

assume that D, ; and D,,, have a common nonzero point:

n+1

e’ =(-1

m+1

Cos ¢ COs 1 o

By T €
cos( 17 ) cos( fem )
n+1 m+1

Then, arg z = arg w implies & = 8. Hence, (3.42) holds if and only if
-_I__ n+1 k+ m-+1
COS[(_J__?_)E] COS[L_ELW]

(3.42) z=(-1Y

(3.43) n + 1 _ m+1 ’
jm km
COoOS{ —— COos
n+1 m+1
or
‘+E aT n+1 .77_ n+1
COoSs (_J‘-—)— COs J
n n
(3.44) +1 _ +1

(=S (=G

Weé wish to show that the left-hand side of (3.44) is strictly monotonic in e,
0<e<1. If not, the derivative with respect to £ would vanish somewhere in
(0, 1), which gives

(o)l ez
= - W(Cos[%j%r]>m sin(%)(ms(%—%>)nﬂ

or, equivalently,
j+ +
tan(g—i)—q-r) = tan((k E)ﬂ).
n+1 m+1

Since both arguments are in [0, 7] where tan(x) is injective, we get the equivalent
condition

jte k+e

4 = .
(3.45) n+l1 m+1

Now, if n=m, we deduce j = k, which violates the hypotheses of Proposition 7.
However, for m=n+1, we get from (3.45) that ¢ = k(n+1)—j(n+2), which is
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an integer and hence is not in (0, 1). This contradiction shows that the left side
of (3.44) is strictly monotone in & for 0<e <1, so that equality holds in (3.44)
only for £ =0. Thus, the only nonzero point of D, ;U D, is {1}. On the other
hand, (3.36v) shows that 0 can be a point of D, ;N D,,x, which gives (3.39).

|

Starting from the point 1, the curves D, ; enter into the unit disk as follows:

. n+1 [ jm Jr j
(3.46) 1+lcos(—jw—) eXp[l<n+1)]<$“n+l)+O(¢1_n+l)'

n+1

From this fact, we can deduce that initially D, ;< ®,;_;uU{l}, and in view of
Proposition 7,

(3.47) ®n,j < ®n,j—1 (j=2,...,[n/2]),
and therefore
(248) ®n,j < ®n,l (] = 25 vy [n/2]).
Similarly, the initial portion of D, , must be contained in ©,_,, since (cf. (3.46))
2 1
> =4),
n+l n (n=4)

Hence, again by Proposition 7 (with m=n—1),

(3.49) 0,0,
in fact,
(3.50) -@:,;\{1; 0}= B,

since the boundaries have at most the points 1 and 0 in common. As 0, ; is
starlike with respect to the origin, we deduce that ‘

(3.51) C,;©0,,0,, (=1,...,n),

and, we similarly deduce from (3.47) and (3.50) that -

(3.52) C,;€0,,c0,,c0, ,,u{1;0} (j=2,...,n-1).
From (3.38) and (3.51), it is clear that (3.33) is equivalent to
(3.53) 4,=0,,

as well as to our assertion (b) in Theorem 1. We now proceed by mathematical
induction. The assertion has already been established for n=1,2,3. Assume
(3.53) holds for n—1. Then, by (3.52), we see that

(3.54) C,\1,0}cintd,,  (j=2,...,n-1),

and (3.35) is fulfilled for every ¢, (k) which has one of these curves in its boundary.
But, from (3.28), the curves C,,\D,,, C,.\D,, do not intersect in 0,,\0,_;
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0,,1\0n11

Fig. 3

(see Figure 3), so that each of the remaining domains ¢, (k), k # 1, also contains
points of A, _;. This proves (3.35), (3.33) and therefore (3.53). B

4. Proofs of the Corollaries

We begin this section with the following

Proposition 8. Write Q,,(w)=Y1_, ac(p)w, where Q, ,(z*) is defined in (2.6).
Then,

(4.1) a(p)>0  (k=0,1,...,m,0<p<1).

Proof. For any o> 1 and any n=1, let the coefficients b,(o; n) be defined by

+ 2 2n
(4.2) Z"T,,(crl——g—> =Y be(o; n)z~
2z K=0

Using the known expansion of the Chebyshev polynomial T,(x) in powers of x,
we immediately see that the odd coefficients b, (o; n) of (4.2) all vanish
(k=0,...,n—1), while for the even coefficients, we have

no " min{k;n—k} (n“j"l)! (_0.2)—1
2 S0 jHk=)(n—j—k)!
We next claim that b, (o; n)>0forallk=0,1,..., n. As by (o; n) = by,_py(0; n)

from (4.3), it suffices to show that b, (o; n)>0 for all k=0,1,...,[n/2].
Equivalently, it suffices to establish the positivity of

(43) by(oyn)= (k=0,1,...,n).

(44) q(x)= 3 —oImDIY

2 k=) (n—j—k)! (-1<x=0;k=0,1,...,[n/2]).
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For k =0, this is obvious. For k> 0, expanding ¢, (x) about x = —1 and applying
standard combinatorial identities, we obtain

kS k=1\ (n—k=1)!(Q+x)"!
wt0=%, ( j )(n—j—k—1>z(j+1)z

j=90

(k=1,2,...,[n/2]),

which is positive for all —1<x=0 and for all k=1,2,...,[n/2]. Thus,
by (o, n)y>0forall k=0,1,...,n and all c>1.
To complete the proof, from (2.6) we can write

d 1+ 2
(4.5) Qn’P(zz) = -—z.;i.—_l)Z2"+3E{Z—2n~2<zn+1Tn+1<p—1/(n+1)< 2ZZ )))}

Replacing n by n+1 in (4.2) and setting o= p~ """V we have from (4.2) and
(4.5) that
2n+3 n+1
2y — z d Z(k—n—l)}
T e e s et . + .
Q",P(Z ) (n+l)a,n+1 dZ {kgo b2k(a-, n l)Z

Thus, on differentiating in the above expression and then replacing z° by w, we
have

(4.6) Qu(W)=———— F by(o; n+1)(n+1-k)wk,
)0' k=0

(n+1
so that the positivity of the coefficients b,,(o; n+1) implies the sought positivity
of the a,(p) of (4.1). |
On setting z =1 in (2.6), it is easily verified that
(47) Qn,p(l):an-H(p'l/(n-Fl))'

Proposition 9. For each n=1, Q,,(1) is a strictly decreasing function of p for
0<p<l.

Proof. On differentiating the right side of (4.7) with respect to p, the strictly
decreasing nature of Q, (1) for 6<p <1 is equivalent to the property that

X
(4.8) Ts1(x) <m Tha(x)  (x>1).
Since both sides of (4.8) are positive for x> 1, then squaring yields

x2

(n+1)?

x2

(x*-1)

where we have used the identity that (1 —x?)( T, (x))*= n*(1— T%(x)). Thus, (4.9)
is equivalent to T2,,(x)> x°, which is obviously valid for all x>1and all n=1.
[ |

(49) T2 (x) < (Tha(x)) = (T2 (0) - 1),
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Proof of Corollary 1. From Theorem 1, we know that[0, 1]€ A,,, while [27, +00) €
3 ,. Thus, with the definitions of A, and X, in (2.2) and (2.4), the first and third
assertions in (2.10) of Corollary 1 are clearly valid. It remains to consider then
the remaining interval (1,2"), which is in (,,.
First, we note from (4.7) that

lim Q,,(1)=1, and limQ,,(1)=2"

p=>1- p—>0+
Then, with Proposition 9, it follows that for each p with 1 <pu <27 there is a
unique o € (0, 1) for which u = o T,,,(c” "™, so that (cf. (4.7))

(4.10) : p=Quo(1) € Quo(D).

Next, as a consequence of Proposition 8, for 0<p <1, |Q,,(z)| evidently takes
its global maximum in D only in the point z = 1. Thus, using Proposition 9, if
1> p> o, then for all ze D,

1Qnp(2)] = Q) (1) < Quoll) =,

whence w# Q,,(D) for all 1> p> 0. This fact, combined with (4.10) and part
(c) of Theorem 1, establishes S,(u)= 0. Consequently, Q,,(z) is the unique
extremal polynomial in P,(u) for the problem in (1.2), and from Proposition 8,
Q..»(z) has positive coefficients.

-To conclude the proof of Corollary 1, it remains to establish (2.12) of Corollary
1. Fixing w in (1,2"), let o, be the unique solution of (2.11) in (0, 1). Making
use of the following well-known representation for Chebyshev polynomials,

2T, () =(+Vy* = )"+ (y =y = 1) (y>1),
we have from (2.11) that

(4.11) 2u=(1+V1— g (1 1 — g Dyt
Writing
e K
(4.12) «/1-—0'3,/("”)=-———~—+0< ) (n>o),
n+1 n+1

it follows from (4.11) that K =arccosh(u ). With this value for K, solving for o,
in (4.12) directly gives the desired asymptotic expression (2.12). |

Proof of Corollary 2. Let p,(z) in P, be such that p,(z)#0 in D. If p,(z)=
K(K #0), then the inequality (2.13) of Corollary 2 is trivially satisfied. Hence,
we may assume that p,(0) =1, with p,(z) # 1. By the maximum principle, there
is a real 6 such that
|pa(e”)|= M =max|p,(z)|, where M>1.
|z]=1
Now, with u = p,(e”) so that |u|=M>1, set p,(z) = p,(e”z). Clearly, p,(z) €
P,.(u). With
m = min|p,(z)| = min| p,(z)],

lzl=1 |z|=1
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the hypothesis p,(z)#0 in D gives that 0<m <1. As p,(z) € P,(), it is also
evident (cf. (1.4)) that m=S,(n) <1, so that

(4.13) 0<m=S,(w)<1<|ul

Thus from (2.3), n€(,. With definition (2.6), assume ],u]> Qnm(1). Because
Qn.m(w) has positive coefficients from Proposmon 8, then u & Q,, (D), and, from
Proposition 9, it further follows that u € Q, (D) forany m=p <1.Butas p € Q,,
(2.9) of Theorem 1, coupled with the previous statement, gives us that S, (u)=p
for some p with 0< p <m, whence S,(n)<m. As this contradicts (4.13), then
|l = Q,m(1), which (cf. (4.7)) yields the desired result of (2.13) of Corollary 2.
It is further evident that all polynomials ¢Q, ./ (z), ¢ € C\{0}, gives the case of
equality in (2.13). B
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