SCIENTIFIC COMPUTATION ON SOME
MATHEMATICAL CONJECTURES

Richard S. Varga

This talk will survey recent results on four mathematical conjectures: the
Bernstein Conjecture in polynomial approximation theory, the Pélya Conjecture
(related to the Riemann Hypothesis) in function theory, the “1/9” Conjecture in
rational approximation theory, and the Ruscheweyh-Varga Conjecture in polyno-
mial function theory. The emphasis here will be on the interaction between
high-precision scientific computation and mathematical analysis, and their appli-
cation to unsolved mathematical conjectures.

1. _The Bernstein Conjecture

Scientific computations on an old open conjecture of S. Bernstein in approxi-
mation theory, turned out to be both mathematically and computationally
interesting, as well as esthetically pleasing. Like other famous unsolved conjec-
tures (such as the Goldbach conjecture in number theory), the Bernstein conjec-
ture is very easy to state.

For notation, given any real continuous function f (z) with domain [-1,+1],
let

) B =wt{lf gl coem]

denote the error of best uniform approximation of f (z) on [-1,+1] by polynomi-
als in m,. (Here, m, denotes the set of all real polynomials of degree at most
n(n=0,1, -~ }.) For the specific function |z |, a well-known result of Jackson (cf.
Meinardus [1.7, p.56]) gives that

(1'2) En(ttt) < 6/”‘ (n =12, ) )

and, because |z| is an even function on [-1,+1], it is easily seen (cf. Rivlin [1.9,
p.43]) that

(1'3) E2n ”IU = E2n+l(lz l) (n=0$11 ) .

Thus, it suffices to consider only the manner in which the sequence
{Eq, (|2 ])} 22 decreases to zero. From (1.2), there follows

(L4)  2nE5,(a]) <6 (n=12 ) .
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In his fundamental paper [1.2] from 1914, Bernstein significantly improved
(1.4). Specifically, he showed that there ezists a constant, which we call 8 (3 for
“Bernstein”), such that

(L.5) lim 2nEy, (|2]) = .

In addition, Bernstein, using crude calculations based on extremely ingenious
methods, deduced in [1.2] the following rigorous upper and lower bounds for f :

(1.6) 0.278 < 3 < 0.286 .

Moreover, Bernstein noted [1.2, p.56] as a “curious coincidence” that the constant

17) —= = 0.28209 47917 -
(1.7) 2\/_

also satisfies the bounds of (1.6) and is very nearly the average of these bounds.
This observation has, over the years, become known as the

1
2T

. ?
(1.8)  Bernstein Conjecture: =

In the 70 years since Bernstein's work [1.2] appeared in 1914, his Conjecture
remained unsolved, though there was considerable interest in this Conjecture (cf.
Bell and Shah [1.1], Bojanic and Elkins [1.3], and Salvati [1.10]). Recently, we
showed in 1985 in [1.11] that Bernstein's Conjecture is false. It is important to
add that the proof of this depended on numerically implementing some extremely
ingenious ideas already devised by Bernstein in 1914!

The high-precision calculations we performed in [1.11] consisted of three
basic parts:

i) Determination of {2nE,, (|2 )} 32;

ii) Determination of the upper bounds {2u,, },}%, for g;

iii) Determination of the lower bounds {I,, } 2°_, for .

The determination in [1.11] of the best approximation errors E,, (|2 ]) (cf. (1.1))
used an essentially standard mathematical implementation of the (second) Remez
algorithm (cf. [1.7, p.105]) on a VAX 11/780, with R. P. Brent's MP package [1.4]
to handle the multiple-precision computations. Taking into account guard digits
and the possibility of some small rounding errors, we believe that the numbers
{E,, (|2 )} %2, we determined are accurate to at least 95 decimal digits. A sub-
set of the numbers {2nE,, (|7 |)} 52 ,, truncated to ten decimal digits, is given in
Table 1.1 below to show the slow convergence of these numbers. (For a complete

listing of the numbers {2nE,, (|2 )} 2, in greater precision, see [1.11].)
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n_ 2nE,.(z))

1 0.25000 00000
10 0.27973 24337
20  0.28005 97447
30  0.28012 06787
40  0.28014 20296
50  0.28015 19162

Table 1.1

The computation of the upper bounds {2p,, } 1%, for 8 is based on the fol-
lowing ingenious observation of Bernstein [1.2]. Define the function F(¢) on
[0,+00) by

1

1 - ‘2‘ (%)
T dz 1 e " du
(L) Flt) = t{ z+1 E‘({ cosh(u /2t)
Other representations of F'(¢) include
1
. t) = Fl1,L;t + 3.1
o) Fi) = 5r[uuee il

where F'(a,b;c;2) denotes the classical hypergeometric function {cf. Henrici [1.6,
p.27]}, and

(1.11) F(t):%{w[-§+-§-]—w[—2t-r+%)} (t >0,

where ¥(z), the psi (digamma) function, is defined from the gamma function
I'(z) by

(1.12)  ¥(z):=

The connection between F'(¢) of (1.8) and the Bernstein constant 8 of (1.5)
is the following. For each positive integer m, set

1.13 m = inf cos(rmt) [F(t) - 'a + —-——-——-—]
( ) K G "+ ;0 real I (wt) [ ( 0 k§1 2k 1)/2] ] ” L [0,400)

and for m =0, set

(1.13")  po:= inf ||cos(7rt)[F(t)—a0] [l

agreal L o[0,+00) )
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Note that the poles of the sum in (1.13) are cancelled by zeros of cos (7t).
Because of this, standard arguments show that real constants {a (m )}/ exist
such that

, m a (m)
(L.14)  p,, = || cos (nt) {F(t) - [QO(mngxm [l L)

Moreover, it is evident from (1.13) that the numbers {g,, },&°_, are nonincreasing:

(LIB)  po 2 py 2" 2 By 2

Now, Bernstein [1.2, p.55] proved that S of (1.5) and the constants p,, of (1.13)
are connected through

(1.16) f =2 lim p,
m — o0

Clearly, we see from (1.15) and (1.16) that
(117) 2“0 Z 2“1 Z Z 2”m Z ﬂ (m=0,1, ) ’

so that the calculation of the constants 2u, provides increasingly sharper upper
bounds for 3. We mention that the upper bound 0.286 for 3 of (1.16), deter-
mined by Bernstein in 1914, corresponds to an approximation of the upper bound
2ug.

What is mathematically and computationally interesting is that the solution
of the approximation problem in (1.13) has an oscillation character which permits
(cf. [1.11]) the use of a modified form of the (second) Remez algorithm. We men-
tion that Bernstein’s work [1.2] of 1914 predates the 1934 appearance of Remez’s
algorithm [1.8].

In Table 1.2 below, we give a subset of the numbers {2u,, } 1%, each trun-

cated to 10 decimal digits. (For details on the application of this modified Remez
algorithm, and on the accuracies in the associated calculations, we refer to [1.11].)

m 2,

5 0.28177 99926
20 0.28026 79181
40 0.28019 38951
60 0.28018 03067
80 0.28017 55680
100 0.28017 33791

Table 1.2
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We remark that already from the case m =5 of Table 1.2, we have (cf. (1.7))

1
oW

> 215 = 0.28177 - > 8,

so that the Bernstein Conjecture (1.8) is necessarily false.

The final third part of the calculations for the Bernstein Conjecture from
[L.11] involved the calculation of lower bounds /,, for B. This is, as Bernstein
[1.2] also showed, is related to a complicated nonlinear optimization involving the
function F'(t) of (1.9). This was by far the most time-consuming of all calcula-
tions performed in [1.11]; for details of this and for a discussion of the accuracy
of these calculations, we refer the reader to [1.11]. These lower bounds {/,, }_,
can be shown to satisfy

(118) 1, <1y < <1, <B,with lim I, =3,
m ~+00

so that the calculation of the constants [, provides increasingly sharper lower
bounds for . We mention that the lower bound 0.278 for § of (1.6), determined
by Bernstein in 1914, corresponds to an approximation of the lower bound [ 2.
Table 1.3 below gives a subset of the numbers {I,, }2°_,, each truncated to 10
decimal digits.

m .

0.27198 23590
5  0.28009 77913
10 0.28016 13794
15 0.28016 71898
20  0.28016 85460

[

Table 1.3

From (1.17) and (1.18), we have that
(1L19) 1o < B < 2py99 -

Thus, from the appropriate entries of Tables 1.2 and 1.3, this implies that
(1.20)  0.280168 < B < 0.280174 .

Hence, these upper and lower bound calculations give us that

(1.21) B =0.280171 + 6  where |6] < 3x10°0 .

It turned out that the use of Richardson eztrapolation (cf. Brezinski [1.5, p.7]
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52

n=0D

with z, =1/n2 ), applied to the high precision calculations {2nE,, (|z])
produced unexpectedly beautiful results! This use of Richardson extrapolation in
[1.11] suggests that

(1.22) 3 == 0.28016 94990 23869 13303 64364 91230 67200 00424 82139 81236 -

to 50 decimal places. And, to leave intact the number of unsolved conjectures in
this area, it is conjectured in [1.11] that 2nE,, (|2 |) admits the following asymp-
totic expansion:

Ky K, K
(128) 2By (je))=F-—5+ —F - —5 4+ (n—00),

nt n®

where the constants K; (independent of n) are all positive. (For numerical esti-
mates of {K; }j‘o:o, see also [1.11].)

Finally, because the Bernstein constant g is intimately associated with the
function F (¢) of (1.10), it is not implausible that 3, as well as the constants K
in (1.23), may admit a closed-form expression in terms of classical hypergeometric
functions and/or known mathematical constants!

References

1.1 R. A Bell, S. M. Shah (1969): Oscillating polynomials and approximations
to |z |. Publ of the Ramanujan Inst. 1. 167-177.

1.2 S. Bernstein (1914): Sur la meilleure approximation de |z| par des
polynomes de degrés donnés. Acta Math. 37: 1-57.

1.3 R. Bojanic, J. M. Elkins (1975): Bernstein's constant and best approxima-
tion on [0,+00). Publ. de I'lnst. Math., Nouvelle série 18 (32):19-30.

1.4 R. P. Brent (1978): A FORTRAN multiple-precision arithmetic package.
Assoc. Comput. Mach. Trans. Math. Software 4 :57-70.

1.5 C. Brezinski {1978): Algorithmes d'Accélération de la Convergence. Paris:
Editions Technip.

1.6 P. Henrici (1974): Applied and Computational Complex Analysis, vol. 1.
New York: John Wiley and Sons.

1.7 G. Meinardus (1967): roximation of ctions: Theory a umerica
Methods. New York: Springer-Verlag.

1.8 E. Ya. Remez (1934): Sur le calcul effectiv des polynémes d'approximation
de Tchebichef. C. R. Acad. Sci. Paris, 199; 337-340.

1.9 T. J. Rivlin (1969): An Introduction to the Approximation of Functions.
Waltham, Mass.: Blaisdell Publishing Co.

1.10 D. A. Salvati (1980): Numerical Computation of Polynomials of Best Uni-

form Approximation to the Function |z|. Master’'s Thesis, Ohio State
University, Columbus, Ohio, 39 pp.



Scientific Computation on Some Mathematical Conjectures

197
1.11 R. S. Varga and A. J. Carpenter (1975)

: On the Bernstein Conjecture in
approximation theory. Constr. Approx. 1: 333-348

. 1: 333-348. (This will also appear as
a Russian translation in Math. Sbornik (1986).)

2. The Pélya Conjecture

This section is devoted to an old conjecture from 1927 of G. Polya (related
to the famous Riemann Hypothesis)

hesis). To begin, let Riemann's &function (cf
Titchmarsh [2.9, p.16]) be defined by

z 1
1), 7 % _i+_1.] [ _1.]
4 [2 AR Rl

where ¢ denotes the Riemann ¢-function. It is known that £ is an entire function
of order one which admits (¢f. Pélya [2.8], p.11]) the integral representation

(2.2) f@ cos {

== 4

e i) =1

where

(2.3)

n=1

Z (27m2nte® —3rn2e® ) exp (-

rnlett)

Now, expanding cos (zt) and integrating termwise in (2.2) show that € can be
written in Taylor series form as

1 o (-1)"b,, z*

(2.4) 2 ———-——.2m)‘ ,

where

(2.5) L= }Ot?m d(t)dt  (m=0,1, ) .
0

On setting z= -z? in (2.4), the function F (z)is then defined by

(2.5) =¥ b 27
5

meg 2m)!
so that F' is an entire function of order 1/2 which is real for real z. From (2.4)
and (2.6), it follows that

1,

27)  =¢=)=F(-2% .
(27) e =F(-2)
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Concerning the Riemann ¢-function, it is known that { - 2m },5°_; are the
real zeros of ¢, and the Riemann Hypothesis asserts that all remaining zeros of
the function ¢(z) lie on the line Re 2=1/2. It is known (cf. Titchmarsh [2.9])
that all the nonreal zeros of ¢(z) lie in the strip 0<Re z <1, and that infintely
many zeros lie on Re 2=1/2. To add to this, the Riemann Hypothesis has been
attacked numerically over the years, and it is now known (cf. van de Lune et al.
[2.10]) that the first 200,000,000 nonreal zeros of ¢{z ) closest to the real axis do lie
exactly on Re z=1/2!

In a different direction, as a consequence of {2.1) and (2.7), one obtains the
well-known result (cf. [2.4, p.16]) that the Riemann Hypothesis is equivalent to
the statement that all zeros of F{z) of (2.6) are real and negative. Now, it is
known (cf. Boas [2.1, p.24]) that a necessary condition that F'(z) satisfy the
weaker hypothesis that all its zeros be real is that its Taylor coefficients satisfy

I;m—l 5m +1 (
(2m-2)! (2m +2)!

i 2
(2.8) m[?-)—ﬁ—)-!-] > (m+1) m=132, ),

or equivalently that

coy 2 2m-1 ), ¢
(2.9) Dm = (bm ] - [m] bm—lbm+1 >0 (m=1,2, ) .

In 1927, Pélya [2.8], while studying some fragmentary unpublished notes of
J. L. W. V. Jensen dealing with the Riemann Hypothesis, raised the question of
directly establishing the inequalities (2.9), without proving the Riemann
Hypothesis. The interest in the inequalities in (2.9) is very natural: the truth of
the Riemann Hypothesis obviously implies that all the inequalities of (2.9) are
valid, so that if one of the inequalities (2.9) were to fail for some m >1, then the
Riemann Ffypothesis would necessarily be false! For historical reasons, we call
the inequalities of (2.8) and (2.9) the Polya- Turan inequalities.

The history concerning Polya’s problem of 1927 is interesting. For nearly 40
years, this problem was apparently untouched in the literature. Then in 1966,
Grosswald [2.4, 2.5] generalized a formula of Hayman [2.6] on admissible func-
tions, and, as an application of this generalization, Grosswald proved that

.2
(bm ] { 1
m logm

(2.10) D, =

m

l+0{ }, (m —o0) .

As the moments {b,, }2_, are well-known to be all positive (¢f. Thm. A of {2.3]),
then Grosswald's result (2.10) proves that (2.9) ¢s valiu for all m sufficiently
large, say m >my, but the exact value of m was not determined in Grosswald’s
analysis. To our knowledge, this gap in Grosswald’s solution of Pélya’s problem
was not filled subsequently in the literature.
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Intrigued by Pélya’s problem, in part because of its interesting numerical
overtones in the determination of the moments {b,, }_o We embarked on a
dual program of high-precision computations of the moments {bm 1,09 ) and the
numbers {D,, } 1% | as well as an attempt of a mathematically rigorous analysis
of the Pélya problem. Our mathematical result (cf. Csordas, Norfolk, and Varga
[2.8]) is that the Polya Conjecture is true:

Theorem. The Polya-Turan inequalities (2.9) are valid for all m =12, - .
Our proof of this Theorem, using a technique which is different from
Grosswald’s approach, has two main steps which we now sketch. Setting

(2.11) K(t)::ofo@(\/&’)du (t >0),

where ® is defined in (2.3), our first main step was to establish that log K (t) is
strictly concave on (0, +oo) Next, on setting

1

(2.12) >\J = m

fuzK ) (Z>—l),

the second main step of our analysis was to establish that log X, is also strictly
concave on {0,+0oc), from which it follows that

(213)  Xplye > Mpgpmare (m=12,) .

Now, integration by parts and the change of variable u =t? in (2.12) yield

(2.14) X\, = F(x+2 ft22+3¢, Yt (z>-1) .

Thus, on choosing £ =m - 1/2, the above reduces from (2.5} to

3

(2.15)  Xpypp= I;mﬂ/r(m +.é_) (m=12, ) .

Substituting (2.15) in {2.12) then gives

2m+1
m Ym +2 (m=1)2’ ) .

2m +3

(2'16) [6m+1]2 > [

which directly establishes (2.9) for all m =2,3, -+ . (The remaining case m =1 of
(2.9) was established numerically by computing the moments 50,5 1, and b, each
to a precision of 50 significant digits.) We mention that high-precision estimates
of {b,,}2_oand {D,, } }%_,, can be found in [2.3].
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To add to our excitement, a review of a 1982 paper by Matiyasevich [2.7]
appeared in the Mathematical Reviews (MR 85g:11079), after we had submitted
our manuscript [2.3]. Using an approach different from ours or Grosswald’s,
Matiyasevich also attacked the Polya problem. Specifically, Matiyasevich first
established that the number D,, of (2.9) possesses the interesting triple-integral
representation

9 — 1 o 2m ,,2m 2_,2 y w(t!
(2.17) D, SEm ) _H){{u VI P(u )®(v )(u*-v)f To()F dt du dv |

where

(2.18)  w(t):= (td(t)) @ (t)-td "(1)d(t) (t>0)

As ®(t) is well-known to be positive on [0,+00) (¢f. Wintner [2.11] or Thm. A of
[2.3]), it is evident from (2.17) that establishing

(219)  w(t)>0 (t>0)

would directly gives the positivity of D,, for all m=1,2, -, and this would
aflirmatively solve Pélya’s problem! By apparently sampling values of w(¢) and
using an interval arithmetic computer package, Matijasevich [2.7] asserts that
(2.19) is valid, and that his interval computations “are as powerful as a proof”.
Of course, a proof that the numbers {D,, }°_; are all positive is given in [2.3].
Whether or not Matiyasevich’s use of interval arithmetic computations to estab-
lish (2.19) will be accepted as a rigorous mathematical solution of Pélya's prob-
lem, his representation (2.17) will certainly be very useful in further similar inves-
tigations associated with the Riemann Hypothesis.

Concerning further possible research in this area, we mention an interesting
open problem. In analogy with (2.2) and (2.6) , consider the entire function
F\(z) defined by

(2.20)  Fy(- 22) := [®(t)e* cos (at )dt

O 8

for any A>0. Then, as in (2.4) and (2.5), we can write

Pl S b, (N)2™
(2.21) az) = méow )

where

o]

(2.22) b, (\):= [2m®(t)e dt  (m=0,1, ) .
0

It is known (cf. de Bruin [2.2]) that Fy(z) has only real zeros for all A>1/2.
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Moreover, it can be shown that if Fy(z) has only real zeros, then F'y- (z) has
only real zeros for any A” >X. Now as the choice A==0 in (2.20) gives the fune-
tion F(z) of (2.8), then the truth of the Riemann Hypothesis would necessarily
imply that Fy(z) has only real zeros for each X\>0, from which it would follow
that the numbers

(2.23) D, (\):= [5m (k))z_ ( 2m-1 l .

om +1 bm-l(x)ém«ﬂ()‘) (m=1,2, )

would satisfy the associated Polya-Turan inequalities:

(224) D,(M)>0 {m=12-;allX>0) .

We conjecture that, in fact, that (2.24) is valid for all real X, and this is currently
being investigated by us.
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3. The “ 1/9 " Conjecture
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The object of this section is to review the more recent results concerning the
“1/9” conjecture in approximation theory, and to mention some exciting new

developments related to it.

Because rational approximations of e™® occur naturally in the numerical

solution of heat-conduction problems (cf. [3.8, Chapter 8]), there has been con-
siderable theoretical interest in the best uniform rational approximations to e~?
on [0,+c0). Specifically, if m, , denotes the set of rational functions
Pm (2)/q, (2), where p,, (2) and q, (z) are real polynomials of respective degrees
m and n, then set

s €] (m<n),

’

G0 A= mind e - ry (o)

Lw[0,+00) '

and set
(32) A= lm AP Ayi= lim A7

n —+00 n —=+cc

It was first shown in 1969 by Cody, Meinardus, and Varga [3.2], using elementary
means, that

. 1
3.3 lim A/ < —— .
( ) nlmoo On = 2.208

Since it is obvious from (3.1) that

(34) >‘O,n. Z kl,n Z Z )\n,n (n =0;11 )7

then (3.3) gives that

1
(35) 0 A <A 5o

Thus, the error in best uniform rational approximation to e™® on [0,4cc) by
rational functions in 7, , enhibits geometric convergence, and this phenomenon
stimulated much subsequent related research. For further historical remarks and
related references, see [3.1] and [3.9].

Now, the paper of Cody, Meinardus, and Varga [3.2] also contained numeri-
cal estimates for {\, ,} 'L, These numbers, which indicated that the upper
bound in (3.3) was certainly crude, led Saff and Varga [3.5] to conjecture that

(3.6) A £ Ay,

as well as that

2 1
3.7 Ay = —
(3.7) 2= 3
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It was recently shown in 1985 by Opitz and Scherer [3.4] that the conjecture in
(3.7) is false. More precisely, Optiz and Scherer, using an interesting steepest
descent approach and numerical optimizations, established that

1
< -
A2 S Foa7

(3.8)
In other words, the geometric convergence rate of {\, ,};%, is actually better
than 1/9! To round out our discussion here, the currently best lower bound for
A, was established in 1982 by Schonhage (3.6}, and is

1
(3.9) 13.928

<Ay

To describe connections with the Carathéodory-Fejér rational approxima-
tion method, let

(3.10)  exp [(:r—l) / (+1)] = kio’ck Te(z) (2 €[-1,+1))

denote the Chebyshev expansion of exp [(:c~l) / (+1)] on [-1,+1], where
+1

(3.107) ¢ = —72-r-fexp [(zvl) / (+1)] Ty (z)dz /| V1-2?  (k=0,1, ),
-1

and where the prime on the summation in (3.10) means that ¢ (/2 is used in place
of ¢g, defined in (3.10"). On forming the infinite Hankel matrix
H = [¢; 4; 1] =1 from the coefficients of (3.10"), set

(3.11) o, := n-th singular value of H (where 0y > 0y > -} .

In 1983, Trefethen and Gutknecht [3.7] conjectured that
312) N, , Yo

n,n n (TL "->OO) ’
and, on the basis of numerical estimates of ¢, from [3.7], they further conjec-
tured that

9 1
3.13 Ay = i .
(B:13) A2 = 553503
Subsequently in 1984, Carpenter, Ruttan and Varga [3.1] calculated (by the
Remez algorithm) the numbers {\, , 139, with very high precision (about 200

decimal digits), and with Richardson extrapolation techniques, they conjectured
that

1

2
3.14) A, =
(3.14) 27 9.28002 54919 2081
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Note that this latter conjecture, on rounding, confirms (to the number of digits
claimed) the conjecture of Trefethen and Gutknecht in (3.13), which was based.
on totally different computations and analyses.

In a surprising new development, A. P. Magnus {3.3] has estimated the
singular values ¢, of (3.11), and he is convinced that

(3.15) Ay = e K /K

where K and K * are complete elliptic integrals of the first kind (usual notation),
evaluated at the point where K =2F 6 E being the complete elliptic integral of
the second kind. Even more astounding is the fact that the number ¢ ™K /K
which can be calculated to arbitrary precision, is given by

(3.16) oK /K — ! :
9.28002 54919 20818 91875 54494 35052 -

which agrees with all 15 digits of {3.14), again based on lotally different computa-
tions and analyses! It is very likely that Magnus' conjecture (3.15) is correct, but
there is no complete proof of this as yet.

We conclude this section by stating that it would seem that a sequence of
ezplicit and constructive rational approximation {#, ,(z)} %o of e™* could be
found (perhaps based on the notions of inner polynomials introduced by Opitz
and Scherer [3.4], and on Laguerre polynomials) which would directly settle all
these interesting conjectures in this area, without the necessity of indirect use of
the Carathéodory-Fejér method. This is currently being investigated by A. Rut-
tan, R. S. Varga, and others.
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4. The Ruscheweyh-Varga Conjecture

There has been a contlinuing research interest in global descent methods for
finding zeros of a given polynomial. (For recent contributions on this and for
related literature, see Henrici [4.1] and Ruscheweyh [4.3]) To crudely describe
such methods, let p, (z) be a given complex polynomial, and suppose that zg, our
initial starting point of a procedure for finding a zero of p, (2}, is such that
po (70) 7% 0. Without loss of generality, assume z¢=0, and further normalize
p, (2) so that

; A
(4.1} pol2)=1+ 3 a; 27, where ¥ |a;{ 50 .
i=1 j=1

By a well-known result of Cauchy (cf. Marden [4.2, p.126]), if R (called the Cau-
chy radius of p, (2)) is defined as the unique positive real root of

(42) 1- 5"‘_, la;|R7 =0,

j=1

then each zero 2 of p,(z) necessarily satisfies |2|>R. On further normalizing
R to unity, i.e., on assuming

43)  Sle|=1,

J=1

then any polynomial p,(z) in (4.1) which satisfies (4.3) evidently has no zeros in
|z]<1. (It may well have zeros on |z |==1, as the example 142" shows.)

Next, let z,; be any point on |z |=1 for which

pale’) |

(4.4)  Ipa(2))] = min

{(In actual numerical applications, |p, (2;)| need only be an approzimation of the
minimum of |p, (¢'?)|, obtained from sampling |p,(z)| in a finite number of

points on |z |==1.) Note that since p, (z) from (4.1) is not identically constant,
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then by the minimum princip’e,

(45) o (20 < [pa(20)]

In this fashion, one obtains (with appropriate normalizations at each step) a
sequence of points {z;} fo which, because of (4.5}, is known to converge to a
zero of p, (2).

Our interest in the problem was in the following question. While (4.5) shows
that the point z; is in some sense an improvement over z, in estimating a zero of
Pa(2z), it could be that the reduction in |p,(z¢)|, in finding |p, (#,)], might be
small. This led to the question of how large gr:zx:l | po(e*®)| can be for all poly-

nomials p, (z) satisfying (4.1), and (4.3). Thus, we were led to the problem of
investigating the behavior of

(46) T, = Sup{lniiélllp,‘(z){ D p, (2)=1+ i a; 27 with f} }ajlzl} ,
2> J==1 J==1

for each n >1.
In Ruscheweyh and Varga [4.4], it was shown that

1 / 1 1
(4.7) 1——n—gl‘n§ 1—7{<1—_27L— (n2>1) .

Analogously, if we set

(18) T = sup{ min py (2] py (2) = 14 35 027
z|< =1

then each polynomial considered in (4.8) evidently satisfies the hypotheses for
(4.6), so that

(49) L <T,

It was further shown in [4.4] that

(4.10) 1»-1"-gf; < /hﬁ:l-%w(%) (n—o0) .

Next, we conjectured in [4.4] that
(41) T, LT (n>1),

and that there exists a positive constant « (independent of n) such that
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(4.12) T:,.—il—%+o(-:;) (n—c0) .

Indeed, extended precision calculations given in [4.4] led us to further conjecture
in [4.4] that

(413) 4= 0.86718 9051 -

In subsequent research, Ruscheweyh and I [4.5] have focused on the follow-
ing different, but related, problem. Let IP, denoting the set of all complex poly-
nomials of degree at most n(n >1). Then for each complex number p, consider
the following subset of IP, of polynomials with two prescribed values, defined by

(4.19) an)==pnu)ewn:n4m=1mmpun=u}

What then can be said about the nonnegative numbers

(115) 8,0 2= sup{ min lpu (2)] 2 € P ()]

as a function of n and p?
One of the surprising results of [4.5] is that
1 2 1
(416) S, (2)=L[ =1- %{arccosh (2)} + o0 (—T-L—) (n —o0),

so that the quantity ~ of (5.12)‘is exactly given by
2
(417) 4= {arccosh (2)} /2 = 0.86718 90511 36318 - .

Thus, our conjecture of (4.13) (to the number of digits given in (4.13)) is correct.
The conjecture of (4.11}), however, remains open.

We quote from [4.5, Corollary 1] the following result which, for the special
case p=2, gives the result of (4.18).

Theorem. Let #>0. Then, there holds

g0 < p <15
(418) S ()= jo,if1 < p <L 2%
0,if2" <npu .

Here, o is the uniquely determined solution in (0,1) of the equation
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(4.19)  p=0T, 4 (a7,

where T, ,4(2) denotes the Chebyshev polynomial (of the first kind) of degree
n+1. For n tending to infnity, the solution o of (4.19) can be expressed as

(420) o=1- {arccosh (p)}u/Qn + 0(—};—) (n —o0) .

In_addition, for g € (1,2") and for o defined in (4.19), define the polynomial
Q. +(2) by_means of

2. -9 2n+3_i_{ —(n+1) —l/(n+l)[1+w2] }
(421) Qn,o(w ) (n+1) w dw w Tn+1 4 2w

Then, @, ,,,(z) is_an_eclement of P, (pt), and is the unique extremal polviiomind for
S, (1), Le.,

{4.22) S, {p) = min

|- 151

Qulz)|

Morcover, Q. (z), when expanded in powers of z, has positive coeflicients.
AMNLOV R W o ' :

Finally, we can associate to cach complex number g in the complex plane
the nonnegative quantity S, (z) of (1.15), thereby generating a three-dimensional
surface. This surface, as it turns out, has the interesting shape of a wvolcano.
There are different types of voleanoes (active, dormant, extinct), and the present
author hopes that this volecano will help convey the acfive interplay between
scientific computing and mathematical analysis!
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Erratta:
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p. 202
eq. (3.2). Read “ Ay i= T A7 >

n

« i 1/” 1 I
eq. (3.3). Read nlirr;o Ao < 5o



