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Abstract. It is known that the Riemann hypothesis is equivalent to the statement
that all zeros of the Riemann ¢&function are real. On writing £(x/2)=
8 f:;o d(1) cos{xt) dt, it is known that a necessary conditiog that the Riemann
hypothesis be valid is that the moments b,,(A)= fo 12" e D(2) dt satisfy the
Turan inequalities

2m—1
2m+1

(*) <5m<A>)2>( )5m‘lu>b‘m+,u> (m=1,1=0).

We give here a constructive proof that log <I>(\/t) is strictly concave for 0 <t < oo,
and with this we deduce in Theorem 2.4 a general class of moment inequalities
which, as a special case, establishes that the inequalities () are in fact valid for
all real A. As the case A =0 of (*) corresponds to the Pélya conjecture of 1927,
this gives a new proof of the Pélya conjecture.

1. Introduction

Motivated by our recent solution of a 58-year-old problem of Pélya (see[13, p. 16],
[4], and also [6]), we will establish in this paper a general class of moment
inequalities related to the Riemann hypothesis. Moreover, we will also establish
here a new property of the kernel function ®(¢) (cf. (1.2) below) figuring in the
definition of the Riemann £-function, £(x), where

(1.1) g(%‘) :—sj ®(1) cos(xt) dr,
G
and where
(1.2) O()=Y (n*n* e’ =3n’mwe’) exp(—n’me*).
n=1
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176 G. Csordas and R. S. Varga

(We have deleted here the usual factor of 4 in the definition of ®(¢).) Now &(x)
is an entire function of order one (see p. 16 of Titchmarsh [17]), whose Taylor
series about the origin can be written in the form

Y A W tl)_’"_l;__m 2m

(1.3) s§<2) mZ=0 amyt <

where

(1.4) b ::J £ro() dt (m=0,1,2,...).
0

On setting z=—x” in (1.3), the function F(z), defined by

I bAm N
(1.5) F(z)=Y

o@mytt

is an entire function of order 1. If x, is a real zero of &(x/2), then zy=—x3 is a
negative real zero of F(z), and the Riemann hypothesis is equivalent to the
statement that all the zeros of F(z) are real and negative (see, for example, [13]
and [17]). It is known (see p. 24 of Boas [2], or Pblya and Schur [15]) that a
necessary condition that F(z) have only real zeros is that

(1.6) (bm)2>(%%>bm_lbm+l (m=1,2,...).
While the inequalities (1.6) are today commonly referred to as Turdn inequalities
(associated with the function F(z) of (1.5)), they may be more precisely called
the Euler-Laguerre-P6lya-Schur-Turan inequalities.

In 1927 Pélya [13, p. 16] raised the question of whether or not the Turdn
inequalities (1.6) are all valid. In [4] we have proved the inequalities (1.6), for
m =2, by showing that the function

1.7) K(t)= J &R u)du  (1=0)
is strictly logarithmically concave on the interval (0, ), i.e. log K(¢) is strictly
concave on (0, ). The case m =1 of (1.6) was settled numerically in [4].

The interest in the more general moment inequalities, which we shall establish
in Section 2 {cf. Theorem 2.4), stems in part from the fact that they also provide
necessary conditions for &(x) (cf. (1.1)) to have only real zeros. Indeed, as a
by-product of the present investigations we will obtain here a new proof of the
Turan inequalities (1.6). More importantly, our proof of the general moment
inequalities is based on the key result (Theorem 2.1) which asserts that the
function log(CI)(\/t)), t=0, is strictly concave on (0, ), where ®(¢) is defined
by (1.2). Our verification of the logarithmic concavity of <I>(\/t) on (0, o) entails
a series of involved, but elementary, estimates. These results (Lemma 3.1-3.10)
have been gathered separately in Section 3. Also, in Section 2 we will provide
some additional background information pertaining to the work of de Bruijn [3],
Newman [8], and Pélya [9]-[13].
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For the readers convenience we mention that all original papers of G. Pélya
([9]-[13] and [15]) can be found in [14].

2. The Problem and the Main Results

The ideas developed in [4] can also be applied to problems involving some more
general trigonometric integrals such as those studied by de Bruijn [3], Newman
[8], Polya [11]-[13], and Prather [16]. In order to facilitate the description of
one such problem, assume that ¢(7): R—> R and assume that

(i) ¢ is integrable over R,
(2.1) (ii) ¢(t)=¢(—1),teR, and
(iii) @(t)=0(e ), a>2, as 1> +o0.

Now let f(t) be a real entire function of genus 0 or 1 with only real zeros, and
let A satisfy A = 0. If the function ¢(t) satisfies the conditions of (2.1) and if ¢(?)
is such that all the zeros of the Fourier transform of ¢(¢), namely

oo

2.2) H(x):= J (1) e™ dt,

00

are real, then, by a classical result of Pdlya [12], the entire function

(2.3) J e f(it)p(t) e™ dt

also has only real zeros. That is, in P6lya’s terminology (see p.7 of [12]), the
functions of the form e f(it), A =0, are universal factors which preserve the
reality of the zeros of any entire function of the form (2.2), where H(x) has only
real zeros and where ¢(t) satisfies the conditions of (2.1). In fact, P6lya [12] has
shown that the functions e*" f(it), A =0, are the only analytic functions which
enjoy the aforementioned property.

Now choose ¢ (1) =®(t), where ®(¢) is defined by (1.2). Then it is known that
®(t) satisfies the conditions of (2.1) (see, for example, Theorem A of [4]). Thus,
if the Riemann hypothesis is true, then for any universal factor et f(it), with
A =0, the entire function

(2.4) J M Fi) (1) e™ dt
must have only real zeros. In particular, with f(it) =1 the entire function given
by (2.4) reduces to the function

o0

(2.5) r e D (1) efx‘dz=2j e’ ®(1) cos(xt) dt,

0

—00

and the Riemann hypothesis implies that the above function of x has only real
zeros for any A =0.

Relevant to the foregoing considerations is a recent interesting result of
Newman [8, Theorem 3] which, using the notations adopted here, may be
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expressed as follows. There exists a real number A,, with —c0 < Ao=4, such that
the function G, (x) of (2.5) has only real zeros when A = A, and has nonreal zeros
when A < A,. Thus, the Riemann hypothesis is the statement that A, =0. In [8]
Newman makes the complementary conjecture that A, =0 and remarks that “This
new conjecture is a quantitative version of the dictum that the Riemann
Hypothesis, if true, is only barely so.”

Now, for an arbitrary real number A, consider the function

(2.6) H,(x)= Jm e’ ®(1) cos(xt) dt,

0

and the corresponding moments

(2.7) Bm(,\):f P () dt (AeR,m=0,1,...).
0

Since Hy(x) has all its zeros in the horizontal strip |Im z|=1 (see p.221 of [3]
or p. 246 of [8]), it follows from a result of de Bruijn [3, Theorem 13] that H, (x)
has only real zeros for all A =3. Moreover, if H,(x) has only real zeros for some
A, then H,(x) also has only real zeros for all A’= A (see Theorem 13 of [3]).
Thus, in particular, the Turdn inequalities associated with the general moments
(2.7), namely

(2.8) (b (2))*> (gﬁ’—l) bW bpir(A)  (m=1,2,..0),

2m+1
hold for all A =L But if the Riemann hypothesis is true, then, by the above cited
facts, H, (x) must have only real zeros for all A =0, and in particular for 0 <A =3.
Therefore, a necessary condition for the Riemann hypothesis to be true is that
the inequalities (2.8) should hold for m=1,2,... and for 0<A <3,
Preliminaries aside we will now proceed to establish the inequalities (2.8) for
all m=1 and for all real A, as a special case of a more general result (cf. Theorem
2.4). Set

(2.9) g(1)=([(@'(1))*—D()P"(N]+D(NP'(1)  (¢=0).

Then the proof of our first main result here (cf. Theorem 2.1 below) is based on
the inequality

(2.10) g(t)>0 (0< t<o0).

Since the lengthy calculations leading to the proof of (2.10) (cf. Theorem 3.11)
might detract from the basic ideas of this section, they have been gathered
separately in Section 3.

Theorem 2.1. The function log(@(x/;)) is strictly concave on the interval (0, ),
where ®(t) is defined in (1.2).

Proof. Observing that ®(¢)e C*(R) and ®(¢) >0 for all =0 (see Theorem A
of [4]), an elementary calculation shows that (d?/dt’) log (®(v/1)) <0 on (0, )
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if and only if g(¢)>0 on (0, ), where g(7) is defined in (2.9). Thus, Theorem
3.11 yields the desired result. B

Consider now any even real entire function f(z)% 0 of genus 0 or 1 with only
real zeros, so that f(z) can be expressed as

© 2

(2.11) flzy=Cz>" [] (1 —55) (w=00),

Jj=1 Zj
where C is a real nonzero constant, n is a nonnegative integer, and z; satisfies
z>0(1=j=w)with ¥\, 1/z]<co. Note that f(z) = 1is of the form (2.11). With
our earlier discussion we further note that e f(it) is a universal factor for any
f(z) of the form (2.11) and for any A =0. In addition we have from (2.11) that

., o 2 .
(2.12) flin=Ccr" 1] <1+—5> - (C=(-1)"0),
i=1 Zj

so that /(i) is also a real even entire function. Without loss of generality we may
assume that C>0. As ©(¢) of (1.2) is also an even function, then, for any A =0,

+0o0 0

M FiD(1) e™ dt :J M f(i)® (1) cos(xt) dt,

0

(213) G(x; f,A)=3 J

—0o0

and G(x: f, A) is an entire function (see Theorem A of [4]). As previously noted,
if the Riemann hypothesis true, then G(x; f, A) must have only real zeros. Now
the Taylor series of G(x; f, A) about the origin can be expressed as

e (=1)"b,(f; A)x*"

(2.14) G(x;fA)= m};O o)t
where
(2.15) b (fi4):= F £ f(ind() dt (m=0,1,...).

On setting z=—x" in (2.14), the function

= Bu(f;0)z"
F(z;f, )= —_—
has only real negative zeros if the Riemann &-function has only real zeros. As in
(1.6), a necessary condition that F(z; f, A) have only real zeros is that

zm“l)éml(f; Mboi(fi1)>0

(2.16) Dm(f;A)iz(gm(f;/\))z—<2m+l

for all A =0 and all functions f{(z) of the form (2.11).

We will deduce from Theorem 2.1 the inequalities of (2.16) for all real A and
all f(z) of the form (2.11). This can be done using two distinct approaches. The
first approach is patterned after Matiyasevich’s triple integral representation [6]
of the Turdn differences of (2.16).
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Proposition 2.2. Let A be a fixed but arbitrary real number, let f(z) be of the form
(2.11), and set

(2.17) V(1) =W(1; f; )= e f(inD(1),
where ®(1) is defined in (1.2). Then, for m=1,
(2.18) 22m+1)D,(f;\)= Jm ro Wt (02— uY (u, v; f, A) dudv,
where
e C_d(v@)
I(u,v; f, ) =¥ (u)¥(v) L dt(t\I’(t)) dt,
and where D,,(f; A) is defined in (2.16).

Proof. From (2.15) and (2.17) l;m(f; A) =[5 " W(¢) dt, and an integration by
parts, applied to this integral, yields

o0

____!WJ
2m+1) J,

Hence, using (2.19) we have, for A e R and m =1, that

L ‘J‘O uzmvzm\y(u)\?(v)(vz—uz)(jv~%(?:—y%) dt) du dv

o0

=—2m=1)b,,(f; 1) J v*" W (o) do

0

(2.19) bo(fiA)= £ dt . (AeR, m=0).

+@2m+1)b,.(f; 1) r 0¥ W (v) do
0

o

+(2m+l)5m(f;A)f W W (u) du

0

—(2m=1)b,(f; 1) f u?" W (u) du

=22m+1)D,, (f, L). B

The second proof of the inequality (2.16) will be based on the following slight
extension of the known result (see, for example, Marshall and Olkin [7, Proposi-
tion E.4 part (2)] of Barlow, Marschall, and Proschan [1]).

Proposition 2.3.  Let A be a fixed but arbitrary real number, let f(z) be of the form
(2.11), and set

(2.20) JT J / z"\lf(\/;) dt (x>—1,A€R),

- M(x+1) J,
where I'(x) denotes the gamma function and where V(1) is defined by (2.17). If
log(\If(v/t)) is strictly concave for 0<t<co, then log u, is strictly concave for
—1 <x<o0.
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Proof. The Barlow, Marshall, and Proschan result asserts that if log(‘I’\/ 1)) is
concave for 0=t <o, then log u, is concave for x=0. The extension of this
result from the concave case to the strictly concave case is mutatis mutandis the
same as the proof of Proposition 2.4 of [4]. [}

Theorem 2.4. For any f(z) of the form (2.11), set

o

Em(f;A)Z“J 2m Mf(zt)CI)(t) dt (AecR, m=0,1,2,...).

0

Then, the following Turdn inequalities

1) B (s VB3 A)

(2.21) (Bl f3 1)) > (2 1

hold for all m=1,2, ... and for all real A.
First Proof of Theorem 2.4. To begin we note, from (2.17) and (2.12), that

W(t)>0 for all t# 0 and all real A (see Theorem A of [4]). Thus, by Proposition
2.2, it suffices to show that

d (_\If’(t)
dt

(2.22) E(t)=— I‘I’(t)>>0 (t>0).

Now an elementary calculation shows that
d’ —

(2.23) E(t)=—4t{g~5}0g \I’(\/u)[uz,z} (2> 0).
u

Thus, to establish (2.22), it suffices to show that

d?
(2.24) —log ¥ Nu)<0  (u>0).
Now, from (2.17), ‘If(x/u) = e“‘f(iv/;)d)(\/Z) for all u> 0 so that
log U(vu) = Au+log f(iNu)+log ®(Nu)  (u>0)
and hence

d? d? —  d*log ®(Wu
i 210g‘1’(\/u)———10gj(~/ )+__9iuz(&

From (2.12), logf(z\/u) =log C+nlog u+2‘f;1 log(1+u/z;), so that

(2.25) (u>0).

flélogf(iJ;):—{ Z e }<O (u>0).

Consequently, the first term on the right in (2.25) is negative for each u >0 and,
from Theorem 2.1, the second term on the right in (2.25) is also negative for each
u>0. Thus, (2.24) is valid. |
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Second Proof of Theorem 2.4. For a fixed but arbitrary real A, consider

(2.26) 3y 12'2?(;::‘1—)[&) tx‘lf(\/;) dt (x>—-1,1€eR)
1 * 2x+1 —— 2
——‘mJO N Y(s) ds (t:=1s57)

= T(x)=T(x; £ )),

where I'(x) denotes the gamma function and W(7) is defined in (2.17). From the
first proof of Theorem 2.4, log ‘If(\/t) is strictly concave for 0 <1 <co. Hence, by
Proposition 2.3, log T(x) is strictly concave for —1 <x <00 and for any real A.
Therefore,

THx)> T(x~8)T(x+8) (6>0)

for any x with x—8>—1. In particular, choosing §=1 and x=n—3 for n=
1,2,... gives

(2.27) T n=-3H)>Tm-HT(n+d) (n=1,2,...).
But, by (2.26), T(n—1) can be expressed (cf. (2.15)) as b,(f; A)/T(n+1), and it
follows that inequality (2.27) reduces to the desired result of (2.21). B

Remark. Our results are also applicable in fairly general situations. Indeed,
consider any entire function of the form

[eel

(2.28) H(x)= J V(1) cos(xt) dt,

0
where W(t) is any C*(R) function which satisfies (2.1). Let
(2.29) &= J () dt (m=0,1,2,...)
0

denote the moments corresponding to the function W(r). Then, a necessary
condition for the entire function H(x) to have only real zeros is that

. 2m—-1\. .

(2.30) c?,,><2m+1)0,,,,1(:,,14rl (m=1,2,...).
By Theorem 2.4 a sufficient condition for (2.30) to hold is that
d’ -

(2.31) :i—t—zlog(‘lf(x/t)) <0 (t>0).

As an example of how (2.31) can be applied, consider first the function
W(t):=exp(—2cosh(t)). Then it is known (see [11]) that the cosine transform of
W(t), namely

on exp(—2 cosh(r)) cos(xr) dt,

0
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is a real entire function having only real zeros. Since
log ¥(V1)=—2cosh(v1)  (1=0),
then

d? sinh t
£ oy [
But, as the Taylor expansion (in the variable u = t) of the quantity in braces
has all negative coefficients, we see that the sufficient condition (2.31) for the
inequalities of (2.30) to hold is satisfied. It is interesting to remark that \I’(t) =
exp(—2 cosh(t)) cannot be expressed as f(it) where f(z) is of the form (2.11),
so that this example does not involve universal factors.
As another application of the previous results we have the following

} (1>0).

Corollary 2.5. Let
(2.32) W, (t)=®(t) cosh(Ar) (A eR),
where ®(t) is defined in (1.2), and let

(2.33) & (0)= Jmo £ (1) dt (m=0,1,2,...).

Then,

-1
2m+1

(2.34) (c,,,(/\))z( )ml()\)r?mﬂ()\) (AeR,m=1,2,..).

Remark. The inequalities (2.34) are known in the special cases A =1 (see p. 32
of [13]) and A =0 (see [4]). For A = 1, the kernel ¥,(t) of (2.32) is of particular
interest since, in [13], Pélya has shown that the Fourier cosine transform of
W, (1), Le,

(2.35) Fi(x)= Jw W, (1) cos(xt) dt,

has only real zeros. Pélya’s method also shows that the entire function
F,(x)= J W, (1) cos(xt) dt
0
has only real zeros if A =1, and, consequently, (2.34) holds for ali A = 1.

Proof. By Proposition 2.3 it suffices to show that the function
(2.36) h(1)=log(¥,(V1)) (AR, 1=0)

is strictly concave for ¢>0. By the above Remark we may assume that A #0.
Thus, from (2.32),

2

d h (1) = d 1og(<b(\/l)+——~log(cosh()n/t) (t>0).

@37
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From Theorem 2.1, the first term on the right above is evidently negative for all
t> 0. With the identity cosh’(Au)—sinh®(Au)=1, a calculation shows that the
final term of (2.37) is negative for all >0 iff

(2.38) o (u)=—A"u+A sinh(2Au)/2>0 (0<u <o0).

But, as 0,(0) =0 and o, (u)=A*{—1+cosh(2Au)}>0 for all A #0 and all u>0,
it follows that the inequality in (2.38) holds, and hence the function Iog(\lf)\(\/t)
of (2.36) is strictly concave for all 1> 0. B

3. Background Analysis

With
(3.1) g(1)=1[(Q' (1)) = D(NP"(N]+D()P'(1)  (¢=0),
which can also be expressed as
s=@Or g {ma) =0,
we see that g(0) =0, since it is known (see Theorem A of [4]) that ®'(0) =0. The
object of the section is to show that

(3.2) g()>0 (t>0),

and this will be shown by separately establishing that
(3.3) g(t)>0 (0<1=0.03),
(3.4) g(t)>0 (0.03=1=0.06),
(3.5) g(1)>0 (0.056 < t <0).

Lemmas 3.1-3.4 give the result of (3.3), while (3.4) is established from Lemmas
3.5 and 3.6, and (3.5) is established in Lemmas 3.7-3.10.

Throughout this section we will use the following notations, notations which
are consistent with those used in [4]:

a,(t):=mn’(2an’ e* —3) exp(5t — mwn’ ¥ (n=1,2,...).

(6 o= 3 a),

o)=Y ayi) (=1.2..)

n—j+1
On differentiating a, () of (3.6), we can write

(3.7 al(t)=mn’p;, (mn® e*') exp(5t —wn’ e*') (j=0,1,...),
where the polynomials { p,(y)}i-, are defined recursively from

(3.8) Pa(y)=4ypiy)+(5=4y)p(y)  (k=1,2,..)),
where (cf. (3.6)) pi(y) =2y —3. Now (3.8) gives

d
ey (P prai(v) & eV (p()T  (k=1,2,..)),
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and, with Rolle’s theorem, the above expression can be used to show, inductively,

that p.(y) has k distinct positive zeros {ri/’};_,, ordered as 0< < rP<.-<

r{®_ for each k=1, and that the zeros of p.(y) and pi.,(y) interlace, i.e.,

o<rl),<riV<r@ <rP<---< r < iy (k=1,2,...).
Because of their use in results to follow in this section, we list below the
following particular polynomials px(x):
([ pa(y)i=—8y*+30y—15,
ps(y) = 32y° —224y*+330y =75,
pa(y) = —128y" +1,440y° — 4,232y + 3,270y — 375,
ps(y) =512y —8,448y* +41,408y” — 68,096y + 30,930y — 1,875,
pa(y) = 8,192y7 —245,760y°+2,536,960° — 11,109,120y* +20,633,312)"
L —14,260,064y>+2,610,330y —46,875. ~

(3.9)

In this section, numerical values for the sums of the rapidly convergent series
of (3.6), as well as numerical values of the zeros of the polynomials pi(y) of
(3.9), appear. These have been determined with high precision using the VAXIMA
package on a VAX-11/780. The reader may find it useful to have a hand calculator
available while reading portions of what follows.

Lemma 3.1. We have
(3.10) |B7(1)] < (1.031)2 w* exp(17t —4me*)  (1=0).

Proof. From (3.6) and (3.7) we have

foe]

(3.11) ®/(1)= Y mn’py(wn® e*) exp(5t—mn” e*).

n=2

From (3.9) it can be verified that p;(y) has three distinct positive zeros, namely
r=0277455.. ., r=1.672823...,and r{":=5.049720 ..., so that ps(y) >0
for all y>r$®. Next, ps(y) <32y° iff (cf. (3.9))

224y* —330y+75=224(y —0.280790 .. .)(y —1.192423 .. .)>0.
As this last inequality holds for all y>1.192423 ..., then
(3.12) 0<ps(y)<32y°  (y>r)=5049720...).

Butas 7n’ e* =47 > ri¥ forall n=2and ¢t = 0, then applying (3.12) to (3.11) gives

n8

(3.13) [®7(n)]<32m*e'™ Y

B TR {=0).
W=y exp (wn’ e*') (t=0)

To bound the sum in (3.13), set u:= 7e*. We then seek to find a number
K = K(u)>1 for which

8

8

o0 n 1 0
3.14 == ), 7 =
( ) nzz ncu n‘u—8logn Z

nlog K*

s

1
n=2 € n*—-2KN
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Indeed, it is sufficient from (3.14) that such a K should satisfy
n‘u—8logn=nlogK (n=2,3,...)

or, equivalently,

(3.15) ‘nu—(8 logn)/n=log K (n=2,3,...).

Set h(s)=us—(8logs)/s for all s=2, so that h'(s)=u+8(logs—1)/s". As
log s/s*>0forall s=2, then h'(s)>u—8/s’=7—2>0 forall s =2, since u= .
Thus, h(s) is strictly increasing for s =2, and h(s) = h(2) for all s = 2. This implies
that

nu—(8logn)/n=2u—4log2=log K (n=2,3,...).
Thus, K = K(u)=e*/2* satisfies (3.15). But then, the last sum in (3.14) is just
1 3 2° _ 2
K*(1-1/K) e*™(1-16/e™) e*(1—16/¢>")

(3.16)

where the last inequality follows from u = 7. Since (1—16/¢>") ' < 1.031, insert-
ing the above upper bound in (3.13) gives the desired result of (3.10). &

Lemma 3.2. We have

(3.17) ®"(t) is strictly increasing on the interval I:=[0, 0.06],
and
(3.18) d"(1) <0 forall tel

Proof. To prove (3.17), it suffices to show that
(3.19) D"(1)>0 (0<t=0.06).

We first note that ®”(0) =0 (see Theorem A of [4]). Moreover, it is known (see
inequality (3.36) in [4]) that

(3.20) Y()y>aP(t)  (1=0),
where
(3.21) al(t) = aps(me*) exp(5t — 7 e*),

and where p;s(x) is the polynomial defined in (3.9). Now one readily verifies that
ps(y) has the five distinct positive zeros ri'’:=0.071349 ..., r?:=0.604398 .. .,
r$=1.996885..., r{"=4.617597..., and r:=9.209769 . ... Thus, ps(3)>0
on the interval (r$, 7). But, as me* falls in this interval for all 0=t<
log(rsV/m)/4=0.096286 ..., it follows that

(3.22) a®P(y>0 (tel).

Therefore, as ®"(1)=®"(0)+ td(£(1)) = t®“(£(1)), where 0= £(1) <1, then,
from (3.20) and (3.22), ®@"(1) > ta\Y(£(1))> 0 for all 0<1=0.06, and ®"(1) is
thus strictly increasing on I, which establishes (3.17).
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To establish (3.18) we use (3.6) to obtain
(3.23) () =ai()+ () =ai()+]|®{(n]  (¢=0).
From (3.10) of Lemma 3.1
|®7(1)] <(1.031) - 2V 7" exp(17t —4m e*') (t=0).

As this upper bound for |®[(¢)] is strictly decreasing for 1=0, then evaluating
this upper bound for ¢t =0 yields

(3.24) , |®7(1)|<2.869080...  (r=0).
Next, with (3.6) and (3.7), we can write
al(1) = mps(me*) exp(St—me*),

where ps;(y), defined in (3.9), has the three distinct positive zeros K=

0.277455...,r:=1.672823 ..., and r’=5.049720..., so that ps(y)<0 on
the interval (+?, r{’). Now me* is contained in the interval (#{”,r{") for

0=rt<log(r/=)/4=0.118650..., so that
(3.25) aj(t)<0 (0=1<0.118650...).
On the other hand (cf. (3.7)),

a(t) = mpy(me*) exp(5t—me),

where p,(y) is given in (3.9). Now p4(y) has the four distinct positive zeros
r0=0.138273..., rP=0981795...,r=3.046710..., and ri’:=
7.083220.... As p(y)>0 for all y in the interval (r$”’, r$"), then

pa(me*)>0 (0=t<log(ri?/m)/4=0.203249...),
so that
(3.26) a®()>0 (0=1<0.203249...).

In particular, (3.26) gives that a{(t) is strictly increasing on the interval 0=1<
0.118 650, whence a calculation based on (3.7) yields

(3.27) al(1)=al(0.06)=-22.779786 ...  (teI).
Thus, from (3.23), (3.24), and (3.27),
(1) = ai(1)+|P{(0)|
<—-22.779786...+2.869080...<0
for all te I, which gives (3.18). ]

Lemma 3.3. ®“(1) is strictly decreasing on I=1[0,0.06]. Moreover, ®*(1)>0
on I
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Proof. To show that ®*(¢) is strictly decreasing on I, it suffices to show that
®(1) <0 for 0< t=0.06. Since ®(¢) is an even function (see Theorem A of [4]),
®*(0)=0. Thus, by Taylor’s theorem, for each te I there is a £(1), where
0=< £&(t) <1, such that

(3.28) PO (1) = td(£(1)).

Consider first (cf. (3.6))
(3.29) O =Y a'®(t)y= Y mn’p,(mwn® e*) exp(5t—mn’ e*'),
n=3 n=3

where p,(y) is given in (3.9). Then, p,(y) <8192y =2"y" iff
ge(y) = 245760y°—2,536,960y°+11,109,120y* - 20,633,312y°
+14,260,064y° — 2,610,330y +46,875> 0.

Now, g¢(y) has the four distinct positive zeros si’=0.020101..., s =
0.246796 ..., s$=0954957 ..., s{¥=2.112148 ..., and two nonreal zeros
(3.494 456 ... +i2.617300...), so that

(3.30) p(1)<2By"  (p>sPi=2112148.. ).
But as 7n’ e* =97 > st for all n=3 and t=0, then, by (3.30) and (3.29),

o 16
(3.31) PPN <72 Y ———— (120).
a3 exp(an”e™’)

The above sum can be bounded above, as in the proof of Lemma 3.1, by

> 1 1

LK KUKy

with K =exp(3me*)/3'3. As (1—1/K)'=(1-3"%3/¢’7)<1.030, then sub-
stituting these upper bounds for the sum in (3.31) gives

(3.32) D7) <(1.030)7*23 exp(33t =97 e*)  (t=0).
Thus, from (3.6), (3.7), and (3.32), we have
(3.33) DOy <me™ ™ py(mwe*) +ap,(4me*) e T

+ (1030) 777213316 6281—871 e“’}

for all t=0.

We next bound above the three terms in the braces in (3.33) for t€ I :=[0, 0.06].
Now p,(y) has seven distinct positive zeros given by r3V:=0.020101 ..., r¥' =
0.246797 ..., r¥=0.952621..., ri":=2.347817...,r}=4.638584 ..., r¥:=
8.145988 ..., and rY)=13.648090.... Since m=me ' =7e"*=3.993746...
falls in the interval (#%%, r$*)), for all t < I, the first term, p,(7 e*'), in the braces
of (3.33) is clearly negative for all t€ I. Moreover, as p5(y) has a unique zero
7,:=3.827186 ... in (r'¥, r$?), then p,(y) is strictly decreasing in (r%”, 7,) and
strictly increasing in (7, r$>’). Thus,

B, (t) = p,(me*) = max{p;(7); p;(me”**)} < —10,123,638 (tel).
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Next, the second term in the braces of (3.33) can be written as 4p,(4y) e

(where v= 7 e*), and its derivative with respect to y is
4 e [4p;(4y) =3p,(4y)].

The polynomial of degree seven in brackets above has the seven distinct positive
zeros 0.028954 ..., 0.149240..., 0.412752..., 0.863681..., 1.556575...,
2.589347 ..., and 4.232781.... As this polynomial is positive at y =0, this
polynomial is then positive on [2.59,4.23]. As y = a e* falls in this interval for
all 7€ 1, then B,(1)=4p,(4me*) e <" is strictly increasing on I, hence

B,(1) = B,(0.06) <2,176,400  (teI).

Finally, the last term in the braces of (3.33) is clearly positive and strictly
decreasing for all =0, so that

By(1) = (1.030) 772173 ¢ 787 <" < B.(0) < 13,342 (tel).
On adding, the above bounds give
B(t)+ B,(t)+ B;(1) <0 (tel),

5o that, from (3.33), ®®(¢) <0 for all 1 € I Consequently (cf. (3.28)), V(1) <0
for 0<1=0.06, and ®"“(r) is strictly decreasing on I Finally, from (3.20) and
(3.22), we have that ®¥(t)>0on L B

Lemma 3.4. With the definition of (3.1),
(3.34) g()>0 (0<1=0.03).

Proof. Since ®'(0)=®"(0)=0 (see Theorem A of [4]), it follows from (3.1)
that g(0) = g'(0) = g"(0) = 0. Thus, to prove (3.34) it suffices to show that g"(1)>0
for 0<t=0.03. Now, by Taylor’s theorem, for each fixed t, 0 <7=10.03, there are
numbers 7;(1) (j=0, 1,2, 3) satisfying 0= »,(1) =1, such that

~

(335) (1) = 0(0) +5 ' (mo(1),
(3.36) (1) = @"(O)H—% O (i, (1)).
(3.37) (1) = ¥'(0)+ 5 OV na(0),
(3.38) D" (1) = 10 (ns(1)).
Since

(3.39) g'(1) =5 ()®"(1) + t[(D"(1))* = D()P ()] - D (1) D" (1),
we obtain, using (3.35)-(3.38),
(3.40) g"(t) =15, (1) + S,(1)+ S5(1)],
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where

(3.41) S1(1)=6(2"(0))* = @(O)[ @V (1) + @V (n3(1))],

(3.42) Sy(1) = O (O)[FD Y (m2(1)) +50“ (m,(1))]
=30 (mo())[D W (n3(1)) + U ()]},

and

(3.43) S5(1) = W (I NHP Y (1:(0)) 3PV (ma(1)) I}

By Lemma 3.2, ®"(¢) <0 on I:={0,0.06] and ®"(¢t) is strictly increasing on I,
while by Lemma 3.3, ®“(1) >0 on I and ®"(r) is strictly decreasing on I Also,
it is known that ®(¢) >0 for all =0 (see Theorem A of [4]). Consequently, for
0<t=0.03, we obtain the estimates

(3.44) S,(1)>6(®"(0))> =2 (0)®™(0) > 913

and

(3.45)  S,(1)>(0.03){5D"(0)®¥(0) +|P"(0.03)|®V(0.03)} > —689.

Now, by Lemma 3.3, ®*¥(¢)>0 for 0<t=0.06 and a fortiori S;(t)>0 for
0<t=0.03. Therefore, by (3.40), (3.44), and (3.45), we conclude that g(1) >0 for
0<1=0.03. |
Lemma 3.5. Let

(3.46) R(t)=[(®'(1))*/P(1)]-D"(1) (t=0).

Then R(t) is strictly decreasing for 0.03 =t <0.06.

Proof. Set
L(#) = (®())’R'(1) (t=0).

Then, since ®(1)>0 for 1 =0 (see Theorem A of [4]), it suffices to show that
L(1)<0 for 0.03=1=0.06. Using (3.46) it follows that

(3.47) L(1)=(=®'(1))+ 2(){2(= (1)) (=D"(1)) = () @"(1)}.

Since ®@'(r) <0 for t >0 (see Theorem A of [4], ®"(¢) <0 on [0, 0.06] (cf. (3.18)),
and ®"(¢)>0 on (0,0.06] (cf. 3.19)), the quantity in braces in (3.47) can be
written as

V(1)=2]@'(1)] [®"(1)] = |@(1)] [@"(1)] (0=1=0.06).
Consequently, for any closed subinterval [a, b] of [0.03, 0.06],
max V(1) =2 max |®'(¢)] max |®"(#)| —min [®(£)| min |D"()].
[a,b] {a.b] [a,b] [a,6] [a,b]
In addition, because ®"(1) <0 on [0, 0.06] (cf. (3.18)) and because ®*'(¢)> 0 for
0=<1=<0.06 (cf. Lemma 3.3), then
(3.48) max V(1) =2|@'(b)] |®@"(a)|—|D(b)] " (a)l.
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On setting J,:=[0.03,0.035], J,:=[0.035,0.04], J;:=[0.04,0.05], and J,=
[0.05,0.06], and on determining ®'*'(¢) (0=k=3) at the endpoints of these
intervals, we find, using (3.48), that

rmjax V(1) =—11.200= p,,

max V{t)=—-15.645= u,,

.49
(3.49) max V(t)=—-11.011= p,,

Lrnjax V(t)=-21.817= p,.

Thus, from (3.49), V(1) <0 on [0.03,0.06], and we can write
L(t)=|®' () +|®)| V()  (0.03=t=0.06).

On setting J; = [¢;, B;], then

(3.50) L(1) =max (I@'(t)l3>+(mgn I@(r)\)(mgx V()= M,

for all teJ; (1=j=4), and, by the same reasoning used in determining (3.48),
M=o (B +|@(B)lw;  (1=j=4).

With the numbers of (3.49), we determine that M, =—-3.352... M,=-4.529 ...,
M;=-0.810... and M,=-2.826... Thus, from (3.50), L(1)<0 for 0.03=t=<
0.06. B

Lemma 3.6. With the definition of (3.1)

(3.51) g(t)>0 (0.03=1=0.06).
Proof. Let
h = 0.005,
(3.52) ;:=0.03+jh (0=j=5),

J:=[0.03+jh,0.03+(j+1)h]  (0=j=5).
Now, by Taylor’s theorem, for t € J;, there is a number &(¢) satisfying 0.03+ jh <
&(t) =t, such that
(3.53) D'(1) =D'(4;) + (1 — 1) P"(&(1)).
Since ®(1)>0 (0=sr<0), it éufﬁces to prove that g(z)/®(¢t)>0 for teJ:=

U?_, J;. Now, from (3.1) and (3.46), g(1)/®(t) = tR(1)+®'(1), so that, for 1€ J,
we have, from (3.53), that

(3.54) %= (t=t)[R(1)+D"(&(1))]1+D'(1;) + t;R(1).

Next, using Lemma 3.2 and Lemma 3.5, we find that

(3.55) min [R()+®"(¢())]=R(,)+d(1)  (0=j=5).
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By evaluating the right-hand side of (3.55), for 0=j =35, we obtain

(3.56) Omins [R(t;4,)+®@"(1;)]>1.959461....
=j=S5
Consequently, using (3.54) and (3.56), we obtain the lower bound
t
(3.57) %((I—))>®’(tj)+th(t)=: Q1) (te ).

Thus, to prove (3.51), it suffices to establish that Q(#)>0forteJ = szg J;. But,
by Lemma 3.5, R(¢) is strictly decreasing for 0.03 = r=0.06. Hence,

(3.58) Q)= (1) + 4R (14+) (teJp).
Finally, by evaluating the right-hand side of (3.58) for 0=j =35, we obtain
Q(1)= min [P'(5;) + 4R (41)]

>0.001616...
for all 0.03 <t =<0.06. Therefore, from (3.57), the assertion (3.51) is valid. B

We next turn to the proof of inequality (3.5). From (3.1),
(3.59) g(1) = t[(P' (1))’ = B(NP"()]+P()D'(1)  (1=0),

and write ®(¢t) = a,(t)+®,(t) (cf. (3.6)). Then a computation shows that g(1)
can be expressed in the form

(3.60) g(1) = Ty(1)+ To(1) + Ts(0) + Tu(1) + Ts() + (@1 (1)),
where, for t=0,

(3.61) Ti(0) = t[(ai(1))* = ay(t)ai ()] + a,()ai(1),
(3.62) To(t) = 2tai(1)®(1),

(3.63) Ti(t) = —1®d(1)P7 (1),

(3.64) T,(1)=®(0)®1(1),

(3.65) Ts(t) = (ai(1) — ta{ (1)) P, (1).

Since 1(®}(1))*=0 for t=0, we have the lower bound

(3.66) g(t)=E(1) (¢=0),

where

(367 E(= 3 T

With the aid of the following lemmas we will prove that the function E(t), defined
in (3.67), is positive on the interval I,=[0.056, ).
From the definitions in (3.61) and (3.6) it can be verified that

(3.68) T,(t) = 167" exp(22t —2m e*) 0,(1) (1=0),

where

2,15 20, 15, 4 ]
: =t 4=+ Fl o1+ e M S e —— )
(3.69) 6:(1) t[4 T € ’ ¢ ! 47 € 24 ¢ 167" €
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Lemma 3.7. We have

(3.70) 0,(t)>0 (1=0.04623)
and
(3.71) 0:(1)>0 (1=0.04623).

Proof. First, a calculation using (3.69) shows that
(3.72) 0,(0.04623)=0.002784 .. ..

Thus, to prove (3.70) and (3.71), it is enough to show that 8{(¢) > 0 for t = 0.04623.
To this end we express #((1) as

48
(3.73) 0§(t)=?e *0,,(1)+ 0,0(0)},
where
T 11 25 45
74 O (1) =Cet ——F——e M ™

(3.74) n = e s e 64 ¢
and

5 —41
(3.75) 0,(t)=t{1——e¢ .

2

We now proceed to verify that 6,,(¢) + 6,,(¢) > 0 for t = 0.04623. Consider 011(1)
given by (3.74). Then a computation shows that

(3.76) 6,,(0.04623) = —0.008 349 . ..
and that
25 45
(3.77) gﬂsz e e
dar 8

For t=0, set x:= 7 e* (=) and let

(3.78) 6:,(t)=R(x)= (8x” ~150x +135) (x>0).

24x7

Then the zeros of the rational function R(x) are given by x,:=—4.724 588 ...,
X,=0.945009..., and x;:=3.779 578 .... Thus, R(x)>0 if x> x;, and so

(3.79) 05:,(t)>0 (t=1),
where
(3.80) =1 log( > 0.046 220.

Turning to the function 6,,(¢) given by (3.75), we find that
(3.81) 0,,(0.04623) =0.015652336. ..
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and that

(3.82) ’,z(z)zl—% e“4‘+z%0 e"“zi—;; e >0 (t=0).
Consequently, we infer from (3.79) and (3.82) that

(3.83) 0L, (1) +6,(1)>0 (1=0.04623>1t,),

where t, is given by (3.80). But, by (3.76) and (3.81), we have

(3.84) 6,,(0.04623)+ 0,,(0.04623) = 0.007 302 ...>0,

and so the desired results of (3.70) and (3.71) follow from (3.72), (3.73), (3.83),
and (3.84). B
Lemma 3.8. We have (c¢f. (3.62)-(3.64))

(3.85) | To(1)] < 9,0407°t exp(261 — 57 e*') (1=0),

(3.86) [ T5(1)] < (1.0362)2" 7%t exp(26t — 57 &*) (+=0),

(3.87) | T.(0)]<(1.109)2"7° exp(22t =57 e*)  (1=0).

Proof. From (3.7) ai(t)= mp,(me*) exp(5t—me*), where (cf. (3.9)) p.(y)=
~8y°+30y —15. As |p,(¥)|<8y” for all y>1 then |p,(we*)|<8n" e* for all
t=0, so that

(3.88) laj(t)|<8n” exp(13t — mwe*') (1=0).
Next, in [4, Lemma 3.3] it was proved that
(3.89) |®1(1)| < 5657 exp(13t —4dm ™) (1=0).

Thus, applying the bounds of (3.88) and (3.89) to the definition of T5(7) in (3.62)
gives (3.85).

In order to prove (3.86), we first recall that in [4, equation (3.41)] it was shown
that

203
O<<I>(t)<2—02-a1(t) (t=0).

Since a,(1) =27*(1—(3/27) e *) exp(9t — we*) < 27" exp(9t — 7 e*') for all t=
0, it follows that

203
(3.90) 0< <I>(t)<2<-25)772 exp(9t—me*) (t=0).
Hence, applying the bound of (3.90) and the bound for [®](#)| of (3.10) of Lemma
3.1 to the definition of T5(f) in (3.63), gives the desired result of (3.86).
Finally, the estimate (3.87) follows directly from (3.89) and (3.90). B

Our next lemma provides an upper estimate for the function 7s(¢) defined by
(3.65). Note that since a,(t)>0 for all =0 and n=1 (see Theorem A of [4]),
the function ®,(t) (cf. (3.6)), figuring in the definition of Ts(t), is positive for
all t=0.




Moment Inequalities 195

Lemma 3.9. We have (c¢f. (3.65))
1

(3.91) |T5(t)|<2“'n'66xp(22t~—57re4')<z—-+te‘") (t=0).
v

Proof. First, on p. 415 of [5], Haviland has shown that

(3.92) @, (1) <647 exp(9t —4me*) (t=0).

Second, a computation based on (3.7) shows that

(3.93) la;(t)— ta’(t)|=327" exp(13t — m €*) 8,(1),
where

115 15 7 165 75
3' 4 6 )= |—— —41_‘__”w —81+t( 4t__+ —4r 8:)
(3:94) 6o(1)= |y se Ty e ¢ T et 324
Thus, by (3.92) and (3.93), we have that
(3.95) | Ts(1)] <27 exp(22t — 57 e*") 0,(1),

where 6,(¢) was defined by (3.94). Therefore, it suffices to prove that
1

(3.96) 0,(1)=—+te" (t=0).
4

In order to prove (3.96) we let

15
(3.97) A(t)= {—156A4’+~——e"8'
2

1
16772
—4r 75 —8t
—1127t+165te™ " ——te (t=0),
2@

and observe that (3.96) is equivalent to the following two inequalities:

(3.98) ——1-—2te‘“sA(t) (1=0)
2

and

(3.99) A(H)=0 (t=0).

Since the inequalities (3.98) and (3.99) can be readily established with the aid
of the calculus, we conclude that (3.96) holds, and thus the proof of lemma is
complete. ]
Lemma 3.10. With g(1¢) defined by (3.1),

(3.100) g(t)>0 (te I,:=10.056, ©)).
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Proof. By (3.66) and (3.67) we have

(3.101) g(ty= Tl(t)fi T;(1) (r=0).

J

Since 6,(¢)> 0 for t=0.04623 (cf. (3.68) and (3.70)), we can express (3.101) in
the form

(3.102) g(t)y=T(t)((1+ E(1) (r=0.04623),
where

NI S -
(3.103) E(1)= 0 EZ T;(1) (1 =0.04623).

Then, on combining the bounds for |T;(1)| for 0=j =35 (cf. (3.68), (3.85)-(3.87),
and (3.91)), we obtain

1 03 exp(4t =3 e) .
3.104 E(Dl=s—— Y |Ti(n|=—————L(cmt+de™
( ) |E,(1)] T,(t)jle S(0)] o.0) (e )
for t=0.04623, where

9,040
(3.105) c= —’1~6—+ (1.0362)2'°+27 =1,754.0688
and
(3.106) d = (1.109)2°+2° = 102.976.

Since 6,(t) is strictly increasing for t=0.056 (cf. (3.71)), it follows that, for
1=0.056,

exp(4t—3me*)

t+de ™) = E)(t
8.(0.056) (em e™) (1),

(3.107) |E\ (1)<
where the constants ¢ and d are given by (3.105) and (3.106), respectively. Now,
in light of (3.102) and (3.107), it suffices to prove that

(3.108) E,(1)<1 for all r=0.056.

To this end we compute E}(t), for t=0.056, and obtain

exp(4t—3me*)

Exn)= 6,(0.056)

Es(1),

where
(3.109) Ei(1)=dcmt—127°ct e* —127d + e
Since E;(0.056) <~—11,691.67 and

(3.110) Ei(t)=4cm—127"ce* —48 7 cte* <0 (1=0),
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it follows that E%(t) <0 for all +=0.056, so that E,(t) is positive and strictly
decreasing for 1= 0.056. Finally, a calculation shows that

#,(0.056)>0.003970. ..
and
E,(0.056) < 0.932 545,
which gives (3.108) and the desired result of (3.100). B

Theorem 3.11. With the definition of (3.1),
(3.111) g(t)>0 for all te(0,0).

Proof. Since I,ULUI;=(0,0), where I,(0,0.03], I,:=[0.03,0.06], and
I,=[0.056, ), then (3.111) is an immediate consequence of Lemmas 3.4, 3.6,
and 3.10. |

As a final remark we mention that the paper of Matiyasevich [6] came to our
attention in Mathematical Reviews (MR 85g: 11079), after our work [4] was in
press. Matiyasevich claimed in [6] a solution of Pélya’s conjecture [13, p. 16],
based on his triple-integral representation of the Turdn differences D,,(0) of
(2.12). Specifically, he observed in [6] (from (2.14)-(2.15) and (2.19)-(2.20)) in
the case A =0 that it was sufficient to show that g(¢), defined in (2.9), satisfies
g(t)>0 on (0, ), to deduce that D,,(0) >0 for all m=1. It was claimed in [6],
“from interval computations that are as powerful as a proof,” that g(f)>0 on
(0, 00). Although we have not verified his computer results, his claim that g(¢) >0
on (0, ) is of course true, as the results of Section 3 (cf. Theorem 3.11) give a
constructive proof of this. We emphasize here that our approach in this paper is
based on the independent notion that log(d)(\/z)) is strictly concave on (0, ),
which led us to show that g(#)>0 on (0, c0). While Matiyasevich also mentions
in [6] the possibility of deriving more general moment inequalities from g(7) >0
on (0,0), these are different from the concrete results of Theorems 2.4 and
Corollary 2.5.
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