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ABSTRACT

In this paper, we give a new proof, based on matrix theory, and sharpenings of a
result of Fejér on the boundedness of partial sums of functions in H*.

1. INTRODUCTION AND STATEMENT OF RESULTS

Consider any function f(z) in H®, i.e. (cf. Duren [1, p. 2]), any function
f(z) =E;°=oajzj which is analytic in |z| <1, and for which | f], =
sup; <1/ f(2)| < co. If s5,(2) denotes its nth partial sum, i.e.,

s,(z) = ) a;zi (n>0), (1.1)
i=0

]
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then evidently ||sy|l,, =|f(0)| <||fll..- However, for the remaining partial
sums §,(z), ||s,|l, need not be bounded by || f||,, for all n>1. With

k,(r;8)=1+rcos@+ --- +r"cosnd (1.2a)

) l_rz_zrnﬂ{cos[(nfalzﬂ] — reos[nf]) (1.2b)
21— re’|

(for all 0 < r <1, all real 8), it is well known (cf. Titchmarsh [7, §7.7]) that
s,(z) has the integral representation

i0 1 roq i(0—o) r
sulre®) =~ [Tf(re @k (50 do  (O<r<r<1). (13)

As shown by Fejér [3], the triangle inequality applied to (1.2b) gives

— 1‘2— 2rn+1 - 2rn+2

1
k. (r;0)> ‘
o(7:9) 2|1 — re'?|?

(0<r<1). (1.4)

Thus, if p, is defined to be the unique positive root (from Descartes’s rule of
signs) of

1-p2—2p""1=20"*2=0 (n>1), (1.5)

then 0 < p, <1, and from (1.4), k (r; ) > 0 for all 0 < 7 < p, and all 4. Now,
this positivity of k(r; @) implies, using (1.3) and (1.2a), that

lsi(2)|<Ifll, forall |z]<p, (n>1). (1.6)

Next, from (1.5), it easily follows that

Pl=é’ (1-7i)
1>p,,,>p, forall n>1, (1.7ii)
lim p,=1. (1.7iii)

Hence, for any n > 1, (1.6) and (1.7ii) give Fejér’s result

lsm(2)|<|Iflle forall z]<p, (all m>n). (1.8)
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In particular, as p, =1/2, the special case n =1 of (1.8) is
lsn(z)|<liflle forall zl<g  (all m>1). (1.9)

It is interesting to remark that Fejér’s result (1.9) is known to be sharp
(cf. [7, §7.73)), in the sense that the constant 3 in (1.9) is the largest number
for which (1.9) is valid for all f(z) in H*®.

In this paper, we present in Section 2 a new proof of Fejér’s result (1.8)
which is based on connections with linear algebra. In particular, we use the
classical notion of diagonal dominance from matrix theory to show how (1.5)
arises in a very natural way. We also obtain the apparently new observation
that Fejér’s result (1.8) is sharp for any odd positive integer n, and is not
sharp for any even positive integer n. For convenience, we state below this
extension of Fejér’s result (1.8) as Proposition 1, whose proof is given in
Section 2.

ProposiTioN 1. For any f(z) in H® and for any positive integer n, the
partial sums s,(z) of f(z) satisfy (1.8), where p, is defined in (1.5).
Moreover, (1.8) is sharp (in the sense that p,, is the largest number for which
(1.8) holds for all f(z) in H®) iff n is an odd positive integer.

It is, however, possible to reformulate Fejér’s result (1.8) in a way which
can be shown, again using matrix theory, to be sharp for every n > 1. To this
end, consider the numerator of k,(r;6) of (1.2b), and, for each positive
integer n, set

B, =max{r>0:1—r2—2r"*!cos[(n +1)8] +2r"*>cos[ nf] > 0 for all 0}

(1.10)

From (1.4) and (1.5), it is evident that p, > p,, and from (1.10) that 1> p,.
We shall show in Section 3 that the numbers {§,}%_, also satisfy the
associated properties of (1.7). Thus, from (1.10) and (1.2b), we see that
k,(r;0)>0 for all 0<r<§p, and all . In analogy with (1.6), (1.7ii), and
(1.8), this positivity of k,(r; 8) similarly gives

|sm(2)|<lIfll forall |zj<p, (all m>n). (L1l

Our new result, which improves upon Proposition 1, is Proposition 2, whose
proof is given in Section 3.
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ProposiTiON 2. For any f(z) in H® and for any positive integer n, the
partial sums s, (z) of f(z) satisfy (1.11), where p, is defined in (1.10).
Moreover, (1.11) is sharp (in the sense that p, is the largest number for which
(1.11) holds for all f(z) in H®) for every n > 1.

Finally, we conclude this paper W1th a tabulation in Table 1 in Section 3
of the values of {p,}}°, and {p,}.° ,, truncated to six decimal digits.

2. PROOF OF PROPOSITION 1

As usual, let 7, denote the collection of all complex polynomials of degree
at most n. For any g(z) =L}_b; 24 in 7, and for a fixed h(z)= X a2
in H*®, define the convolutlon operator Th by

(Tye)(z) = (h*g)(z) = 3 ajbyal, 2.1)

i=0

so that T, maps , into m,. Then, this operator T}, is said (cf. Ruschweyh
[6]) to be bound preserving on =, if

IThegllo=Nh*gl.<llgl, (al gem,). (2.2)

Now, Fejér’s result (1.6) (after a change of scale) is just

plzi
]Z

<lifle (al 0<p<p,), (2.3)

for any f(z)=X%2 Oalzf in H*®. Since we can write Y7_,a0%2/=
(8, * f)(z), where g (z):= E"_op’zf then (2.3) is equivalent to

1T, fllo=llgn* fle<lfle (all FEH®; 0<p<p,). (2.3)
As any polynomial is necessarily in H*®, (2.3") implies
1T, flle=llgn* fllo<liflle (all fEmM; 0<p<p,), (2.3")

for any k, so that T, is bound preserving on m; for any k. On the other
hand, it is easily seen [smce, for any f(z) in H®, its partial sums converge
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uniformly to f(z) on compact subsets of |z|<1] that (2.3”) conversely
implies (2.3), and (2.3) and (2.3”) are thus equivalent with Fejér’s result
(1.6).

Our goal is to show, using matrix theory, that p, in (2.3”) necessarily
satisfies (1.5). This will then give a new proof of Fejér’s result (1.6), and with
the results of (1.7), a new proof of Fejér’s result (1.8). The following lemma
shows how (2.3”) can be reduced to a problem in matrix theory.

Lemma 1 (cf. Ruscheweyh [6, Chapter 4, and [4]). Let h(z)=:1+
= 1hjzf. Then, the associated operator T, (cf. (2.1)) is bound preserving on
@, iff the (n + 1) X(n +1) Hermitian matrix

1 h h,
h 1 :

. hl (2'4)
h, h, 1

is positive semidefinite.

We remark that the matrix in (2.4) is of course, by its structure, a Toeplitz
matrix (cf. [5, p. 27]). Next, we see from Lemma 1 that if h(z) is in 7, then
the operator T; is bound preserving on m, k> n, iff the (k +1)X(k+1)
banded Hermitian matrix

1 h, --- h, 0
h, :
: . . . h,
z (k>n) (2.5)
hn . . . :
hy
0 B, o+ By 1]

is positive semidefinite. This can be used as follows.
Fixing n in (2.3"), the associated operator T, [where g,(z)=ZX}_op'z/],
viewed as a mapping of 7, into m, is bound preserving on ;. iff the
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(k +1)X(k +1) Hermitian matrix B, ,, defined by

1 p oo pn : 0
p . . .
: o :
Ben=| o | ksl (26)
)
Y o" po1
and by
1 o : o
)
Be,,=| . s if 0<k<n, (26")
R

is positive semidefinite, where p > 0. From, Lemma 1 and (2.3”), we thus
seek the largest value of p >0 such that the matrices B,,, of (2.6) are
Hermitian and positive semidefinite for all k.

Next, consider the (k + 1) X (k + 1) (nonsingular) upper bidiagonal matrix

P= S , (2.7)

where p > 0. Then, a calculation shows that the real symmetric congruence
transformation PTB,, P is given by the diagonal matrix

PTB,,,P = . if 0<k<n, (2.8)
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and by
P'B,, P

1 _ pn+1 O

1-— p2 + pn+2
1 _pZ _pn+1
= O pn+l
_ pn+1 pn+2 O
O _ pn+1 pn+2 1-— p2

i k>n+l, (2.8

where — p"*! in the first row of the above matrix is its (1, n +2) element.
Since quadratic forms are invariant under such congruence transformations
(cf. Birkhoff and MacLane [2, p. 251]), then B, , is positive semidefinite iff
PTB, . ,P is positive semidefinite.

We now recall the following familiar result from matrix theory, based on
the old and useful notion of diagonal dominance [cf. (2.9)].

Lemma 2 (cf. [8, p. 23, Exercise 4]). Let A=|[a, ;] be an | X | Hermi-

tian diagonally dominant matrix, i.e., a; ;=a;; (1<i, j< 1) and

l
la;,;| > .leai,jl (I<i<li). (2.9)
i

If A in addition possesses nonnegative diagonal entries (ie., a, ;>0 for
1<i<l), then A is positive semidefinite.

We apply Lemma 2 to the real symmetric matrix P7B, | P of (2.8). Note
that for 0 <p <1, the diagonal entries of P'B, P are all positive and
greater than or equal to 1 — p? and each row of this matrix contains at most
four nonzero nondiagonal entries, namely — p"*!, p"*2 p"*2 and —p"*l.
Thus, PTB, ;P is diagonally dominant, and hence positive semidefinite from

Lemma 2 for all k, if p > O satisfies

1—p%> 20" 1 4+2p"+2, (2.10)
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But from (1.5), the above inequality holds iff 0 < p < p,. Hence, we have
shown that if p satisfies 0 <p <p,, then the matrices B, of (2.6) are
Hermitian positive semidefinite for all k. Thus, (2.3”) is valid for any k, and
we have a new proof of Fejér’s result (1.6), namely that

ls.(z)|<Ifll,  forall |z]<p,, (2.11)

for any f(z) in H®. As previously remarked, Fejér’s result (1.8) then follows
from (2.11) and (1.7).

We now deduce, using matrix theory, the apparently new result of the
sharpness of the constant p, in (2.11) or (1.8) for any odd positive integer n.
[Recall that this is known (cf. [7, §7.73]) for the case n = 1.] Assume that the
matrices B, ,, of (2.6) are positive semidefinite for all k, and consider the
(k +1)X(k + 1) matrix of (2.8”) with n a fixed odd positive integer and with
k> 2n+2. Consider the vector £ (with k+1 components) given by &:=
[1, =1, +1, = 1,...,(— 1)**2]7, and compute ¢”P"B,  ,P£, noting that £7¢
=k + 1. Now, because n is odd, it follows from (2.8”) that

(PTBk+1P§)j=(1_P2—2P"+1_2Pn+2)§js (2.12)

provided that n+1<j<k+1—(n+1). The remaining components
(P"By, P£);, for 1<j<n+1land k+1—(n+1)<j<k+1, are 2n+2
terms, each of which is bounded above in modulus for any choice of p in
[0,1]. As n is a fixed (odd) integer, it follows that

fTPTBkJrlP‘f
=u(n,k,p)=————
® "L( P) ng
1
=1—p2—2p"+1—2p"+2+0(m) (2.13)

as k —oco. Since p is a Raleigh quotient for the matrix PTB,, P, u neces-
sarily lies between the largest and smallest eigenvalues of this matrix (cf.
Horn and Johnson [5, p. 176]). As B, , is assumed to be positive semidefi-
nite for all k > 2n +2, so is PTB,, ,P, and thus

p=p(n,k,p)>0 (k>2n+2). (2.14)
Letting k — oo in (2.13) gives that

1-p?—2p" 1 —2p"*2> 0. (2.15)
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Thus, combining with the result of the previous paragraph, we have shown
that when n is odd, the matrices B;,, of (2.6) are Hermitian positive
semidefinite for all k iff p satisfies 0 < p < p,,. In particular, p, is the largest
constant for which (1.8) is valid when n is odd.

One may naturally ask if (1.8) is sharp for n any even positive integer.
This turns out to be false for every even n. Recalling that the positivity of
k,(r; 8) is the key to establishing (1.6), we wish to show now that the triangle
inequality, used in deducing (1.4), is always too pessimistic in the cases when
n is even. More precisely, for n = 21, we know that [cf. (1.4) and (1.5)]

p21_2p2l+1 2p2l+2

2|1 = pye

ko(pgss 0) > B =0 (allreal ). (2.16)

Now, suppose that equality holds throughout above for some real f. Then
(2.16) implies from (1.2b) that

{1—cos[(20+1)8]} + py {1 +cos[210]} >0  (all real 8), (2.17)

with equality holding for §. As both expressions in braces in (2.17) are
nonnegative and as py > 0, then equality can hold in (2.17) iff cos[(2] + 1)4]
=1 and cos[21§] = — 1, which is impossible when n = 2[ is an even positive
integer. Thus, kg (py; 6)> 0 for all 6, which implies that neither (1.6) nor
(1.8) could be sharp when n is even. This completes the proof of Proposition
1 of section 1. O

3. PROOF OF PROPOSITION 2

We now turn to the proof of Proposition 2 of Section 1, based on the
definition of ¢, in (1.10). As previously mentioned, (1.2b) and (1.10) give that
k,(r;8)> 0 for all 0 < r < p, and all 6, so that from (1.3),

|s.(2)|<IIfll,, forall z]<p,  (al n>1). (3.1)
Next, it is evident from (1.4), (1.5), and (1.10) that
1>p,>p, (alnx1), (3.2)

and, because of the sharpness portion of Proposition 1, there necessarily
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follows

po=p, (alnodd, n>1). (3.3)

[This can also be seen by taking § = 7 in (1.10).]
For the p,’s defined in (1.5), the statement in (1.7ii) that p,,,> p, is
immediate, but the analogous statement for the §,’s, i.e.,

ﬁn-&-l > ﬁn (all nz= 1)7 (34)
now requires proof. But assuming that (3.4) is valid, then from (3.1),
sm(2)|<IIflle, forall |2]<p,  (all m>n),
which is the basis [cf. (1.11)] for Proposition 2 of Section 1. We further note
that, with (3.4) and (3.2), the numbers {p,}%_, similarly satisfy the associ-
ated properties of (1.7).

We now establish (3.4). First, for n an odd positive integer, say n = 2] +1
(1= 0), (3.4) is true, since from (3.2), (3.3), and (1.7ii),

Por+1= Pors1 < Poio < Poryg-

Thus, to establish (3.4), it remains to show that
Por<Poir  (all 1>1). (3:5)

In Table 1 at the end of this section, we give numerical values for {p, }}°_,
and {$,}2 . From this Table 1, we see that p,=0.612372... is less than
P53 =0.647798..., so that it suffices to establish (3.5) for every [ > 2.

From (1.2a), we see that

ko(r;0)=Re{s+z+ - +2"} (z=re'?), (3.6)
so that k,(r; ) is a nonconstant harmonic function in the disk |z]| <1, for
any n > 1. On taking the numerator of k (r; ) in (1.2b) and on employing
the definition (1.10), we have

1—7r2—2r"*1cos[(n+1)8] +2r"Lcos[nf] >0 |

(0<r<p,; Oreal), (3.7)
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with equality holding for some g, when r=p, But with the minimum
modulus principle applied to k,(r; 8), we further have

1—1r2—2r"*lcos[(n+1)8] +2r"*2cos[n8] >0  (0<r<p,, 0 real)
(3.8)

for every n > 1. On choosing n =2l +1 and r = p,; in (3.8), suppose that

1— (By)® — 2(pyy)™ "2 cos[ (21 +2)0] +2(p5)™ " cos[ (21 +1)6] > 0

(all 8 real). (3.9)

Then, it would follow from (3.8) that fy; < pgy. 1, the desired result of (3.5).
Thus, (3.9) is sufficient to establish (3.5). Now, the global minimum of the left
side of (3.9), regarded as a function of 6, occurs when 6 = 7, so that (3.9)
holds iff

1_(521)2_2(521)2l+2“2(ﬁ21)2l+3>0 (1=>2). (3.10)

Next, on choosing r = py;, 8§ =7 + m/(21), and n =2l in (3.7), we obtain

k)

1- (ﬁzz)z - 2(521)2”1“’5('2_1) - 2(ﬁ21)2l+2 > 0. (3.11)

On comparing (3.11) and (3.10), it is evident that the truth of

w

1/2
Poy < (cos —27) (1>2) (3.12)

implies the truth of (3.10), so that establishing (3.12) will give the desired
result of (3.5).

To establish (3.12), insert #:= {cos[n/(2])]}"/% 0 ==+ m/(2l), and
n = 21 in the left side of (3.7), which gives

- o\ 1+3/2 o \i+1
w(l)‘=1—cos5—2cos(§l-) —2(cos§) . (3.13)
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Since cos(w/21)>1— 72/812 for all I > 2, then
o2 2 o2
l — 2|1 - — =21 - —5 . .
o)< g ( 812) ( 812) (314)

By elementary inequalities, it can be shown that the right side of (3.14) is
negative for all [ > 2, i.e.,

o(l)<0  (I>2). (3.15)

But, as w(l) just a specific evaluation of the left side of (3.7), then (3.15)
implies, from (3.7), that 7 - cos[7/(21)]}'/%> p,;, which establishes both
(3.12) and (3.5).

To complete the proof of Proposition 2, it remains to show that (1.11) is
sharp for each n > 1. Following the lines of the proof of Proposition 1,
assume that the (k +1)X(k +1) Hermitian matrix B, ,, of (2.6) positive
semidefinite for all k > 2n +2, and let P be the (k +1) X (k + 1) matrix of
(2.7). For any real number 6, consider the vector £ := [, e20 . ¢i(k+ DT
and compute £*PTB, , | P£, noting that £*¢ = k + 1. Similar to (2.12), we now
find that

(PTB,H_IPi)]. = {1-p*~2p" " cos[(n +1)8] +20" 2 cos[nf]} ¢
(3.16)
provided that n+1<j<k+1—(n+1). The remaining components of
PTB, . P¢ are again 2n+2 terms, each of which is bounded above in

modulus by a constant for any p in [0,1] and for any real 8. As n is again a
fixed integer, it follows that

i §*P'B, | P¢
£%¢

1
=1-p*—2p"" cos[(n+1)8] + 20" 2cos[nb] + O(m) (3.17)

as k — co. But as p is a Rayleigh quotient for the matrix PTB, P, where
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B, ., is assumed to be positive semidefinite, then

u==1—p2—2p"“cos[(n+l)0]+2p"+2cos[n0]+0( >0

1)
for all k> 2n +2, and letting k — oo gives that
1—p%—2p"* L cos[(n+1)8] +20" 2cos[nf] > 0.

But as 6 can be any real number, we see from (3.7) that p must satisfy
0<p<p,

Conversely, assume that § > §,. Applying the minimum modulus princi-
ple again to k (r; 6), it follows from (3.7) that there is a real § for which

1—p%— 25" cos[(n +1)8] +25"*2cos[nf] <0. (3.18)

For the vector £:= [, e2? ... ¢/** DT and for the matrices By, (p) of

(2.6) and P(p) of (2.7) (where p replaces p), a calculation similar to that of
(3.17) shows, using (3.16) and (3.18), that

£PT(p)B.,(P)P(5)E
B =0

ﬁ::

for all k sufficiently large, so that the matrices B, ,(p) are not all Hermitian
positive semidefinite. This established that p, the largest constant for which
(3.1) or (1.11) valid for all f(z) in H®. This completes the proof for
Proposition 2. O

We complete our discussion of Proposition 2 with several additional
remarks. First, on considering the definition of (1.10), it clear from the
sharpness of Proposition 2 that for each positive integer n, there a real 6§, in
[0, 7] for which

1- ()2 =2(p,)" 'cos[(n+1)6,] +2(p,)" " cos[nd,] =0. (3.19)

What is interesting to note is that 8, is in fact uniquely determined in [0, 7]
from (3.19). Indeed, for n an odd positive integer, it is clear that §, =,
while for n an even positive integer, it can be shown (we omit the proof) that
6, is unique and lies in (7 — 7/n, 7 — m/(n +1)). This observation can be

used in the following way to give a direct construction of the sharpness of §,
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TABLE 1

n Pr [

1 0.500000 0.500000
2 0.589754 0.612372
3 0.647798 0.647798
4 0.689139 0.694572
5 0.720412 0.720412
6 0.745071 0.747177
7 0.765116 0.765116
8 0.781794 0.782826
9 0.795930 0.795930
10 0.808091 0.808673

of (1.11). Specifically, as in [7, §7.73], consider f(z):=(z—a)/(az—1),
which is an element of H* for any 0 < a < 1. For any positive integer n, let
s,(%; f,) denote the nth partial sum of f,(z). Then, for any p > §,, it can be
shown (we omit the proof) that

|sa(pe®®; £)[> 1 £]l.o (3.20)

for all 0 <a <1 with a sufficiently close to unity. Obviously, (3.20) directly
gives the sharpness of g, of (1.11).

In Table 1 we list the values of {p,}1° ; and {p,}!% |, truncated to six
decimal digits. Each p, (n> 1) of Table 1 1s of course, the unique positive
zero of the polynomial 1 — p? — 2p"*1— 2p"*2 from (1.5). To describe how
p,, was determined, suppose n = 2 and consider [cf. (1.10)]

go(r;0)=1—1r%—2r3c0s36 +2r%cos20. (3.21)
Then,
g5
-67—21' sinf (12cos?f — 4rcos 6 — 3), (3.22)

which vanishes only for § =0, 7, and 6, = cos ™ *{(r £ Vr?+9)/6)}, where
0 <r <1. The minimum of g,(r; ), evaluated at these four values of 6, is
then the global minimum in § of gy(r;#). Then, by a simple bisection
procedure on the variable r, one finds the unique value 7 ( = §,) for which
this global minimum exactly zero. (A similar procedure applies for all n > 2.)
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Erratum for
of Fejér on bounded partial sums”,

(1988), 237-251,
and R.S. Varga

«On a new proof and sharpenings of 2 result
Linear Algebra Appl. 107

by P. Olivier, Q.1. Rahman,

The following correction should be made:

p. 248, line +11. Read “... of (2.6) is positive” for ... of (2.6) positive”



