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ABSTRACT

A measurement technique has been developed for nominvasive breast cancer detection. The process involves the use of close-range
stereophotogrammetry as a data acquisition device for the determination of breast surface concavities. We report the methodology
wsed to detect these surface depressions, the rationale for the study, and our preliminary findings.
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NOMENCLATURE
D Digitized breast
o= (XY X®y  Coordinates of D
N Number of contour levels
of D
N, Number of points for the
kth contour of D
w, : Points of an arbitrary
_ polygon «y in the xy-plane
LY Y e Arbitrary polygons in the
i xy-plane, the kth contour
k polygon
x ¢ Arbitrary sct in the
\ xy-plane
16,00 . .,0" Interior angle of vy formed
? by approximate line
segments
s Greek letter pi which
represents the area of a
circle of radius |
() Interior of vy
CE(y) Exterior of vy
C(v) Convex hull of v
L
INTRODUCTION

One of the major objectives of breast cancer screen-
ing is the development of a detection system which
is both rapid with respect to patient time and
provides little or no biological hazard to the
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U Set union

1= (¢, . 1, ) A Boolean vector

x Summation symbol

M, m, Centre of mass of a concave
area of a polygon

r Number of vertices in a
concave area of a polygon

L, Number of concave areas
for the kth contour of D

A Set of all concave areas of
D

d(-,) Distance function for the
xy-plane

Greek letter tau used to
represent a threshold value

Special distance function
using contours

€ An element of ,
L, L Used to donate line )
segments
C Set inclusion J

individual; these objectives have been addressed in
our research by use of biostereometric measure-
ments. Biostereometrics, defined as a three-
dimensional spatial analysis of biological form and
function, encompasses a broad assortment of sens-
ing or data collection equipment'. For the purpose
of the research described in this paper, the
stereometric data acquisition methodology was
accomplished using close-range stereophotogram-
metry’, a technique that has been successfully used
for many years in the aerial mapping industry and
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has been shown to be efficacious in the documenta-
tion and quantification of complex topographic
structures’. Sheffer et al** have described and
discussed the instrumentation and sensitivity of this
particular application of close-range stereophoto-
grammetry.

Stereophotogrammetry was used in this study to
obtain three-dimensional Cartesian coordinates
representing the surface of the human breast in an
arbitrary but fixed coordinate system. The data
acquisition stage of the process permitted two metric
quality photographs of the breast to be taken
simultancously. When the photographs were suit-
ably oriented on a stereoplotiing instrument, a
sufficiently accurate three-dimensional model of the
breast was produced. This optical stercomodel was
then  contoured in a manner which identified
numerically  data points representing the  three-
dimensional  shape of  the breast. A complete
explanation of the data acquisition and reducton
technique is given in Shefler ef al.

The rationale for use of this technology for
detection of breast cancer is based primarily on
literature review and preliminary studies in our
laboratory ™, which suggest that tumours within
the breast may cause slight to moderate dimpling of
the breast surface. Such concavities, if detected 1n a
rapid and noninvasive manner, would certainly
reduce the  screening  or  pre-screening  effort
necessary in order to permit carly treatment of the
discase. Loughry and associates in 1980° reported
the use of biostercometric analysis in a preliminary
study of breast cancer. They visually examined the
stercophotogrammetrically obtained contour map of
the breast (Figure 1) for contours containing concave
regions. Using this method to indicate potential

“underlying breast pathology, they were able to
detect the location of lesions in eight of the ten
preliminary cases studied; the tumours represented
in this study ranged in size from I 0 4.5 cm in
diameter. Five of the eight cancers detected were not
visible during the normal physical examination of
the breast. Although it was recognized that the
visualization of the contour maps was subjective, the
results suggested that the localization of breast
surface depressions could be a valuable aid in the
detection of breast cancer.

Because the contour maps are essentially a
geometric representation of a numerical data base,
we deemed it more appropriate to analyse them
objectively using mathematically based computer
algorithms. This paper is designed to describe the
algorithm and its mathematical basis, and to
demonstrate the use of this method in a clinical
rescarch project. We include a discussion of a
procedure to discriminate between those concavities
which may truly represent a lesion in the breast and
those representing data reduction ‘noise’.

In the first section we introduce the concept of a
digitized breast, i.e. a numerical data base model-
ling the subject’s breast. The geometric interpreta-
tion of a digitized breast is a contour map which
depicts, graphically, the shape and form of the
breast. The effects of breast surface depressions on
both the digitized breast and the level curves of the

Figure 1 Contour map of the breast.

~contour map arc presented. The main thrust of this

section is the description of the gecometry of a single
contour and the location of depressions on contours
not caused by noisc. The remainder of this scction
is devoted to describing. and identifying  such
concavitics.

The second section is a description of the
algorithm used to determine which concavitics on
consccutive contours form a pattern possibly causcd
by a suspect surface depression. This section also
contains a description of the program uscd to
exccute the algorithms. Finally, we discuss the
potential efficacy of the method as a prescreening
device for breast cancer.

CONTOUR MAPS AND CONCAVITIES

Mathematically, a digitized breast is defined to be a
set of Cartesian coordinates:

D'={P(""=(Xj‘“ Y Z“’)'
: e D SN :

j = 1,2,..N, k=01,....N} (1)

where N, N,, N,, ..., N, are positive 1ntegers
(N, = 1). The points {P’} ™ are the coordinates
of a set of points lying in the plane Z = Z® . These
coordinates are given with respect to a three-
dimensional Cartesian coordinate system, with the
units for each direction being 1 c¢cm in length. The
origin is symmetrically located between the subject’s

breasts, with the xy-plane parallel to the subject’s
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Figure 2 Simple closed curve. v indicates the curve, E(y)
is the region outside the curve and /(y) is the region inside

the curve.

frontal planc. The positive Z-axis is oriented in an
anterior (outward pointing) direction. The point
P corresponds to the most anterior point on the
surface of the breast. For £ =1,2,...N, the points
{P 1, correspond to points which lic on the surface
of the breast intersected with a plane Z2 = Z°
parallel to the subjects frontal planc. From a stere-
oplotter operator’s perspective, and hence a mathe-
matical perspective, such an intersection would form
a simple closed curve or contour (Figure 2). Recall
that a simple closed curve is a continuous path which
begins and ends at the same point, but does not
otherwise cross itsell. (For this reason 1t is con-
venient to assume that PY = P01 < b < V) e
can be shown™ that such a curve, say v, divides the

planc into two connected components: the interior of

v, denoted by (), and the exterior of v, denoted
by E(v) (sce Figure 2).
As previously mentioned, P represents the
most anterior part of the breast and usually
corresponds to a point in the nipple-areolar region.
The value Z" is chosen so that Z¥ - Z% = 0.25
cm and Z is an integer multiple of 0.25 cm. The
remaining Z-levels satisfy the relationship:

"

Z60 — Z0 0925 em, k= 1,2, = 1 (2)

At each Z-level, the xy-coordinates of P, j =
1,2,..., N, — 1, are chosen by the plotter operator.
(Recall that P} is set equal to A.) These points

are obtained by the operator while traversing the
optical model of the breast in a clockwise direction.
It has been shown that this procedure 1s accurate and
reliable*”'.

As with many mathematical concepts, it is helpful
and instructive to think of a digitized breast in
graphical terms. The approach we used was to
associate a polygon with each Z-level of e%uation 1
except, of course, for the single point /”. More
precisely, for a fixed but arbitrary &, 1 < k < N,
join the planar points (X* Y®) and (X, X)), j
= 1,2,..., N,, obtained by projecting P(", and P¥),
onto the xy-plane, by a line segment. Since P} =
P the path determined by the union of these line
segments for j = 1,2,... N, — 1 forms a closed
curve, denoted by v,. This curve is assumed to be
simple, so that v, is a polygon. If all these curves,
including the single point, (X{?, Y{"), are plotted in
a plane, the resulting graph is composed of level
curves of polygonal contours which represent the
breast, much the same way a contour map
represents a portion of the Earth’s surface (see Figure
7). Hereafter, the name contour map shall refer to
this graph of level curves associated with the
digitized breast. For 1 < & < N, the curve v, shall
be called the kth contour of the contour map for the
digitized breast D.

Since a digitized breast is a precise model of the
photographed breast, aberrations on the breast
surface should result in corresponding indentations
on various level curves of the contour map. More
specifically, a surface concavity should result in two-
dimensional concave areas on the corresponding
contours of D. Consequently, the first problem
mentioned in the introduction to this paper, 1.e.
detecting surface concavities, reduces to locating the
concave areas of the curves v, £ = 1,2,..., N,.
Because the distance between two Z-levels is at most
0.25 ¢m and the distance between two consecutive
plotted points on a contour is even less, no signifi-
cant concavity could lic between two levels or two
plotted points, and escape detection.

Since the computer algorithm used to locate the
concavitics analyses one contour at a time, its
description will be discussed in a general setting. Let
{tc.}7.,, (n > 4) be points in the XY-plane such that
w, = w,. The polygon v derived from the points
{ze }7., shall refer to the path (which is assumed to
be simple) obtained by connecting consecutive
points with line segments (see Figure 3a). Concave
arcas, if any, of v are the sets of points which lie 1n
the intersection of E(y) and C(y), where C(y)
represents the closed convex hull of v, that is, the
smallest closed convex set containing vy (see Figure
3d). (Recall that a set { is convex if for any two
points a, b in {, the line segment joining a and & is
a subset of {). Locating the concave areas of 7 is
accomplished by first constructing C(y) and then
removing from that set the points in I(y). The
algorithm used to construct the convex hull of a
polygon depends on the following two theorems, the
proofs of which are given in the Appendix. The
quotient in equation (3) below refers to complex
division.
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Figure 3 Scquential steps demonstrating the location of the
concave area(s) of a polygon. The Boolean variable ¢ for j =
1,6,7,8, and 9 indicates thosc vertices of the polygon which

causes it to deviate from the convex hull.

Theorem 1. Let {w,}’_, and v be as described in the
previous paragraph. Supposc that for cach j,
7 =12,..., n-1, the angle:

w,,, - w

w, - w,,

0,:= arg ( ! ), Wy = W, (3)
satisfies 0 < 6, < w. Then, C(y) = yUI(y) (U =
set union).

Note that 0 < 6, < = if and only if the sccond
coordinate of (w,., — w,) / (w, — w, ,) is positive.
Likewise, if this coordinate is negative, then 6, >
.

Theorem 2. Using the notation of Theorem 1,
suppose there exists a p, 1 < p < n -1, for which
6 = 7. Then C(¥) = C(y) where ¥ is the polygon
derived from the original set of points with exception

of w,, that is, the set {w,: 1 = j < n-1,7=p}. (If

p =1, then after removing w, from the set, w, 1s
redefined to be w,.)

The algorithm usced by the authors to construct
C() can now be described. First, by Theorem 2, all
vertices of iy for which §, = 7 can be removed leav-
ing say, the points {w\"}", from which a new
polygon 4 can be formed. (Refer to Figure 3a,b for
an example using 12 points). Since ¥ may also
have vertices whose interior angles measure at least
7, this process must be repeated for v using the

farmunla-

Figurc 4 Contour map with concave arcas indicated by x.

11y (1) .
04’1':: arg m ] = 1,2,...' n, - 1

i [
This results in a set of points {w™}?, from which
v can be derived (sce Figure 3¢). This is repeated
until one obtains a sct of points {w{®}*, from which
a polygon ' is derived and for which the interior
angles have measured less than © (Figure 3d). By
Theorem 1, C(v") = ¥ U I("") and by Theorem
2 C(y) = C(y"). The concave arcas of y are, then,
the connected  components  of (v U I(y))/C(+")
where the solidus denotes set difference (note the two
shaded arcas of Figure 3d).

Since the determination  of the  concavities
depends on both y and 7, it is nécessary to retain
all the points {w,}., in the implementation of this
algorithm. This was accomplished by a Boolean
vector T = (¢, t,, ..., {,.,) where, at first, ¢ is set
equal to true forj =1,2,..., n—1. Next, the values
6 arc computed and ¢ is given the value false if 6,2
7. The process is then repeated using the set of
points {w,:(, = true, 1 = j = n—-1}. This is
continued until no change in T takes place. For
example, referring to Figure 3b, the vector T would
have values (, = ¢, = ¢ = {, = false while the other
components of T would remain true. Consequently,
w,, w,, w;, and w, are ‘removed’ while w,, w;, wy,
Ws, Wsy Wy, Wy, Wy, would correspond to w!”, wf’,
.., wy", respectively, in Figure 4b. Repeating these
steps would change ¢, to false, thereby completing
the process. The computer implementation of this
technique is described in Algorithm A below. This
aloorithm requires the subroutine Proceed-follow (see



Algorithm B). This procedure returns for a Boolean
" veo..s T and integer j, the largest integer 7 such that
- w, procedes w, on y and ¢ = true. It also returns
the least integer s such that w, follows w, and for
which ¢ = true. For example, suppose T is the
final vector used in the example above so that ¢, =
i = &, = &y = t, = false and all other coordinates
have value true. Then Proceed-follow (1,7,7,5) would
return r=12 and s =3 if j=2, and r=5and s = 11 if
j=10. Note that in the first case s <7 but that w,
(=w,,) procedes w, (=w,) which is followed by w,
(=w,). For programming purposes, and in the
remainder of this paper, this circular or modular
way of addressing, which arises from the fact that v
is a closed contour, will be used.

Once the vector T has been divided using
Algorithm A, the concave areas of y are determined
using the following scheme. Suppose j, and J, are
integers which satisfy:

)L, =, = uc;
)l o= e = e T t., = false; (4)
ut) the points w,, w, .\, ..., w, arc consecutive

vertices of the polygon y.

Again, note that it is possible that j. <y, because
of the circular addressing technique. The region,
bounded by the path derived from {w,} 2, is a
connected component of the concave area of y
(consider the shaded arcas of Figure 3d). The centre
of mass of these concave regions will be used in the
next scction for computational and reference
purposes. The centre of mass for the points
described by equation (4) is given by:

M::—i— % w, (5)

where
j_z —jx + 1 ilﬁjl <~]A:

n+ j - jl, otherwise.

The value 7 represents the modular adjustment
described above. The prime (') on the summation
symbol indicates that the sum should include all
vertices on 7y encountered as an observer traverses vy
from w, to w, (sce the examples below).

Consider again the example illustrated by Froure
3. There are two concave arcas for v as indicated by
Figure 3d. For the top areas t; = (,, = true while ¢,
=, = t, = t, = false; consequently, j; = 3 and j,
= 10 satisfy equation (4). The centre of mass for this
area, as determined by equation (5), has the value:

10
M= Y w (6 = 10-5+1)
j=5

For the bottom concave area it is evident that j, =
12 and j, = 2. Consequently for this region:

(wy, + w, + w,)

1 &y 1
M:=—3~Ew,~=—3~

j=12

(3 =13 + 2 - 12)

A real function subprogram Centre-of-mass (¢, w,k,7) 1
needed at each step to compute the centres of mass
for the concave areas of each vy,. The computer
implementation of this function follows directly from
equation (5), and its description is omitted. Figure 4
is the contour map given in Figure I with concave
areas indicated by an ‘X’.

CLASSIFICATION OF CONCAVE AREAS

In this section the algorithm used to classify all the
concave areas of the various contours of a contour
map D is described. The purpose of the classification
is to determine which concave areas on adjacent
contours of D form a pattern that represents a single
breast surface depression; the initial step in this
process is to designate those contours, if any, which
have concave areas. This is accomplished by using
Boolean variables b, £ = 1,2,..., N, which are
assigned the value true if +y, has at least one
concave area, and the value false otherwise. Conse-
quently, if b, = true for some k, 1 < k < n, then
v. has, say L, = 1 concave areas. Let C, j =
1,2,..., L, denotes these areas whrere the ordering is
determined by traversing vy, in a clockwise
direction. Then the set

A:={CPY:b = true, 1 =) = L,,
1 < k= N} (6)

contains the totality of concave areas for all contours
of D.

The next step locates patterns of concave areas on
a sequence of contours by requiring that the distance
between two areas on adjacent contours be within a
certain tolerance or threshold value. The algorithm
uses the length of the line segment between the two
centres of mass of two concave areas as a measure-
ment of this distance. More precisely, for each C, €
A, let M, := (p, g,) denote its centre of mass
according to equation (5). The distance between any
two concave areas C'*) and C!’ in 4 is defined by
the Euclidean distance:

4(Cr. Y = (- P

+ (g - e (7
This is the length of line segment connecting (g},
¢y and (0", ¢”). Let 7 > 0. The quantity 7 is
called a threshold value and will be defined later. Two

concave areas of adjacent contours C% and C{*""
are said to be consecutive (with respect to 7) if

)d(Ch, Cty = T,

i) d (C, CO°1 < d(C, COM), ®)
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where { = s and 1 =< ¢ < L, ,. Condition (1)
suggests that C* and C¥ " are related to the same
surface concavity (within a threshold value of 7).
The second condition ensures that no other concave
area of v,,, is a more likely candidate for a
particular surface concavity. A patlern is any
maximal subset of A4 of consecutive concave areas.
That is, a collection {C¥', Ci¢'", ..., C»} of
consecutive concave areas forms a pattern if CPis

not consecutive to any concave area of vy, if k>

1 and CY¥ is not consecutive to any concave area of
v, if s < n

The implementation of the algorithm for classify-
ing the concave arcas of contours of D into patterns
is relatively simple. Let &, = 1 be the smallest
integer for which -y, has a concave area, iec.. b, =
truc. Next, find a concave area, if there is once, at the
k, + 1level which is consecutive to Cc¢r . Contunuce
this until a maximal sct of consccutive concave
arcas, i.c. a pattern, is found. This process s
repeated until all € € A belong to some pattern.
Clearly, those concave arcas which already belong to
a pattern cannot be used to start a new pattern and
must be removed from the list A4 of available arcas
given by equation (6). The pscudo code for this
procedure is given as Algorithm C below where the
ordered pair (g,5) is used to identify C1*'. An array
used stores the identifiers of those areas of A which
belong to a pattern. Several arrays P, £,, ... arc
used to denote patterns; each contains a list of
identifiers indicating those areas it contains. A func-
tion Put(q,s,") is used to store the identifier (g, s) into
a set or linked list denoted here by ““-”’. For exam-
ple, Put(g,s,used) places the identifier (g,s) into the
array used while Put(g,s, P,) places the identifier (g, )
into the pattern P. A Boolecan function
Locate(M, q,1,57) returns true if there is a concave arca
C%*" which is consecutive to C¥' (note the role of
5). This function returns false if there is no such arca:
it necessarily returns false if ¢ = n. A Boolean func-
tion Available(-,q,s) returns true if the identifier (g,5)
is not in the set denoted by ‘-, If, for example,
used = {(3,1),(4,2),(5,1)} then Available(used,4,2) =
false, indicating that C% cannot be used to start a
new pattern. However, Available(used,4,1) = true
and C% can be used to start a new pattern. Pscudo-
code for these functions is omitted. The integer np
represents the total number of patterns found. Other
notations (e.g. b,, m;) have previously been
defined.

The threshold requirement equation (8z) ensures
that two concave areas on consecutive contours are
reasonably close to each other. This value 7 should,
then, depend on the particular contour map D being
studied. Larger breasts will require larger values for
7. In this study 7 was given the value:

di(x) + dy(x) . d,(y) + d,(») |-
2 2

Here 4,(x) represents the difference of the largest x-
values of v, and v, and d,(x) represents the
difference of the smallest x-value of v, and v,. A
similar statement is true for 4,(y) and d,(y). Figure 5

Figure 5 Contour map in which two distinct patterns of
concavitics have been identified.

Call Convex_hull

Call Center of Mass

v

Figure 6 Flow chart of the main program.



is the contour map given in Figures 1 and 4. Two

" pacorns WLFL identified. These are indicated by the

“ numbers ‘1’ and ‘2’.

A bricf description of the flow of the main
program is in order at this point. First, for a given
contour level £ the main program calls procedure
Convex-hull which computes the coordinates of the
convex hull and vector 7 and v,. The next step is
to calculate the centres of mass for any concave areas
ol 7y,. Once these computations have been
performed for all contour levels, a call to procedure
Classify completes the algorlthm (A flow chart for
the main program is given in Figure 6.)

CONCLUSIONS

The development of the algorithms presented in this
paper is part of a multifaceted project aimed at
providing a non-invasive, rapid and cost effective
screening OI _prescreening muhodolosy for the early
detection breast cancer. The algorithms were
applied ummlly to the same subjects whose breast
contour maps were visually inspected by Loughry et
al."", with very encouraging results. More recently,
this procedure was employed on a data sct consisting
of 29 subjects (58 breasts) which included 7 cancers,
13 benign tumors and 38 apparently normal
breasts’. Results of the use of this analysis tech-
nique included: the correct identification of the
malignant ncoplasms in seven out of seven breasts;
correct identification of the location of benign
masses in 11 of 13 breasts; and correct assessment of
no apparent breast pathology in 30 out of 38 breasts.
These  results demonstrate  the biostereometric
analysis can detect breast surface concavities which
arc apparently associated with underlying breast
pathologics. Further development of this technique
in conjunction with other data analysis procedures,
such as computation of breast volume and volume
distribution, as well as determining discrepancices
between right and left breasts may provide the
satisfactory breast cancer detection tool so vitally
needed.
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APPENDIX

Proof of Theorem 1. Denote by { the line segment
connecting the points w, _, and w;, j = 1,2,
n—1. The 8 1s the anglc in I(vy) formed by ¢ and
€., (ref. 9). It is known that the sum of the mtenor
angles of a polvgon of n sides is equal to (n —2) «
radians'’. Thus, at most (n - 3) interior angles can
have measure grater than 7 radians. Now suppose
for the purpose of a contradiction that y U I(«y) is not
convex. Then there are points a, b € v U I(y) such
that the line segment £ joining a and 4 is not fully
contained in this set. Then line segment £ must cross
7 at least twice. Let £be a connected portion of £ join-
ing points on vy and having no intersection with /(7).
The line segment { breaks the polygon v into two
polygonal paths say v, and +y,. One of these, say
¥:, sausfies the relation I(vy,) ¢ £(y). Thus, at most
two Interior angles of v, have measurement less
than = radians (those where ¢ joins <) since the
remainder are exterior angles of . This means that
all but two angles of y, have measurements larger
than = radians. This contradiction completes the
proof.

Proof of Theorem 2. Consider the triangle formed by
the hines £, €, and € where £ is the line segment
Joining w, , and w«, ,. Let a be any point of { other
than the end pointw, , and w, .,. Clearly, a € C(y)
since w, , and w, , are in this set. Next, construct
the line L which passes through w, and a.
Evidently, as an observer travels on L from a
through w,, he passes from E(vy) over w, into I(v).
As he continues on L, then, he must agam Cross vy,
say at 6. The point & cannot be on {, or {,,,. Thus,
that part of L connecting a and b is a subset of C(7¥)
(because C(y) 1s convex). But w, is an element of
this line segment so w, € C(7). Consequently, £,
and {, _, and, hence, all of 7, are contained in C(‘y)
This means C(y) cc (7). It is obvious that C (¥)
C C () and this completes the proof.
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Stereometric breast cancer detection: F. Proietti-Orlandi et al.

Algorithm A: Procedure Convex-hull

Procedure Convex-hull (n: integer; w: array [1 .. n] of complex
numbers; var ¢ array [1 . . n— 1] of Boolean);

/% Locates the vertices of a polygon which determines its convex
hull. A vertex w,; which can be omitted is indicated by setting ¢, =
false. %/

var finish: Boolean; r,s5,7: integer;

begin
forj:= 1ton—1do¢ = true;
finished : = false;
while not finished begin
finished : = true;
forj:= 1ton -1 do begin
if ¢ = truc then begin
call Procede-follow (17),7,5):
if imaginary ((w, - w)/(w, - w)) < 0.0 then begin
{, = false;
finished @ = false
endif
endif
endfor
endwhile
end

Algorithm B: Procedure Procede-follow

Procedure Procede-follow (¢: array [1 . . n — 1] of Boolcan; =, 7
integer; var 7,5 integer)

/% Returns for a Boolean vector ¢ the largest integer 7 such that a,
precedes w, and the smallest integer s such that w, follows w, %/
var finish: Boolean; incr, m,k: integer

begin
incr = 1;
form = 1 to 2 do
incr : = — INCr;
finished : = false;
r=s;
s=J;
while finish = false do
s 1= §+ Incr;
ifs < lors = nthens =5 - incr® (n-1);
if ¢ = true then finish : = true
endwhile
endfor

end



f);océdz;reiCla35£ﬁ» (N: integer; L,b: array [1 . . N] of Boolean;
var P: array [1 . . 8] of pattern; var np: integer)
/% Classified the concave areas of the contours of D by patterns. %/

var 1,7,k,q,7,5: integer;

begin

1= 1;

for k:= 1to Ndo
if b, then

forj:= 1to L, do
if available (used, i, j) then begin

q:=k;

ro=j: '
while locate (M, g, r, s, 7) do begin
g:=q + I

put (g, s, used);
put (¢, s, P);
ri=s
endwhile;
1:=1 + 1
endif
endfor
endif
endfor

np 1= 1-1 /% np is the number of patterns found %/

nd
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