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1. Introduction. For a given positive integer m, define the equidistant nodes z := kx/m (k =
0,1,...,2m—1) in [0,27), and let T, . (where ¢ = 0 or ¢ = 1) denote the space of all trigonometric
polynomials t,,(z), of the form

m—1
tm(z) = ao + Z (ay cos kz + by, sin kz) + a,, cos (m:c + %) , (1.1)
k=1

where the coefficients {ay}7., and {bz}7=' are complex numbers. It is evident that the dimension
of the linear space T, . is 2m.

We consider the following interpolation problem. First, break the set of nodes {z}i";" into
the two disjoint subsets {zox}7oy and {war1}isy. Then, given any positive integer M, the 2-
periodic (0; M) lacunary trigonometric interpolation problem (the “(0; M) interpolation problem”
for short) is to determine, from 2m given arbitrary complex numbers {oc,}™} and {8,173}, a

v=0">

unique ty(z) € T, . such that

tm(22,) = o, and 1M (29,44) = 6, (v=0,1,...,m—1), (1.2)

where ) (z) := %tm(m). Our first problem is

Py : determine necessary and sufficient conditions on m, M

and ¢ such that there is a unique t,,(z) € T, . satisfying

(1.2).

If Py is solvable, then the specific polynomials {ry;(z)}75" and {ryj41(2)}7', called the fundamen-

tal polynomials of the (0; M) interpolation problem, are defined by

roj(@2,) = 8j0y s (@2041) = 0w = 0,1,...,m — 1), (1.3)
and
r2j+1(x2y) = O, T'g?f_)l ($2V+1) = 6j’V(V - O, 1, N (2 1) (14)

(These fundamental polynomials then evidently span T}, .) This brings us to



P, . if Py is solvable, find ezplicit representations for the fun-
damental polynomials (of the (0; M) interpolation prob-
lem) of (1.3)-(1.4).
We note that since the elements of 7,, . are 27-periodic, then
ro;(x) = ro(x — ®2;) and rojy1(z) = ri(z —xe;)  (F=0,1,...,m —1). (1.5)

Thus, to solve the problem Py, it suffices to explicitly find only the fundamental polynomials r4(z)
and r(z).
If Cyr and C’é?f) respectively denote the sets of continuous, and M-times continuously differ-

entiable, 27-periodic functions defined on IR, then the linear operator L, : C’Q(ﬁ/[) — Ty can be

defined, for any f(z) € cM by

3

(Laf)(@) := ) fg) raj(z) + mi FON(@2j41) rajia (). (1.6)

7=0 3=0

Similarly, the linear operator L, : Chr — Tn,e can be defined for any f(z) € Ca, by
m—1 m-1
(Lnf)(2) == 3 f(zo5) raj(2) + Y Bajsr rajpa(w), (1.7)
7=0 7=0

where the £3;41 depend (in a specified way) on values of f(z) in 0 < z < 27.

Our results are as follows. In Section 2, we give a solution to problem P;, and in Section 3,
we solve the problem P, by determining explicitly the associated fundamental polynomials for the
(0; M) interpolation problem. Section 4 deals with the operators defined in (1.6) and (1.7).

By way of background, the problem of lacunary trigonometric interpolation on equidistant nodes
was initiated by O. Kis [2], in 1960, and this was later extended by Sharma and Varma [4], in 1965.
In 1980, Cavaretta, Sharma, and Varga [1] further generalized the problem to (0,mq,ma,...,m,)
lacunary trigonometric interpolation, defined as follows. Given arbitrary distinct positive integers

. . -1, -
™M1, My, . .., My, and given arbitrary complex numbers {oc, =5, find conditions on the {m,};_,



such that there is a unique trigonometric polynomial (z), of type (1.1) of suitable order and suitable

e =0or ¢ =1, such that (with z; := kx/m (k =0,1,...,2m — 1) and mg := 0)
1) (21) =oxp,, (k=0,1,....m—1;v=01,...,9). (1.8)

It turns out (cf. Theorems 1 and 2 of [1]) that the solution of this above lacunary trigonometric
interpolation problem depends, remarkably, only on the number of even and odd integers in {m,, }7_,,
and this is a condition which can be very easily checked. (For more on lacunary trigonometric
interpolation, see chapter 11 of [3].)

Noting that the derivative conditions, imposed by the given numbers {m,}!_,, are applied in
exactly the same manner at all points z; in (1.8), Smith, Sharma, and Tzimbalario [5] then in-
troduced the notion of p-periodic lacunary trigonometric interpolation on mp equidistant nodes
(p 2 2), in which the equidistant nodes are broken into p disjoint sets, and interpolation conditions
{0, mgj),. . ,mg)} are then applied on all the points of the j™ set of nodes, (j = 0,1,...,p—1). While
necessary and sufficient conditions for the unique solvability of this p-periodic lacunary interpolation
problem on mp equidistant nodes is given in [5], these conditions depend on the nonvanishing of
certain determinants of order p, conditions which are of course more difficult to check. The point of
this present study was to examine particular 2-periodic lacunary trigonometric interpolation prob-
lems, in the hope that simple, easily checked, necessary and sufficient conditions (for the unique
solvability of these problems), might be derived, in the spirit of the results of [1]. As can be seen

from Theorem 1, this is indeed the case.

2. The Problem P;. We shall prove here

Theorem 1.



a) If M is an odd positive integer, then the (0; M)-intérpolation problem

P, on 2m equidistant nodes {zy }irs" is solvable iff e = 1 and m is odd.

b) If M is an even positive integer, then the (0; M)-interpolation problem

Py on 2m equidistant nodes {z;}375" is solvable iff ¢ = 0 (and m is

arbitrary).

Proof.  We shall consider the homogeneous (0; M)-interpolation problem, and show that if the

trigonometric polynomial ¢,,(z) from T, . satisfies
tm(z2,) =0, and tﬁ,ﬁ”)(:cgm) =0 (v=0,1,...,m—1), (2.1)

then t,,(z) = 0 iff the conditions of Theorem 1 are satisfied.

First, any t,(2) in T, . can, with z := €', be expressed as

tm(2) = 27" Rom(2), (2.2)
2m
where Ry, (2) := E ¢; Z', an element in 7, satisfies from (1.1) the additional condition
J7=0
(=) cop +co = 0. (2.3)

(Such a condition is necessary since dim my, = 2m + 1, while dim 7,,. = 2m.) Noting that

a4 ;. 4
de = ¥

(2.1) and (2.2) yield

we define the differential operator 6 := izf;. With z, = e® (v = 0,...,2m — 1), then

Rom(22,) = 0, and 0™ (27™ Ry (2))|smspnyy =0 (v=0,1,....,m—1). (2.4)
As the points 23, are m-th roots of unity, the first condition of (2.4) implies that
Rym(2) = (2" = 1){Qo(2) + c2m2™}, (Qo(2) € mm-1), (2.5)

and (2.3) then becomes
(—=1)7* com — Qo(0) = 0. (2.6)



m~—1
Next, write Qo(2) = > d; 7. Since 0™ 2* = (i\)M2* for any real ), and since 23 1 = —1, then
=0
the second condition of (2.4) becomes, with (2.5), just

m—1 )
E dJ {JM_*_(J_m)M}(Z%u-i-l) - Com mM =0 (V: 0717"'7m_1)' (27)
—
Now, as the particular polynomial (in 7,,-1), defined by
m—1
q(z) = > d; {jM—I- (7 —m)M} 2 — comm™M,
j=0

necessarily vanishes, from (2.7), in m distinct points, then ¢(z) is identically zero, and its Taylor

coefficients must all be zero:

{ do(—=m)M — ¢y, mM =0,

(2.8)
dJ(]M+(]—m)M) :0’ (j—‘:la"’vmml)‘

Suppose first that M is an odd positive integer. In this case, the coefficient of d; from (2.8) is
M4+ (G —mM =M —(m— )M for 1 <j < m—1. As is easily verified, M — (m — )M is
nonzero for all 1 < j <m — 1, iff m is odd. Thus, if M is odd and m is odd, then d; = 0 for all
1 <5 <m—1. Moreover, if M is odd, then (2.6) and the first equation of (2.8) together give that

do + com =0, and (—1)"*" ¢, — do = 0. (2.9)

Hence, for ¢ = 1, (2.9) yields dy = com = 0, and, from (2.5) and (2.2), ¢,,(z) = 0. On the other
hand, if M is an odd positive integer, and if m is even or if m is odd and ¢ = 0, the above argument
shows that there is a t,,(z)#£0 which satisfies the homogeneous interpolation problem (2.1). Thus,
when M is odd, the (0; M) interpolation problem on 2m equidistant nodes {z;}77;" is uniquely
solvable iff m is odd and ¢ = 1, which establishes a) of Theorem 1.

Finally, suppose that M is an even positive integer. Then, jM+(j—m)™ > 0forall1 < j < m—1,
and hence d; = 0 for all 1 < 7 < m — 1 from (2.8). Then, (2.6) and the first equation of (2.8)



together give that
do — c2m = 0, and (=1)"*cy,, — do =0, (2.10)

and when ¢ = 0, we get dy = ¢z, = 0, so that t,,(z) = 0 from (2.5) and (2.2). Thus, when M is
even, the (0; M) interpolation problem on 2m equidistant nodes {z;}37" is uniquely solvable iff

¢ = 0 and m arbitrary. O

3. The Fundamental Polynomials ro(z) and ry(z). We first consider the case of explicitly deter-

mining the fundamental polynomials ro(z) and ri(z), of (0; M)-trigonometric interpolation in the
uniformly spaced points {z}27", when M is odd. From Theorem 1, we necessarily have m odd
and € = 1.

To begin, consider the fundamental polynomial ri(z) in T,, 1 which, from (1.4), satisfies
ri(2q,) =0, and rgM)(:vg,,H) = 6o, (vr=0,1,...,m—1). (3.1)

Since the associated points z, = €*> are m-th roots of unity, if follows from (2.2) and the first

conditions of (3.1) that

ri(z) =2""(z" —1) Ri(2) = (1 — 27™) Ry(2) (Ri(z) € mm). (3.2)
On writing Ry(z) = i ¢; 27, then since 71 () is an element of Ty, (i.e., & = 1), it follows (cf. (2.6))
that =
co— Cm = 0. (3.3)
Because (cf. (3.1)) rgM)(xl) =1 and r§M)(:c2u+1) =0 forv=1,...,m — 1, we require that

1, if v =0;
GM{(l - Z_m)Rl(z)}|Z=zzu+1 = (3'4)
0, ifvr=1,2,...,m—1.

On applying the operator 6™, and on recalling that 25,41 = —1 and M is odd, the above conditions



reduce to

m=1 : 1, if v=0;
”ﬂ QGM—wva)%H—%nW}:{ n (3.5)

j=0 0, fv=12,...,m—1.
Because z{* = —1, the polynomial s,,_1(2)(in #,_1), defined by
——sm__a (e
Sm-1(2) _ __gl(jmill)qtzfzm-;ndr..,égnz}l (3.6)

is just the Lagrange interpolant, in the points {z2,41}/, of the right side of (3.6). Thus, with

(3.5), the following two polynomials are identical:

M {mz:% ¢; (jM - (m——])M) 2= mM} = Spm-1 (2). (3.7)

On equating the coeflicients of z/ on both sides of (3.7), we see from (3.6), after some simplifications,

that
—(=")

¢y + Cyy = W’ (38)
and
Z'-—M
— v =1,2,...,m—1). 3.9
O G m ] A v "l o
Coupling (3.8) with (3.3) then gives
(i)
Co = Cpp = W (310)

Returning to r(z) of (3.2), we have
ri(z)=1=2"")> ¢ =3¢z = cnjz
J=0 J=0 J=0

Now, from (3.9) and (3.10), it is easy to see that ¢p_; = 2 7 ¢;, for all 0 < j < m, so that

)= g =+ 5 o e { () - (7))

j:




Thus, as z := €'*, the above representation gives

() = (—I)Miﬂ {sinmx N 2’5 sin j(z — 21)] } (M odd),

mM = [(m = )M =M

which gives an explicit representation for the fundamental polynomial ri(z) of the (0; M) interpo-

lation problem when M is odd. In a similar fashion (we suppress the details), the fundamental
polynomials (ro(x) (when M is odd), and ri(z) and ro(z) (when M is even), can be found, and

these are all collected below in

Theorem 2.

a) If M is an odd integer, the fundamental polynomials r1(z) and ro(z)
for the (0; M) interpolation problem are given by

ri(z) = (~173%M2+‘1 {Sm me | 2”%;1 sin| ”'“])] i } (M odd,m odd,e = 1) (3.11)
and
ro() = {1+22 (m_J cisj]fj]}(M odd,m odd,e = 1). (3.12)

b) If M is an even positive integer, the fundamental polynomials ri(z) and
ro(x) for the (0; M) interpolation problem are given, for m an arbitrary

positive integer, by

7’1(33) —

m

(—1)M/2 1 — cosma
mM

T~ cos|j(z — z1)] B
Z:: T ]} (M even, € = 0), (3.13)

and



M

< cos jzT _
ro(z) = {1 +2 ; (m - +le} (M even, € = 0), (3.14)

for any positive integer m.

4. The Rate of Convergence of 2-Periodic Lacunary Trigonometric Interpolation. For any f(z) €

m—1

Car, consider its (0; M)-trigonometric interpolation with M odd, defined by » f(w2;)rs;(x), the
7=0
special case of (1.7) with f3;41 =0 (0 < j < m —1). The following result gives an upper bound

m—1

for [ f(z) — > f(zaj)rej(2)|| (where ||g|| := = sup lg(z)|), in terms of Es(f), (s > 0), the error of best
7=0

uniform approximation to f(z) by trigonometric polynomials of order at most s. As the method of

Szabados [6] is easily adapted to this case, we omit the proof.

Theorem 3. Let m and M be odd positive integers, let € = 1 (cf. Theorem la), and let roj(z) be
the fundamental polynomials of (1.8). Then, for any f(z) € Coqr,

1 f(z) - fozg ras(@)] = O (*L?ME[m/4]<f>+m-M§;<k+1>M-1Ek<f>>.

k=0

We remark that the O-symbol above denotes a constant depending only on M (and not m).
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